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1. Introduction

Clifford algebras were introduced over one hundred years ago in an attempt
by Clifford to develop higher dimensional number systems analogous to the
real and complex numbers. They have subsequently been used in various
guises by mathematical physicists. In recent years however, they have been
found to be useful in a number of different areas of mathematics. One
particular application is in proving the L,-boundedness of certain singular
integral operators.

In this paper we shall first show how complex analysis can be extended
to higher dimensions in the context of Clifford algebras. The material is
taken from the book [1] by Brackx, Delanghe and Sommen. In particular,
we shall discuss the higher-dimensional Cauchy integral. We shall then show
that the Cauchy singular integral operator on Lipschitz surfaces is L,-
bounded. A corollary is that the double layer potential operator on Lipschitz
surfaces is L,-bounded. This result was proved previously using the Calderén
rotation method in [2]. The idea of proving it directly using Clifford algebras
is due to R. Coifman, and carried through by M. Murray for surfaces with
small Lipschitz constants [6].

I would like to thank Professor Ciesielski for giving me the opportunity
of presenting this material at the Banach Center. I would also like to thank
J. Picton-Warlow for writing up an earlier version of parts of these notes.

2. Clifford algebras

The vector space R"*! is embedded in a 2"-dimensional algebra R, as
follows. Let ey, ¢;, ..., e, be the standard basis of R"*! and denote the basis

[253]



254 A. MCINTOSH

vectors of R, by es. where S is any subset of |1,2,...,n!. Make the
identifications e, = ey, and e; = e,;, for 1 <j < n, and define the multiplica-
tion on R, by

eO‘—fl’

ef=—1for 1<j<n,

ejey = —ee;=e;, for 1 <j<k<n, and

ej e,---e; =es if 1 <j, <j, <...<j;<nand S=1{,..jl

The product of two elements i =)  ises and p =) spuses, is, ps€R, is
A=Y srAsureseg. Note that egeg is again a basis vector of R,,. The term
Ay, also denoted Ay, is called the scalar part of A.

The Clifford algebras R,, R;, and’ R, are the real numbers, complex
numbers and quaternions respectively. An important property of these
algebras is that every non-zero element has an inverse. This is not the case
for the algebras R, when n>3. An important reason for considering
Clifford algebras however is that every non-zero element in R"*! does have
an inverse. The inverse of the vector x = xgeq+x;,¢€,+... +x,¢,eR"*! is
defined in terms of the conjugate vector X = xgeq—x,e,— ... —x,e, as we
shall now see.

ProposiTiON 1. Let x, yeR"*! < R,,. Then

@) Xy =<{x, ydeo+ Z e e;(X; Y — X, y)),
0Ssj<k<n

(i) xX = xx = |x]?,

(iii) if x # 0 then x is invertible and x™'

I—Z

= X|x

3. Clifford analysis

The results of this section are taken from the book [1] by Brackx, Delanghe
and Sommen, to which we refer the reader for details.
Let Q denote an open subset of R"*! and consider C'-functions

f: Q—-R,.
Define '
p=y <L
= —¢
j=Oaxj !

acting on such f by

" <0
Df =) Z—aéejes, where f =) fses.

j=0 s UXj
By analogy with previous usage we define
0 0 8

T T,

D=—e
ox ° 0x, n
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and note that

_ _ n 62
DD=DD=( —-—)e =4.
j;o ox} )"

We define f to be (left)-monogenic if Df = 0. We remark that this is an
elliptic system of 2" equations in 2" unknowns, so every monogenic function
has (real)-analytic components. Indeed somewhat more follows from the
identity DD = 4.

ProrosiTiON 2. If f is monogenic, then each component fg is harmonic.

In the special case when n=1, R'*! = R, = C, and
0 0
Df = ( 5 el)(foeo"‘ Jie))
X1
(% 8f1> (2o ),
1-

ox,  0x, ax, | e

0x; 0xq.
So Df = 0 if and only if the Cauchy—Riemann equations are satisfied. That is,
f is monogenic if and only if f is holomorphic.

Examples of monogenic functions are

This can be verified directly, or deduced as follows. If n > 2, then

Dg,(x) =(1—n)~ lDD( )I" ‘.)z(]_’l)-ld(f.;:_iﬁ)=0'

If n=1, then g,(x) =(x—y) "

Further examples can be constructed as follows. Let £ be a smooth n-
dimensional oriented submanifold of R"*!, let n(y) be a consistent unit
normal at y€ZX, and let u be an absolutely integrable function from 2 to R
or R,,. For x¢X we define

1 —
(Tr)09 = - |1 Y l,Hn(y)u(y)ds,,

On 31Y
where ¢, is the volume of the unit n-sphere in R"*!. Monogenicity follows by
differentiating under the integral sign.

A generalization of Cauchy’s theorem can now be stated. See [1] for its
proof and numerous consequences.

THEOREM. Let Q be a bounded open subset of R**' with smooth boundary
2 und an exterior unit normal n(y) defined at each point yeX. If f is



256 A. MCINTOSH

monogenic on a neighbourhood of Q = QU Z then

b Q’
(T2 %) = {;j WX s

Because of this theorem we call 7 ; the Cauchy operator. Let us look at
its components. By part (i) of Proposition 1 we see that

1 T Ay
(750 =.,—£<—y,y_x—x,f:(—f)—>u(y)ds,
1 (y_X)jnk—(y—x)knj
i Os_,zks,,ekejan“’; Iy_x|n+1 u(y)dSy.

By Proposition 2, each component is a harmonic function of xeR"*! ~ X
For the first term this is no surprise, for as we can see, the scalar part (I y,
of J 5 is none other than the double layer potential operator.

