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1. Let us consider & continuous populations differing at most in
their variances; the distributions of those populations, and in particular
the variances o (i = 1,2, ..., k) are unknown to us.

This paper contains a significance test which makes it possible to
verify the hypothesis that one of those populations has a greater variance
than the remaining ones, i. e. that there exists a j such that

2 2
oj >max(ol, ..., 6f_1, 6141y ..., 0F).

The proposed test is non-parametric, i. e. for its construction it is
not necessary to know the distribution functions of the populations
concerned. This is undoubtedly an advantage of the test. Another advan-
tage is its simplicity, which is particularly important for applications.
Its drawback, however, is its comparatively low power. Such is the price
which is usually paid for the simplicity of a test and the avoidance of
the assumption concerning the distribution of the general population.

As an example of the application of the test in question let us take
the testing of the accuracy of measuring instruments. The test enables
us to indicate the instrument with the least accuracy or to show that
all the instruments in question have the same accuracy. The test can also
be uged to examine the accuracy of several precision machines or in other,
Similar cases.

The idea of the above test was suggested by Mosteller’s paper [1].
Mosteller has constructed a non- -parametric test to decide whmh of %

(*) Niniejsza praca byla ogloszona w naszym piémie po polsku w tomie 2 (1955),
Str. 161.171. Obecnie oglaszamy ja po angielsku, aby jej tresé uozymé dostepme]szeg
obeym czytelnikom. Redakeja.

Jauman pafora 6mma onyGuuroBaHs B HameM JKYpHANe HA IOIBCKOM ABHKe
B vome 2 (1955), c1p. 161-171. B macroamee BpeMs nyOmmryeM €8 Wa awrumiicrom
HBHIKe pus TOro, YTobH ComepKanue paGOTH COeNaTh AACTYIHHM UATATENSAM, He BHA-
ROMEM ¢ momberoM mBEIKOM. Pedaryus.
This paper appeared in our periodical in Polish in vol. 2 (1955), pp. 161-171.
© are now publishing it in English in order to make it easier for foreign readers
%o get acquainted with its contents. -Hditors.
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populations has the greatest mean, under the assumption that the pop-
ulations are continuous and differ at most in their means.

Both Mosteller's test and the test given in the present paper are
based on the method of permuting the elements of a sample, called also
the randomization method. That method is very often used in construeting
non-parametric tests. We shall briefly discuss it in chapter 2 (2).

2. We are given N random variables X, X,,..., Xy with a joint
distribution function Fy(®,,@,,...,#y). Let W denote the space of
samples, i.e. the space of the points H = (#,, &,,..., zy). Every sta-
tistical hypothesis that is usually verified can be written in the form
Fyeo where wef2, Q being the class of admissible distribution functions.
A statistical hypothesis is thus a certain supposition eoncerning the
shape of the distribution function F,. The statistical test used for testing
hypotheses is a rule according to which we decide on the basis of a sample
whether the hypothesis in question is to be rejected or accepted. The
construction of the test consists in finding a region w C W such that if
the random point E = (X,, X,,..., Xy) is found in region w the hy-
pothesis is rejected and in the opposite case it is accepted. According
to the Neyman-Pearson’s theory-—regarded today as classical—we
choose the region w in such a way that for a number a (0 < a < 1),
selected beforehand, we have the inequality

(1) P(Ecw| Fy) <a for every Fyeo.

A region w satisfying the above relation is called a region similar to the
sample space. The letter a denotes here the probability of committing
an error consisting in rejecting the hypothesis Fyew which is being
tested when it is the true one. Since in most vases there exist infinitely
many regions satisfying condition (1) we choose that one of those regions
for which ‘

(2) P(Eew|Fy) = max for every Fye(2—o).

In this way the region w ensures the greatest probability of rejecting the
hypothesis which is being tested when it is actually false.

