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COMPLETE AND MODEL-COMPLETE THEORIES
OF MONADIC ALGEBRAS
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0. Introduction. This paper begins an investigation of the elementary
theories of monadic algebras, also known as one-dimensional cylindric
(or polyadic) algebras. Elementary types of Boolean algebras have been
completely described by Tarski [11]. On the other hand, a complete
description in the case of two-dimensional and higher dimensional cylindric
or polyadic algebras is impossible since these theories are undecidable
(cf. Henkin and Tarski [8] and Comer [3]). The equational theories of
monadic algebras were investigated and completely described by Monk [10].
We will show there are 2° elementary types of monadic algebras and in-
vestigate certain natural complete theories.

In a recent paper [9], Macintyre gave a sufficient condition for the
model-completeness of the theory of the structure of sections of a sheaf
of rings. This condition is extended in Section 2 to cover structures that
occur in algebraic logic. In Section 3 these results are applied to show
that, for each equational class of monadic algebras, the theory of its
non-trivial members has a model-companion. Axioms are given for these

theories and they are shown to be decidable and w-categorical. We assume
the reader is familiar with [9].

1. Sheaf notation. Let L be a first-order language. A sheaf of L-structures

is a triple (X, S, #), where
(i) X and 8 are topological spaces;

(ii) # is a local homeomorphism from S onto X;

(iii) for each ze¢ X, 7' (2) = 8, is the universe of an L-structure S,;

(iv) for each non-logical symbol of L, the natural interpretation
on 8, that is induced by the interpretation on each 8., is continuous.

See [9] for a more precise formulation of (iv). If X or = is understood
from the context, we drop it from the notation. The L-structures S, are
called the stalks of the sheaf. (X, 8) is a sheaf of models of a theory T if S,

is a model of T for each ¢ X. We assume that X is a Boolean space through-
out the paper.
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A section of a sheaf (X, S, n) is a continuous map ¢: X — 8 such

that mo is the identity on X. The subset of [] 8, that consists of all
. reX

sections is denoted by I'(X, §). Condition (iv), in its precise formulation,
implies that I'(X, §), with operations and relations inherited from the

product, is an L-substructure of [] S,.If A is an L-structure (topologically,
zeX

a discrete space), (X, S, w) is a constant A-sheaf if § = X x A, with the
product topology, and » is the projection. If (X, §) is a constant A-sheaf,
we denote the L-structure I'(X, 8) of sections by I'(X, A).

For a sheaf (X, 8) of L-structures we refer to Th{S,: #e X} as the
stalk theory and to Th (I'(X, S)) as the section theory of the sheaf.

An L-theory T is positively model-complete if every L-formula is equiv-
alent, relative to T, to a positive existential formula (see [9]).

2. Conditions for model-completeness. Consider the following condi-
tions:

(A) X is a Boolean space with no isolated points.

(B) T is a positively model-complete theory.

(C') L includes two non-logical constants 0 and 1. Also, there exist
two L-terms s(v,, v,) and p(v,, v,) and an atomic formula £2(v,), having one
free variable v,, in which 0 and 1 do not occur. The theory 7 includes
the following sentences: |

01, 8(0,0)=0, s(0,1)=1, s8(1,0)=1, s(1,1) =1,
p(lal) =17 p(lio) =O’ p(011) =07 p(0,0) = 07
(V0o) (P (g, 1) = vg),  (V0o) (2 (g, 0) =0), (Vo) (2 vy =0vuv, =1).

Condition (C’) is more general than conditions (C) and (D) given
in [9]. The following is a modification of Macintyre’s Theorem 2 :

THEOREM 2.1. For a sheaf of L-structures that satisfies (A), if the stalk
theory satisfies (B), (C’') and is complete, then the section theory is model-
-complete.

A proof of this theorem can be constructed from a careful analysis
of the argument in [9]. Conditions (C) and (D) in [9] are used to code up
clopen sets in the rings I'(X, 8) by idempotent elements. Condition (C’)
also allows us to do this.

