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1. Introduction. Ambrose [1] studied the structure theorems for
a special class of Banach algebras 4 which is also a Hilbert space under
the same norm and has the property that, for every xze A, there corre-
sponds an x*e A such that (xy,2) = (v, 2*2) = (z, 2y*). Such algebras
were called by Ambrose H*-algebras. The purpose of the present paper
is to replace the Hilbert space structure in H*-algebras by a more general
structure called a semi-inner product space (henceforth abbreviated to
8. t. p. space) defined by Lumer [7], and the algebra thus obtained will
be called a semi-inner product algebra (henceforth abbreviated to s. i. p.
algebra). Some interesting properties of the s. i. p. spaces have been studied
by Giles [3] and present authors [4]. As follows from the definitions,
8. i. p. spaces are more general than inner product spaces, but it seems
worthwhile to examine the conditions under which one can obtain theorems
analogous to that of H*-algebras. We prove here a number of results
under these weakened axioms and also give some analogues of the theorems
obtained by Kaplansky [6] for H*-algebras. Our approach is similar
to Ambrose [1] but where we have adopted a different type of argument
the proof has been given.

2. In this section we give definitions and an example of s. i. p. algebra.
Other definitions would be given at appropriate places in the present paper.
Definition 2.1. A complex (real) vector space X is called an s. i. p.
space if corresponding to every pair of elements z, y ¢ X, there corresponds
a complex (real) number written as [z, y] with the following properties:

(i) [x+y, 2] = [=, 2]+ [y, 2],
[Az,y] = A[x,y], @,y,2¢X and A is scalar,
(ii) [z, 2] >0 for & # 0,
(i) | (=, y1I* < [, #1[y, y]1.

* The second author was supported by an award of the post-doctoral research
fellowship of the National Research Council of Canada.
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We do not assume that s.i.p. spaces need satisfy the following
properties:

(iV) [wy }*?/] = z[‘”: ?/]7
(v) [z, y+2] = [=, y]+ [, 2].

It is to be noted [7] that, with |#]| = [z, ]V, an s. i. p. space becomes
a normed space. Further, if the norm in a Banach space (in particular,
a complete 8. i. p. space) satisfies the parallelogram equality, then it becomes
a Hilbert space.

Remark. It is clear from (i) and (ii) that [x,y] = 0 for all ye A
if and only if # = 0. Moreover, if either of , ¥ is zero, then [z, y] = 0.

Definition 2.2. An s.i.p. space is said to satisfy the continuity
property (or to be continuous) if Rely, z+ Ay]— Re[y, 2] for all real
A — 0, where Re[y, #] means the real part of [y, z].

Definition 2.3. For z, ¥ in the s. i. p. space X, x is said to be ortho-
gonal to y if [y, x] = 0.

It is to be noted that if 2 is orthogonal to y, then y is not necessarily
orthogonal to . The following lemma will be useful in our future discussions:

LEMMA 2.1. Let X be a complete and continuous s.4.p. space which
satisfies the inequality |z +y|*+ p2lle—yl* < 2|22+ 2]yl% 0 < u < 1.
Then to any closed proper subspace Y of X there is a non-zero vector orthogonal
to Y and any xe X can be expressed in the form x = y-+z, where ye Y and
z 18 orthogonal to Y. Moreover, this representation is unique.

The proof is contained in [4].
Throughout the present paper u will be taken to be positive and
less than one.

Definition 2.4. A non-empty set A is called an s. . p. algebra if
it satisfies the following conditions:

(1) A is a Banach algebra;

(2) A is an s.1i. p. space with the same norm as that of the Banach
algebra A;

(3) corresponding to any ze A, there corresponds an element x*e A
(called imvolution) satisfying one of the conditions (a) [zy, 2] = [y, #*2]
= [, zy*] or (b) [7, ay] = [2*%y ] = [2y*, «].

Note. When the underlying s. i. p. space is continuous, we say that
the s. i. p. algebra is continuous.

Remark. It is easy to see that (3) implies the following: 2** =z
and (zy)* = y*x*, where x and y are the elements of s. i. p. algebra.