- In the case of parametric hypotheses, i.e. when the distribution
functions belonging to the set of admissible hypotheses Q differ only in
their parameters, it is often possible—with the use of suitable propo-

(*) We shall discuss it only in outline. More detailed information -can be found
above all in the works of R. A. Fisher [2], pp. 96-99 and [3], pp. 43-47, who has
himgelf created the method in question. Interesting generalizations and a precise for-
mulation of the randomization method can be found in H. Scheffé [4] and [5] and
E. Lehman and C. Stein [6]. ,
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sitions —to construet & region w satisfying conditions (1) and (2). For
non - parametric hypotheses, however, i. . when any distribution funetions
can be elements of the set £, we not only are unable to construct effec-
tively regions w satisfying the above two conditions but we also ignore
whether such regions exist. However, there are methods permitting
construction of regions similar to the sample space, i. e. regions w satis-
fying condition (1). One of the most important of those methods i the
randomization method mentioned in chapter 1. .

Denote by S the set of those permutations of the coordinates w,,
%9y ..., &y in the sample space W for which the values of the individual
distribution functions Fyew do not change. Let s denote the number
of permutations belonging to set 8. We establish a correspondence between
each point F of space W and the set (E’) comprising s points obtained
by all the permutations from set § performed on the coordinates of
point E. ‘

We assign to the region w constructed by the randomization method ¢
points (¢ < §) picked out from each set (E') corresponding to all points H.
Regions constructed by the randomization method prove to be similar
Tegions, i. e., they satisty condition (1), and we have P(E ewIFN) = q/s.
It can be shown, under fairly weak assumptions, that the randomization
method is the only method permitting the construction of similar
regions in the case of testing non-parametric hypotheses. It can also be
shown that similar regions exist only if class Q contains exclusively con-
tinuous distribution funetions (3). That is why in most non-parametric
tests we must assume the continuity of the general population.

It is easy to observe that there can be a large number of similar
regions constructed by the randomization method. The problem arises
how to select one of them. In non-parametric cases it is very difficult
t0 make use of condition (2) since it would then be necessary to consider
& functional P(Eew|Fy) defined for Fye(2— w). It has been usual so
far in practice to choose a similar region from among the regions satisfying
condition (1) by means of a suitably constructed statisties 7(X,, X,,...
-++y Xy). We shall now give an example of using the randomization method
and a suitable statistics 7.

ExAMPLE. From a population with an unknown continuous distri-
bution G(x,y) we take a sample (v;,%) (¢ =1,2,...,m) consisting
of m independent pairs. On this basis we are to check the hypothesis that
the variables X and Y are independent.

The class of all continuous (two-dimensional) distribution funetions

—

() All those theorems in precise form, ean be found in the works of H. Scheffé
[4] and [5] and E. Lehman and C. Stein [6], which have already been mentioned.
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consgtitutes here the class £ of admissible distribution functions, while
the subset ® contains all distribution functions Fy of the form

(3) Fy =[] @) [[ K@,
i=1 i=1

where J and K are arbitrary continuous distribution functions and N = 2m.

The set 8 contains in this case those permutations performed on the
coordinates @y, Xy, ..., Tmy Y15 Y2y -5 Ym Which do not change the value
of any of the distribution functions Fyew, i. e. any of the distribution
functions of form (3). Now, Fy does not change its value if the coordi-
nates x; are permuted with one another and the coordinates y; are per-
muted separately; however, joint permutation of the coordinates x;
and y; may atfect the value of . Thus the set § consists in our example-
of (m!)? elements. Consequently there is a correspondence between each
point E of the 2m-dimensional sample space W and the set (E’) congist-
ing of (m!)? points with coordinates determined by the elements of the
set 8. Choosing ¢q points from each of the sets (E') we obtain a similar
region w for which

P(Eew|Fy) = q/(m!)* for every Fyeow.

We decide which ¢ points of each set (E') should be assigned to the
region w by means of a suitably chosen statistics 7. In our case it can

be the following statistics:
m

Z XYy

T(B) = ____,,:1

2 2%

In accordance with intuition, we shall asgign to region w those ¢
points of each set (F') for which 7'(F) assumes values greater than for
the remaining s— ¢ points.

For instance, suppose that the sample is following: @, = 2, @, = 3,
®y =05, ¥y, =1, y; =4, ys=8. The set § contains here (3!)? = 36
elements. We are to find on the basis of a sample 36 possible values which
can be assumed by T (E). It can easily be verified that in 6 cases T (%) = 54,
in the next 6 cases T (E) = 51, and further, each time for 6 cases, we have
T(E) =46, T(E) = 39, T(E) = 37, T(F) = 33.