For the atomic formula £ in (C’), we call oe I'(X, 8) an Q-clement
if 'X,8) = Q[c], i.e.,, 8, = 2[o(x)] for each se X. By (C’), the 2-ele-
ments of I'(X, S) are precisely the characteristic functions of clopen
subsets of X. Let 8 and 7 denote the operations on I'(X, 8) induced by
the L-terms s and p from condition (C’). The set of all 2-elements with 3
as sum and P as product is @ Boolean algebra that is isomorphic to the
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Boolean algebra of all clopen subsets of X by using the characteristic
function relationship. We leave the straightforward details to the reader.

The proofs of Theorems 3, 4, and 5 in [9] can also be modified, along
these lines, to give a general result.

THEOREM 2.2. If L is an operational language (%.e., there are no non-
-logical relation symbols), Theorem 2.1 remains valid when we drop the assump-
tion that the stalk theory is complete.

THEOREM 2.3. Suppose L contains only non-logical operation symbols
and T is an L-theory that satisfies (B) and (C’). Let € be the class of all
I'(X, 8), where 8 is a sheaf of models of T, and X is a Boolean space with
no isolated points. Then Th(¥) is model-complete. The restriction to operational
languages can be dropped if T is a complete theory.

Remark. The connection between condition (C’) and Macintyre’s
(C) and (D) can be seen by using v,-v, = v, for 2, v,-v, for p, and vy+ v, —
—v,°0, for s in condition (C’). In the next section we apply these results

to theories of monadic algebras; a situation not covered by Macintyre’s
original theorems. '

3. Model-complete theories of monadic algebras. A monadic algebra
is a structure <4, +,:, —,0,1,¢), where <4, +,:, —,0,1) is a
Boolean algebra (BA), and c¢ is a quantifier on this BA, i.e., c0 = 0, ¢ < ¢w
and c¢(x-cy) = cx-cy. The element # is closed if ¢z = x. Denote the class
of all monadic algebras by CA,.

A simple CA, is a non-trivial BA with a quantifier ¢ such that cz = 1
if# % 0. Foreachm =1,2,...,let A, be a simple CA, with 2™ elements
and let 4, be a simple, denumerable atomless CA,. For each m < oo,
let V, denote the variety generated by A,,. In [10] Monk showed that
the non-trivial equational classes of CA,’s form an (w -+1)-chain

Vi< Vo<...< V,, = CA,.

The trivial variety of all one-element CA,’s is, of course, covered
by V,. Since the theory of the trivial variety is complete and categorical,
we omit it from additional consideration.

For each m < oo, let €, denote the class of all CA,’s I'(X, 8), where

S is a sheaf of models of Th{4,,} and X is a Boolean space with no isolated
points.

The following is a consequence of Theorem 2.3:

LeMMA 3.1. Th(%,,) is model-complete for each m < oo.

Proof. Condition (C) holds using + for s, - for p, and ¢v, = v, for Q.
Consider (B). It is clear that Th{4,,} is model-complete if m < oo. Th{A.}
is model-complete by the same standard argument that works for atomless
BA’s. In any simple CA,, a # b is equivalent to ¢(a@®b) = 1, where @
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denotes the symmetric difference. Hence, the negation of a CA, equation
is equivalent to an equation relative to the theory of simple CA,’s. It
follows that Th{4,} is positively model-complete.

Let X, denote the Cantor discontinuum 2“. The following result is
immediate from Theorems 1.2 and 1.3 of [5] and from the fact that every
two atomless BA’s are elementarily equivalent.

LemMA 3.2. Th(%¥,,) = Th{l'(X,, 4,,)} for each m < oc.

For L-theories T and T* we say that T* is a model-companion of T
if T< T* T" is model-complete, and every model of 7 is embeddable
in a model of T*. This notion was introduced by E. Bers as a refinement
of A. Robinson’s notion of model completion. For the basie facts, see
[1] and [6]. If a model completion of a theory exists, then it is a model-
-companion. If a theory has a model-companion, it is unique. Finally,
let T have a model-companion T%; then 7™ is a model completion if and
only if the class of all models of T' has the amalgamation property.

Let T',, denote the theory of the non-trivial members of V,, for m < oo.
The main result of this section is

THEOREM 3.1. Th(%,,) i8¢ a model-companion of T, for each m < oo.
It is a model completion for m = 1, 2 and oo but not otherwise.