Example. Let G be a compact topological group and let L?(G)
(1 <p < o©) be the space of measurable functions whose p-th power
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is integrable with respect to the Haar measure of @. Then L?(@) becomes
an s.i.p. algebra if

(f+9)o =f(o)+9(0),
(f)o = [flov™)g(v)dr,
G

(Af)o = Af(0),
1
gl
(f*)o' = f(a-l)’

where f(o) and g(o) are functions in L*(G) [10].
This is an example of an s. i. p. algebra which is not an H*-algebra
in the sense of Ambrose [1].

if, 91 =

f flgi*~" sgn gdo,
G

3. Proper s. i. p. algebras.

LeMMA 3.1. If @ 18 an element of an s. 4. p. algebra A, then vA = {0}
i8 equivalent to Ax = {0}.

Proof. Let »,y,2¢ A and let 2* y* 2* be their respective adjoints.
Then, by hypothesis, we have xzy = 0 for any ye¢ A. Hence 0 = [ay, 2]
= [, 2y*] = [#*w, y*] for all ye A. Therefore, z*c =0 or Az = {0}.

Lemma 3.1 leads us to the formulation of the following definition:

Definition 3.1. An s.1i. p. algebra A is called proper if it satisfies
either of the following equivalent conditions:

1) zA = {0} >2 =0,

(2) Az = {0} > 2 = 0.

In the other words, an s.1i. p. algebra is called proper if it has no
non-zero annihilators. The significance of proper s.i. p. algebras is exhib-
ited in the following '

THEOREM 3.1. An 8.4.p. algebra A is proper iff every element has
a unique adjoint.

" Proof. Let z,y,2¢ A and suppose if possible  has two adjoints
a; and @;. Then [z, 2y] = [#1%, y] = [#7%,y] or [(#;—=3)z,y] =0 for
all y,ze A. Putting y = (] —a3)2, we obtain [(2]—x})2] =0 for all
ze A. The last equality implies 2] = «; since A is assumed to be proper.

Conversely, suppose that A is not proper, that is, o4 = Az, = {0}
= @, # 0;then [z, (#* +2)y] = [z #*y +2,y] = [2, #*y] = [a#, y]. Hence
x,+x* is another adjoint of .

LEMMA 3.2. If © # 0 is an element of a proper s.1i. p. algebra, then
xx* # 0, x*x #~ 0 and x* # 0.

7 — Colloquium Mathematicum XXVII.1
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Proof. Let a*x = 0; then |zy|* = [ay, 2y] = [#*axy,y] = 0 for
all y. Hence 2y = 0 = 24 = {0} =« = 0, a contradiction. Other impli-
cations can be proved similarly.

Definition 3.2. An ideal I in the s.i. p. algebra A is said to be
two-sided if it is a left as well as a right ideal. An ideal is called minimal
if it does not contain properly any ideal other than {0}.

Notation. By E” we shall mean the orthogonal complement of
the set E, that is, the set of elements {x: [y, ] = 0, ye E}. All the ideals
in A are taken to be closed with respect to the norm topology induced by
the s.1. p. space.

LeMMA 3.3. If R is a right ideal in a complete continuous proper 8. i. p.
algebra A satisfying the property |z+y|? -+ ule—y)* < 2|=|*+2\y|* for
any x,ye A, then xA «c R = x¢ R.

Proof. For any ve 4, let z4 < R. By Lemma 2.1, we have ¢ = &, +
+x,, where x,¢ R and z,¢ R’. For any ze¢ A, we have w2z = x,2+2,2.
Since R is a right ideal, zz¢ R and z,z¢ R; thus, from the last equation,
we have x,2¢ R and «,¢ R?. Therefore, [#.2,#,] =0 or [z, x,2;] = 0.
But this is true for all 2, therefore z,4; = 0. By Lemma 3.2, , = 0, and
80 £ = x,¢ R.

LEMMA 3.4. Every two-sided ideal in a complete continuous proper
8. 1. p. algebra A which satisfies the inequality ||z + y|* + u?llz — yl* < 2|2|* +
+2|y|? is self-adjoint, where x,ye A.