Suppose that « = 0,2; then, assigning the first six points to the
critical region we have

P(Eew|Fy) = 5 = 0,166..
Assigning 12 points we obtain |
P(EewlFN) = = 0,333..
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Thus for a = 0,2 we must assign to region w the 6 points giving the
greatest value of T'(F). Since in our example 7'(F) = b4, the independ-
ence hypothesis must be rejected.

- 3. We shall now give the construction of the test mentioned in
chapter. 1. Suppose that the samples from-all % populations have the
same size and contain » elements each (*). From among & samples we select
one containing the greatest element of kn observations and at the same
time the smallest element. In the sample thus selected we establish the
joint number of elements greater and smaller than the elements in the
remaining ¥ —1 samples. Those elements will be termed protruding ele-
ments. Their number in a chosen sample (if such a sample exists) will
be denoted by r. We fix a certain number r, in such & way that if r > r,,
we reject the hypothesis of equality of variances and assume that the
sample containing the greatest and the smallest element, i. . the selected
sample, comes from the population with the greatest variance. Other-
wise, if » < 7, or if there is no selected sample, we assume that the
variances of all the populations are equal (%).

The construetion of the test consists in using the randomization
method, which appears here in a particularly simplified form. It follows
from the fact that statistics » which we use here does not depend directly
on the magnitude of the individual observations but on the order of the
indices of those observations when ordered accerding to their inereasing
(or decreasing) magnitudes, e. g.

(4) By " By L a0

Q!

Where (a,, asy ..., az,) i8 @ certain permutation of numbers 1,2, ..., kn.
Of course, all points satisfying condition (4) give the same value of the
Statistics » and thus it is not necessary to distinguish them. The probability
of obtaining any point belonging to the region determined by (4)(%) is
equal to 1/s (where s is the number of permutations of the indices a which
do not change the value of Fy), which immediately follows from the
general considerations of chapter 2. It should be observed, moreover,
that a change of the order of indices within the individual % samples,
L. e. in the groups

(a1, @y, ..., )y (@np1s Tnyay -vey Gan)y ooy (a(k-—l)n+1) Yk—-1)n+29 * 9 Oien) y

(*) With samples of different size the test would involve more complicated cal-
culations. , _

(°) After this paper had been handed in for publication, there appeared a paper
by 8. Rosenbaum [7], in which the author gives an analogically constructed test for
the case of two populations (k = 2), but does not assume the same number of ele-
ents in the samples.

(®) Itsi thus the probability of a point giving a definite value of the statistics r.
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hag likewise no effect upon the gize of the statistics r. In our case there-
fore it is worth while only to eonsider the number of those permutations
of the indices which can give different values of r. It is easy to show that
the number of those permutations is (kn)!/(n!)".

Our task is to find the probability of the number of protrudmg ele-
ments in the selected sample being equal or greater than a given number 4
(t=2,3,...,n).

The ealculation must be made under the assumption that the zero
hypothesis (¢} = 03 = ... = 0}) i8 true. We must namely find the
number of those permutations from among the (kn)!/(n!)¥ for which » > 1.

Let us begin with the easiest oase—of ¢ = n. The composition
of the chosen sample can be shown diagrammatically as follows:

Variants : [ 1 2 3 l |n—3|n-—2|n-—l

greater than
Number of ei;lments ml 1 2 3 e | =3 |n—2|H—1
elements in the ORACE AAmpies - -
selected sample , smaller than .
elements in n—1{n—-2|n—8} .. | 8 2 1
other samples :
Total number of protruding elements ‘ n 1 n | n [ - n | n n

- Each variant of this kind can be connected with

[(k—1)n]!
(n1)*T01

permutations arising from the permmtation of the remaining elements.
Thus the total number L(n) of permutations in which the selected sample
has » protruding elements is

[(k—1)n]!