Proof. By Lemma 3.1, Th(%,,) is model-complete so, to verify the
first assertion, it remains to show that every non-trivial member 4 of
V. is embeddable in a model of Th(%,,). In view of the Henkin embedding
theorem [7] or the fact that an algebra is embeddable in an ultraproduct
of its finitely generated subalgebras, it is enough to consider A finitely
generated. But every finitely generated CA, is finite. The sectional re-
presentation results [2], restricted to CA,’s, imply that every non-trivial
finite A in V, is isomorphic to a finite product []B;, where each B;

i<n
is embeddable in 4,,. If we use the natural embedding 4,, — I'(X,, 4,,),
each B; is embeddable into I'(X,, 4,). Hence [[B, is embeddable

<n

in I'(X,, 4,,)". By the dual sheaf theory [2] for CA,’, finite products cor-
respond to sums of sheaves, so I'(X,, 4,,)" =~ I'(Y, 8), where Y is homeo-
morphic to a disjoint union of n Cantor spaces (and hence has no isolated
points) and each stalk of § is isomorphic to 4,,. Hence, [] B, is embeddable

i<n
in I'(X,, A,,) € C,, as desired. The second assertion in the theorem follows

from the first and the fact that V,, V, and V are the only varieties of
CA,’s with the amalgamation property.

Remark. Many model-complete theories of n-dimensional cylindric
algebras (CA,’s) and polyadic algebras (PA,’s) (1 < » < w) can be obtained
from the results in Section 2. But since the amalgamation property fails
for CA,’s and PA,’s with 1 < n < w (see [4]), the theories of non-trivial
CA,’s and PA,’s do not have a model completion for 1 < n < w.
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4. Properties of Th(%,,). In this section we find axioms for Th(¥,,)
and prove that the theory is w-categorical and decidable.
The following properties can be expressed as first-order statements:

(1) the axioms for non-trivial CA,’s;

(2) the BA of all closed elements is atomless;

(3) (V) ['vo #0 — (30, ('v1 < DoAY, = eVAC(Vy(—0y)) = c'vo)]
For m < oo,

(4) 0= [] c(v;@®v), where n =2m—1;

i<j<n

(8)m (Vo) [evo = 9y ADy # 0 — (T y) ... (F0,_y) ({4\ v,

=9A A ¢(v;®v) =v,)], where n =2™—1.
i<j<n

For m < oo, V,, is characterized by the CA, axioms plus (4),, (see
Monk [10]). Notice that a simple CA, satisfies (4),, if and only if it has
at most 2™ elements, and that it satisfies (5),, if and only if it contains
at least 2™ elements. Thus, (4),, and (5),, characterize 4,, among the simple
CA,’s. Similarly, (3) holds in a simple CA, if and only if it is atomless.

The following axioms were obtained by lifting the above-given prop-
erties of the stalks:

THEOREM 4.1. (i) Statements (1), (2) and (3) provide axioms for Th(%,,).

(ii) For m < oo, (1), (2), (4),, and (5),, i8 a set of awioms for Th(¥,,).

Proof. (i) Clearly, (1) and (2) hold in ¢,. Suppose I'(X, 8)e %,
gel'(X,8) and o # 0. Then |o|| = {we X: o(®) #0,} is a non-empty
clopen set. For each e |of, S, is atomless, so there exist 7,¢ I'(X, S)
with 7,(x) < o(#). By a standard ‘“globalization” argument, there is a
ve I'(X, 8) such that |lo|l = |l7]| and z(y) < o(y) for all ye llo|. Thus, (3)
holds. .

Conversely, suppose A is a model of (1), (2) and (3). By [2],
A ~TI'(X,8), where § is a sheaf of simple OA,’s. Since (2) holds, X has
no isolated points. I'(X, 8) will belong to €, if each stalk S, is atomless.
Suppose 0 = se S,. Choose ge I'(X, 8) so that ¢(#) = s. We have ¢ # 0,
since s + 0. By (3), there is a ve I'(X, 8) such that < 0, ¢r = ¢, and
c(a-(—r)) = co. BEvaluating these equations at # yields 0,< 7(2) < s.
Hence 8, is atomless. Thus, every model of (1), (2) and (3) belongs to
%+ (up to isomorphism).