Proof. Let I be a two-sided ideal in A. Let ;e I and z,¢ I?. Now
ey 2ol = [@y24, %, 25] = [} 15, ;] =0, since I being a two-sided
ideal, 2} @, @5¢ I and x,e I®. Therefore, #,2, = 0. For any ze A, we have
[#, #,2,] = [#1#2, ;] = 0 = 4}2¢ I which, by Lemma 3.3, implies that
I* < I, but also I** = I = I* giving I = I*.

LEMMA 3.5. If R 48 a right ideal in an s. 1. p. algebra in which 2.1
(iv) and (v) hold, then R? is also a right ideal.

Proof. Observe that R? is a subspace in view of 2.1 (iv) and (v).
Let R be a right ideal; then x¢ R = xz¢ R for any ze A. Let y < R?; then
[z, y] = 0 or [, y2*] = 0. The last relation is true for any ze R, hence
yz*e¢ R? for any z¢ A, which shows that R? is a right ideal.

Definition 3.3. On the s.i. p. algebra we can define the transfor-
mations I,: y - xy and r,: y — yx. The I, and r, are called, respectively,
the left and right transformations. The greater of the two bounds |||l.|||
and |||r,|||, where |||I.||| and |||r.]|| are bounds of the respective transfor-
mations, is called the uniform norm of x and is denoted by |||x||l.
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LEMMA 3.6. Every element x of an s. i. p. algebra, in which (ax + fy)*
= az’ +By* holds, can be expressed umiquely in the form z = »,-+iz,,
where z, and xz, are self-adjoint.

The proof is obvious.

LeMMA 3.7. In an s. i. p. algebra A, a necessary and sufficient condition
that |||z||| < 1 for a self-adjoint element x e A is that 2* —x* > 0.

The proof follows as in Rajagopalan [9] by using axiom (iii) in the
definition of the s. i. p. space.

LeEMMA 3.8. If R is a right ideal in a proper 8. 1t. p. algebra, then the
right ideal generated by R"™ is R, where R™ stands for the set of elements of
the form x,x,x3...x,, where x,, xyy ..., Tye R.

The proof follows as in [1].

Definition 3.4. Let A be an s.i.p. algebra and {4,} a family of
subalgebras which spans A. If A)s are mutually orthogonal, then A is
the direct sum of the subalgebras 4, and we write 4 = Y>'A4,.

THEOREM 3.2. Every 8.1.p. algebra A is the direct sum of an ideal,
A, ={y: y #0,4y = (0)} = {y: y #0,y4 = (0)}
and another proper two-sided ideal, provided A in addition satisfies conditions
2.1 (iv) and (v).

Proof. Let A = A,+ A?. According to Lemma 3.5, A7 is a two-sided
ideal since A, is so0. Also 4,47 = A, n A? = (0). Now, since A, contains
all non-zero annihilators, hence A? is proper.

LeEMMA 3.9. In a proper complete, continuous s.i.p. algebra A with

e+ ylI*+ wllle —yI> < 2(l2*+ Hyll*) the set E of all elements of the form
By Y1+ ToYa+ ... + 2y, 18 dense in A.

Proof. If F is not dense in A, then there exists y,¢ 4, y, # 0, such
that

[@1Y1+@oYa+ oo + TpYpny Yol =0
or
[@1Y1y Yol + [@2Y2y Yol + oo + [€¥0y Y] = O
or

(Y1 w:?/o]‘l‘[?/z’ ‘v;f'/o + ... +'[?/m w:?/o] = 0.

Since ¥y, Ysy ..., Y, aTe arbitrary, we have zy, = @390 = ... = Ty,
= 0. Let us choose y, = @;,¢ = 1,2,...,n; then az; = 0 for some i,
which contradicts the assumption that an s.i. p. algebra is proper.

LEMMA 3.10. The set of all bounded operators defined on an s. <. p.
space with the property that (aS-+pT)* = aS8*+pT* is an algebra with
involution.
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The proof is obvious, and so is the proof of

LeMMA 3.11. In an 8. 4. p. space X, a bounded operator T satisfies the
relation |T*T) = | T|>.

Definition 3.5. An algebra of operators with involution satisfying
the property |T*T| = |T)? is called a completely regular algebra.