L(n) = (n— 1)W-

Let us now find the number of those permutations in which the number
of protruding elements in the selected sample is n—1 or more. The
compogition of the selected sample containing n—l protruding elements
may- be one of the following variants:

Variants | 1 2 |.38 | .. |n—3|n—2

l greater than elements

Numb f — e
el:;le::s (;n the : in other samples ? s Sl B s
selected sample | smaller than elements

| l in other samples n—2|n—38|n—4| .. 2 1

Total number ot protruding elements la—=1ln—1|n—1| .. |2—1|n—1
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Bach variant of this kind can be connected with

[(k—1)n-1]!
(m!)e-11!

permutations formed from the remaining elements. It should be observed
here that & sample with composition (1, »—2) can give rise by & suitable
change of one element to samples with composition (1, 2—1) or (2, n—2).
A sample with composition (2, n—3) can give rise to samples with com-
position (2, n—2) or (3, n—3), ete. Consequently we obtain

. [(k—1)n+1]! [(k—1)n]!

Following an analogical argument we can find the humber of per-
mutations in which the number of protruding elements in the selected
sample is n—2 or more: ;

» [(k—1)n+2]! [(k—1)n-+1]!
Lin=2) = (=3 gy —(#—2-2) n!)F111
It is now easy to show that
[(k—1)n-u]! | [(k—1)n+uw—1]!
Ln—w) = (n—u—D) =,y — (e u=2) (1) (w—1)!

for 1 <u <n—2. Writing n—u =1 we eventually obtain
kn—1)!  (kn—i—1)!
(k-l ) — —(1—2) (k-l . ;

(n1)* " (n—1)! (n!1Y* " (n—i—1)!

for ¢=2,3,...,n—1,

(5) L(3) = (i—1)

(kn—1i)!
(n !t (n—1i)! _
The formulas obtained permit us to find the number of those per-
mutations among (%n)!/(n!)* for which in a given sample (i. e. in a sample
Goming from a given population) » > 4. Consequently the probability that
In a given sample » >4 is | |

for 1 =n.

(6 L() = (i—1)

L) (n)*
B(r>i) = =

We are not interested, however, in the probability of r >+ in
 given sample (or a sample taken at random) but in the probability
of » >4 in a selected sample. Thus the probability desired is

L) (n!)*
(fem)!

Zastosowania Matematyki V ) .

Pr =) ==&
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Substituting (5) or (5') in the last expression and simplifying, we

obtain s o
(6) P(r>1) = (o—l)k(( ))—(z—Z)k____( (myl)

(Im—i) for ©=2,3,...,n—1,
(6) P(r>i) = (i—Dkl  for i=n.

kn)
w
It is worth observing here that for constant ¢ and % and #n — oo

the above formula is considerably simplified. Using Sterling’s formula
for n! we can show that

(7) ﬁmP(_r;i):#lj(dwl— i"z).

k

4. On the basis of formulas (6), (6') and (7) it is possible to construct
tables facilitating the application of the proposed test. We give below
a few tables for different values of %k, » and ¢. These tables give the
probabilities that for given k& and n the selected. sample will have 7 or
more protruding elements.

ExampLE. The same object has been measured by three microme-
ters, five times by each. It is to be decided whether all three micrometers
are equally accurate or whether one (and which one) is less accurate than
the remaining ones. The results of the measurements of each micrometer
have been ordered and are the following:

I 11 111
micrometer micrometer micrometer
4,077 4,070 4,069
4,078 4,079 4,071
4,082 4,080 4,075
4,084 4,081 4,083
4,085 4,086 4,087

We apply the test, for instance, at the significance level 0,05. The
selected sample are the measurement results obtained by means of the
third micrometer. The value of the statistics r, i. e. the number of pro-
truding elements in the selected sample is 2. We then use the table for
k = 3 and find for n = 5 and ¢ = 2 the probability 0,2857,i.e. P(r > 2)=
= 0,2857. Thus there are no grounds for asserting that the third miecro-
meter is less accurate than the remaining two. The eritical value of 7,
is 4, which can easily be verified in the tables.
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TABLES
Values of probabilities P(r > i) depending on the number of populations ¥ and sizes =