The proof of (ii) is similar.

As a corollary to Lemma 3.2 and Theorem 4.1 we have

COorROLLARY 4.1. Th(%,,) 48 decidable for m < oo.

The connection between reduced products, limit powers, and the
structures I'(X, A) was pointed out by Macintyre in [9]. This connection
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allows us to use results of Waszkiewicz and Weglorz from [12] and [13].
In general, for any A, I'(X, A) is the limit power AX|Fy, where Fyx
denotes the filter on X xX generated by all equivalence relations that
correspond to clopen partitions of X. For the Cantor space X,, 2x0|11"x0
is an infinite atomless BA, so Theorem 1 in [12] implies that I'(X,, 4,,)
= (4,,)p, where D is the filter of all cofinite subsets of w. Since 2% is
atomless, Lemma 3.2, together with Corollary 2.2 in [13], gives

THEOREM 4.2. Th(%¥,,) = Th{l'(X,, 4,,)} = Th{4,}p s w-categorical
for m < oo.

5. The number of elementary types of monadic algebras. There are 2°
complete theories of CA,’s constructed in this section.

Denote the BA of all closed elements of a CA; A by Z(4). An atom
of Z(A) is a c-atom. For a c-atom y of A, let At, denote the set of all atoms
ae A, a<y.

For an atomic CA, A, introduce a function f4¢“~'2 defined for
new ~1 by

fA(n) =

The following lemma produces the desired examples:

LeMmMA 5.1. For each subset X of w ~ 1, there exists an atomic CA; A5
such that f4£(n) = 1 if and only if ne X.

Proof. Partition a countable infinite set X into an infinite number
of pairwise disjoint sets X,, X,,... Partition each X, into an infinite
number of disjoint sets Y,,, a =1, 2, ..., where |Y,,| = n. Lot A denote
the complete atomic BA of all subsets of X, and B the BA that con-
sists of all finite and cofinite subsets of X. For a subset 2 of {1, 2, ...},
let Ay denote the Boolean subalgebra of A generated by BU{X,: ne2}.

The following property of A4 is useful.

(*) For each k, X e Ay if and only if ke 2.

Fora,be Ay, writea ~, b if a@® b is finite. Since there are an infinite
number of X,’s, X, e A implies ke 2 in view of the fact that, for every
ae A, a ~,b for some b in the subalgebra of A generated by {X,: ne X}.
Thus (*) holds.

We introduce a closure operation ¢ on 4; by defining, for Ye 45,

¢(Y) = U {Tpa: YpanY # 0}.

For each atom ae Ay, ¢c(a) =Y,,, where a<< Y,,, and the center
Z(Ajy) of Az is atomic with {Y,,: n,ae ® ~ 1} as the set of atoms. Each
X, , with ne 2, is closed, so Z(Ay) is the Boolean subalgebra of 4, gen-
erated by

1 if Z4{yeZ(A): y is a c-atom, |At,| = n} exist,
0 otherwise.

{Ypat nyaew ~1}U{X,: neZ}.
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For each n,
{yeZ(Az): y is a c-atom, |At,| =n} = {¥,,: aew ~1}

and, for ne 2,
Xo = Zfz Y.

Thus, f42(n) = 1 whenever ne X.
On the other hand, suppose Z4rY,, = a exists in Ay for some n.
Since ¢Y,, = Y,, for each a, we have

ca = 34z0Y,, = 242Y, =a, ie., acZ(4Ay).

X, < a,since Y,,, < a for all a. It follows that a = X,,, since no atom
Y, of Z(Ay) is contained in & whenever m # n. Hence, if f4£(n) =1,
24ry,. exists in Ay and equals X,. By (x) we have ne X as desired.

For each ne w ~1, let ¢, denote the sentence that says: the sum
of the set of c-atoms that contains exactly n atoms exists.

For each 2' = w ~1, let T'5; denote the set of all sentences derivable
from the axioms for atomic CA;’s and {p,: neZ}U{Tlp,: n¢Z}. By
Lemma 5.1, Ay is a model of T';. Since it is clear that no model of 7'

is a model of T';. whenever 2 # X', we obtain the desired result.
THEOREM 5.2. The theory of atomic CA,’s contains 2° complete extensions.
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