Definition 3.6. An s.i. p. algebra is said to be semi-simple if its
radical consists of the only zero element. For various equivalent definitions
of radical, see Naimark [8], p. 162.

LEMMA 3.12. Every completely regular algebra of bounded operators
on an 8. 4. p. space X with the property (aS+pT)* = aS8*+BT*, where S
and T are bounded operators on X and a, § are scalars, 18 semi-simple.
The proof follows as in [8], p. 309.

THEOREM 3.3. Every proper s. i. p. algebra A, which satisfies the con-
dition (ax+ Py)* = ax*+By*(a, B are scalars), is semi-simple.

Proof. To each element xe A, there corresponds an operator A,
in the s.1i. p. space, namely the operator of a left regular representation
defined by A,y = oy and, consequently, 4,.y = z*y. We have [zy, 2]
= [4,9, 2] = [y, (4,)*2], therefore (4,)" = 4,.. Now, 4, =0 =2y =0
for all ye A = 24 = (0) = ¢ = 0, since A is proper. Therefore, the left
regular representation # — A4, is an isomorphism (preserving the involution
also) of the s.i. p. algebra into the algebra of bounded operators on A
satisfying the condition (aS 4 BT)* = a8* +BT", but the latter is complete-
ly regular, hence, by Lemma 3.12, semi-simple. Thus, 4 is semi-simple.

Definition 3.7. Let 4 be an s.i. p. algebra and let L(I) = {z: «I
= (0)} and R(I) = {w: Iz = (0)} denote, respectively, the left and right
annihilators of any subset I of A. An s.i. p. algebra is said to be dual
if for any ideal I in A the following conditions are satisfied: L(R(I )) =1
and R(L(I)) = I.

The following lemma is analogous to a result obtained by Kaplansky
[5] pertaining to H*-algebras:

LEMMA 3.13. If I is a right ideal in a proper continuous s. i. p. algebra
A, with |z+yI*+plle—y)® < 2]a)*+-2(yl? then L(I) = {z: xI = (0)}
is the orthogonal complement of I* in A.

Proof. First we prove that AI* is dense in I*. If not, then there
exists y*eI*, y* %0, such that [AI",y*] =0 or [I*, Ay"] = 0. The
latter implies that Ay* = 0 or Ay* | I'*. In the first case, in particular,
yy* = 0, contradicting the properness of 4. In the second case, yy*e I*?.
But yy*eI because I is a right ideal, (yy*)* = yy*<I' n (I')* = {0},
again contradicting properness. Now, xe L(I) < [4,xI] = 0< [AI", x]
= 0< [I*, ] = 0 <> 2 I*?, and therefore 4 = I* 4 L(I).
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COROLLARY. Every proper s.<i.p. algebra satisfying conditions on A,
as stated in Lemma 3.13, i8 dual.

LeMMA 3.14. The sum of all minimal left (or right) ideals of a proper
complete, continuous s. i. p. algebra A having an identity element and satis-
fying lz+91*+ pilo—ylI? < 2l@l*+2lyl%, and with the property that
(azx+ By)* = ax* +By* (a, B are scalars), is dense in A.

Proof. Let {I,} denote the left minimal ideals in 4. Then, by the
sum S of {I,}, we mean the set of all finite sums of elements x,e I,. Let
8 denote the closure of 8. Suppose S is not equal to A4; then there exists
an element yz,y # 0, z # 0, such that [S,y2] =0 or [y*8,2] =0 = y*
e L(8) = {x: «8 = (0)}. Hence y* is a left annihilator of each I,. Since
I, is a minimal left ideal, y* is in the maximal right ideal for each a. Hence
y* is in the radical of A. By Theorem 3.3, our algebra is semi-simple and
as such the radical consists of the zero element alone. So y* =0 =y =0,
since the algebra is proper. But this gives us a contradiction and the
lemma is proved.

" Definition 3.8. A normed vector space X is strictly convex if when-
ever ||z| + |yl = |le+yl, where 0 # #,ye¢ X, then y = Az for some real
A>0.

Definition 3.9. A sequence {r,} of elements of the s.i. p. space X
is said to comverge weakly in the second coordinate to an element r¢ X
if [y, 2,]— [y, #] for every ye X.