y 2 3 4 5 6 Y 2 3 4 5 6
n w

2 10,3333 2 10,2000

3 | ,4000 |0,2000 3| ,25600 (0,0714

4 | ,4286 ) ,25672 [0,0857 4 | ,2727 | ,1030 10,0182

5 | ,4444 | ,2857 | ,1270 |0,031%7 5| ,2857 | ,1209] ,0310 |0,0050

6 | ,4545{ ,3030| ,1515 | ,0541 [0,0108 6 | ,2941 | ,1324 | ,0399 | ,0079 |0,0008
71,4615 ,8147 | ,1678 | ,0699 | ,0210 71,3000 | ,1404 | ,0464 | ,0112 | ,0018
8 | ,4667 ] ,3231| ,1795 | ,0816 | ,0294 8 | ,3044 | ,1462| ,0514 | ,0139 | ,0028
9 | ,4706| ,3294 | ,1882 | ,0905 | ,0362 9| ,3077 | ,1508| ,0553 | ,0162 | ,0038
10 | ,4737| ,3344 | ,1950 | ,0975 | ,0418 10 | ,3104 | ,1544 | ,0584 | ,0180 | ,0046

11 | ,4762| ,3383 | ,2005 | ,1032 | ,0464 11 | ,3125 | ,1573| ,0609 | ,0196 | ,0053
12 | ;4783 | ,3416 | ,2050 | ,1079 | ,0504 12 | ,3143 | ,1597| ,0630 | ,0209 | ,0060
13 | ,4800 | ,3444 | ,2087'| ,1118 | ,0537 13 | ,3158 | ,1617 | ,0648 | ,0221 | ,0066
14 | ;4815 ,3467| ,2119 | ,1162 | ,0565 14 | ,8171 | ,1634 | ,0664 | ,0231 | ,0071
15 | ,4828 | ,3487 | ,2146 | ,1180 | ,0590 15 | ,3182 | ,1650 | ,0677 | ,0240 | ,0075
16 | ,4839 | ,3504 | ,2169 | ,1205 | ,0612 16 | ,3191 | ,1662| ,0689 | ,0247 | ,0079
17 | ,4848 | ,3519 | ,2190 | ,1227 | ,0631 17 ; ,8200 | ,1674 | ,0699 | ,0254 | ,0083
18 | ,4857| ,3532| ,2208 | ,1246 | ,0648 18 | ,3208 | ,1684{ ,0708 | ,0260 | ,0086
19 | ,4865 | ,3544 | ,2224 | ,1264 | ,0663 19 | ,3214 | ,1693 | ,0717 | ,0266 | ,0089
20 | ,4872| ,3555 | ,2238 | ,1279 | ,0677 20 | ,3220 | ,1701 | ,0724 | ,0271 | ,0092
21 | ,4878| ,3565 | ,2252 | ,1293 | ,0690
22 | ,4884 | ,3574| ,2263 | ,1306 | ,0701 oo [0,3333 |0,1852 {0,0864 |0,0370 |0,0151
23 | ,4889 ,3582| ,2274 | ,1318 | ,0711
24 | ,4804 | ,3589 | ,2284 | ,1328 | ,0721
25 | 4898 ,3505 | ,2293 | ,1337 | ,0730 k=4
26 | ,4902 | ,3602 | ,2301 | ,1346 | ,0738 i )
%
A\

27 | ,4906 | ,3607 | ,2309 | ,1855 | ,0745
28 | ,4909 | ,3612| ,2315 | ,1362 | ,0752
29 | 4912 ,3617| ,2822 | ,1369 | ,0758
30 | ,4915]| ,3622| ,2328 | ,1376 | ,0764

2 3 4 5 6

2 10,1429
3 i ,1818(0,0364
41,2000 ,0550 |0,0066
% 10,5000 |0,3750 [0,2500 [0,1563 }0,0938 51,2106 | ,0661| ,01190,0010
6
7
8

,2174 | ,0734| ,0158 | ,0022 |0,0001
,2222 | ,0786 | ,0188 | ,0032 | ,0004
,2258 | ,0825 | ,0211 | ,0041 | ,0006
9 | ,2286| ,0856 | ,0230 | ,0048 | ,0008
10 | ,2308 | ,0880 | ,0245 | ,0055 | ,0010
11 | ,2326| ,0899 | ,0258 | ,0060 | ,0012
12 | ,2340| ,0916 | ,0268 | ,0065 | ,0013
13 | ,2353 | ,0930| ,0277 | ,0069 | ,0015
14 | ,2364 | ,0042 | ,0285 | ,0073 | ,0016
16 | ,2373 | ,0052 | ,0292 | ,0076 | ,0017

oo |0,2500 )0,1194 10,0391 [0,0127 |0,0039
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