THEOREM 3.4. Let A be a proper, strictly convex, complete, continuous,
8. i. p. algebra with |z+y|*+pdle—ylI* < 2|z|*+2|yl|® and in which
the weak convergence with respect to the second coordinate i8 finer than the
norm topology. Further assume that the relation [x,y] = [y*, x*] holds for
ze A and ye E (E defined as in Lemma 3.9); then x| = ||z*|| and the trans-
formation x — x* is continuous.

Proof. By Lemma 3.9, we can choose a sequence {z,} of elements
in ¥ such that , converges to some element ¢ A. Now , —«,, ¢ E, hence,
by the hypothesis [z, y] = [y*, 2*], we have |a})—ah| = |z, —z,] — 0,
as m, n — oo, giving us ) — «’, say. The weak convergence with respect
to the second argument gives

[zy, 2] =1lim [x,y, 2]
fn—o00

—

= lim [y, #}2] = [y, 2’ 2] = [y, @*2].
n—o0
Using the last two relations in this equality and the striet convexity
(see [4]), we have o' = z*. By hypothesis, ) - &*. Therefore, by z, — 2,
zy - x* and |x,] = |5, we have |z]| = |#*|, as is easy to verify using
the axioms of the s. i. p. space.
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4. Existence of idempotents.

Definition 4.1. An element ¢ in an s. i. p. algebra is called idempotent
if 0 #% e = e¢2 The element ¢ is called self-adjoint if e = e*.

Note. Henceforth self-adjoint idempotent would be abbreviated to
sa-idempotent. Throughout a, 8 are scalars.

LeMMA 4.1. Let A be a proper s. t. p. algebra satisfying the conditions
(az+By)* = ax* +By* and [z, y] = [y*, x*]. Let x be a self-adjoint element
of A whose norm as a left multiplication operator is 1. Then the sequence x*"
converges to a mon-zero sa-idempotent.

Proof. Following Loomis (see [6], p. 101) very closely, with suitable
changes, we get, for m > n and both even, 1< [#™, 2™] < [2™, 2"] <
< [a% 2"]< ... < [¢% 2*] and [2™, 2™] has a limit I as m, n — oo through
even integers. We have

lim [&™ — 2™|* = lim [4™ — 2™, 4™ — 2™]
= lim[¢™, 2™ —&"] —lim [2", 2™ — "] = lim [2™ — 2", 2™] —lim [™ — 2", 2"]
= lim[2™, 2™]—lim [2", 2™] — lim [z™, "]+ lim [2", 2"],
which tends to zero as m, n — oc.
Arguing again as in Loomis (see [6], p. 101), it follows that #** con-

verges to a non-zero sa-idempotent. The properness of the s. i. p. algebra
is needed to ensure the existence of unique adjoints.

COROLLARY. Any left (or right) ideal in proper s. i. p. algebra satisfying
the conditions (ax -+ py)* = az” +py* and [z, y] = [y*, «*] contains a mnon-
-zero sa-idempotent.

The proof follows as in [6], p. 101.

Notation. Henceforth we shall assume that our s.i.p. algebra is
proper and satisfies the conditions [#, y] = [y*, #*] and (az -+ fy)* = az* +
+ By*.

Definition 4.2. The idempotents e, f of the s. i. p. algebra are called
doubly orthogonal if [e,f] =0 and ef = fe = 0.

Definition 4.3. An idempotent is said to be primitive if it can not
be expressed as the sum of doubly orthogonal idempotents.

The following lemmas hold and their proofs are the same as in Ambrose
[1]:

LEMMA 4.2. Let A be an s. i. p. algebra, e an idempotent and R the right
tdeal defined by R = eA. If R is the direct sum of a finite number of right
ideals,

R=R,+R, +... +R,,
and if we write
e =¢;,+e + ... +e¢, (eekR),
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then e; are doubly orthogonal idempotents and R; = e; A. If e is a sa-idempo-
tent, then each e¢; i8 a sa-tdempotent.

LEMMA 4.3. Let A be an s.t. p. algebra, e an idempotent and R the
right ideal defined by R = eA. If e can be expressed as a finite sum of doubly
orthogonal sa-idempotents,

e =6 +e+ ... +ep

and if we define R; by R; = e; A, then R is the direct sum of right ideals R;.

LEMMA 4.4. If R i8 a right ideal in an 8. . p. algebra A of the form
R = eA, where e is an idempotent, then R is minimal if and only if e is
primitive.

Proof. One can either argue as in Ambrose [1], by using Lemma
4.2 of the present paper, or else one can proceed as follows. If ¢ is not
primitive, then e = e¢,+e¢,, where e,6;, =€, =0. Now R =eA
=eA+eA. So ;A =ee;A «c eA = R, which contradicts the mini-
mality of R. Conversely, if R is not minimal, then 0 c R, c eA, where
R, is a right ideal. Now, by corollary of Lemma 4.1 of the present paper,
R, contains a sa-idempotent. Let us denote this idempotent by f. Then
there is an element xe A such that f =exr. We have f =er = e22
=eex = ¢f. Writing e =f+e—f, we have, [fie—f] =[f,e—f] =
[f, (e—1)f*1 = [f, ef —f*] = [f, 0] = 0. Therefore, ¢ —f is orthogonal to f.
Let us write ¢ = e—f; then ¢ = f+g¢. 1t is easily seen that f¢g = gf = 0,
g = 9% and g* = ¢. So g is sa-idempotent. Thus ¢ is not primitive. Here e
has been taken to be the sa-idempotent of the right ideal defined by
R = eA, whose existence is guaranteed by the corollary of Lemma 4.1.

THEOREM 4.1. If ¢ is a sa-idempotent in an s. 4. p. algebra, then e is
the sum of a finite number of doubly orthogonal primitive sa-idempotenis.

Proof. Following Ambrose [1], we can write ¢ =¢,+¢; + ... + ¢,,
where e,, é,, ..., ¢, are sa-idempotents. We have

le* = [es+€s + ooo + €,y 6,45 + ... + 6,]
= [el, e+ + ... +e,]+[el,e,+€ + ... +¢,] +
+ .o +[€hy 6+ + ..o +6,]
= [y €1(61+ €34 ... +e,)]+[€qy ea(€3+ €3+ ... +6,)]1+
+ oo + 6y, (61 + €3+ ... +¢€,)]
= [€1y €11+ [€2y €2] + ... +[€n, €,]
= lleJl® +lel*+ ...+ lleall® = n,
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since in an s.i.p. algebra an idempotent e satisfies the relation |e|?
= [e, €] = [é% e] < ||€*|l llell < lle]®. This shows that the process of splitting
¢ must terminate at some finite stage.

Now, the following theorem is almost obvious by using Zorn’s lemma:

THEOREM 4.2. Every 8.i.p. algebra contains a maximal family of
doubly orthogonal primitive sa-tdempotents.

5. Structure theorems. We now come to structure theorems. As
in the previous section, an s. i. p. algebra would be taken to fulfil the
following conditions: (az+fy)* = az*+py* and [z, y] = [y*, x*].

THEOREM 5.1. Let {e;} be a maximal family of doubly orthogonal prim-
itive sa-idempotents in a complete s. . p. algebra satisfying 2.1 (iv) and

(v). Then
A = Ze,A = ZA%
1 ;

hat is, A is the direct sum of the minimal right ideals e; A or of the minimal
eft ideals Ae;.

Proof. If A # Ye;A, we have
4= Ded+ () eAf.
] 4
Now (Ye;A)P is a minimal right ideal and as such it should contain
[

a sa-idempotent. But this would contradict the maximality of {e;}, hence
(Xe;A)? = (0), and the theorem is proved.

" Definition 5.1. An s. i. p. algebra is called simple if it contains no
proper two-sided ideals.

THEOREM 5.2. Every complete conlinuous 8. t. p. algebra A is the direct
sum of simple 8. ¢. p. algebras, each of which is a minimal two-sided ideal
in A, provided in A the inequality |x-+yl*+ pdlle—vy)® < 2|z +2)y)?
holds for x,ye A.

Proof. The proof follows as in Ambrose [1] with suitable changes.
Certain portions of the proof can be based upon Loomis (see [6], p. 102,
Theorem 27C).
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