Our interest in this paper is actually with the singular integral operators
defined on X. We take the Cauchy singular integral operator to be Ty where

2 y—x
T, =—pV. | ——~ ds
( Su)(x) o_n pv £|y_xln+1n(y)u(y) y
for xeZ, whenever the principal value integral exists. Its scalar part (Ty, is
the singular double layer potential operator,

2 - 2
(Thou)(x) = —pv. (=% nOD

¥ Iy—xl"“

u(y)ds,.

4. Harmonic analysis on R" and self-adjoint operators

We first introduce some notation.
If X is any Banach space, defined over either the real or complex field,
we let X, = X ®R,. This means that

X =1{x =zs:xses| xs €X'}
with norm ||x|| = {} ¢ IIxsl*}!/2. If X is a Hilbert space, then so is X,, where
the inner product is (x, y) =3 <{Xs, ys).
In order to study harmonic analysis on R", we regard R" as the subspace
of R, spanned by e, e,,...,e, and introduce the Hilbert space H
= L,(R")» and the Dirac operator
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defined by

" Ou
Du = D(ZuSes) = z Za_sejes.
3 =18 0Xj
It is not difficult to show that D is a self-adjoint operator in H with domain
H'(R",, where H'(R") is the first order Sobolev space.
The important thing is that we have replaced the n-tuple of operators

0
(5—) by the self-adjoint operator D, and so can use the functional calculus
Xj
of self-adjoint operators.

For example, the signum function gives rise to the self-adjoint operator

sgn D e # (H). Proceeding formally, we have that
sgnD =|D|"!D =(D*»" Y2 D.

Now
D* =() Dje)( ). Die) = —4
i=1 k=1
where
n 62
4= —.
jgl asz
So

sgnD = 'Zl(—zj)’”2 Dje; = -21 Rje
= j=

J

where R; is the jth Riesz transform. That is,

i 2 X;—y;
(sgnD)u(x) = — ) ej—pv. | —L—i7u(ydy.
& jgl lanp ) Rjnlx_y' !
Compare this with the Cauchy operator defined at the end of Section 3 with
Z=R"and n(y) = —e, for all yeR". We have the identity

sgn D =T,

This is a surprising generalization to higher dimensions of the well-known
fact that when n =1 (and R,;, = C), sgn D is the Hilbert transform (suitably
normalized).

It is also possible to represent J ., using the functional calculus of D.
Let E, and E_ be the spectral projections defined by E, = }(I +sgn D) and
E_ =1(I-sgnD). Let R, =(I+itD)"! for 1 €R. Then, for ueL,(R")

;w ix e PE,u=:u,(), t>0,
E _‘. R,e—mtu? = %(Sgn D)u = %(u+ (0)—14_ (0))7 t=0,
-® —e " PE_u=:—u_(), t <0,

17 — Banach Center . 22
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where the integral in the case t = 0 is computed using the principal value. So
u, (t) is defined for t >0, u_(t) for t <0, u, (0)+u_(0) =u, and

du +

dt
That is, u(f)(x) are monogenic functions of t+x =te,+) x;je;. It is not
difficult to verify that

us(®)() = £(T @) t+2), t#0.

)+Du () =0, t#0.

5. Non self-adjoint operators

Let us develop the operator theory needed in studying Cauchy integrals on
Lipschitz graphs.

Let T be a closed densely-defined linear operator in a complex Hilbert
space H which is one-to-one, has spectrum a(7) in a double sector S,, where
O0<w<in and

S, =1{z€C]| |arg z| <w or |arg(—z)| < w},

and satisfies ||(I+itT)"!| < M < oo for all real t.
Suppose moreover that T satisfies the quadratic estimates

>} dt 1/2
{j IW’(tT)ullzT} < % ||ul,
0

(o) : o
{6{ |¥(T*) “”2?} < x|ul|

where
YeT) =tTI+*TH ' =4i{I+uaT) ' —I—-itT)~}.

We remark that [|P(tT)|| < M.

Self-adjoint operators which are one-to-one satisfy all of the above
conditions with w=0, M =1 and x = 1/\/5. The results on self-adjoint
operators used in the last section generalize to operators T as specified
above, except that the projections E, and E_ are not orthogonal projec-
tions. '

For example, consider the holomorphic function sgnz defined on S,
~ {0} by sgnz= +1 if Rez >0 and sgnz = —1 if Rez <0. This function
satisfies

16 T dt
=— [ ¥3(t2)—.
sgnz = — (_E (z)t
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So we can define sgn T by
16 % dt
<(sgn T)“, U> = -E' I <W3(tﬂu’ v>T
(1]

for u, veH provided the right-hand side makes sense. This is a consequence

of (Q):

[+ ] i [ ] d l/i
fIKP T, v>|% < sup||lP (T { | llvl(mullz{}
0 t 0

@® 1/2
<Afrrerard]
0

< Moc? |lu o]l

As before, we define E, = }(I+sgnT) and E_ = }(I —sgn T). These can
be thought of as spectral projections associated with each piece of S,,. They
are bounded but not orthogonal projections.

As in Section 4 we can also define, for each u€H, elements

u,(t)=exp(—tT)E,ueH fort=>0
and
u_(t) =exp(—tT)E_ueH fort<0

which satisfy

‘Z‘—t*(t)+ Tu,(t) =0, t#0.

The boundedness of the operators exp(—tT) E. also follows from (Q).
For a discussion of the relationship between quadratic estimates and the
boundedness of f(T) for H -functions f, see [5].

We next give conditions on operators of the form T= (I—B)~! A which
imply that they are of the above type.

THEOREM. Suppose A is a one-to-one self-adjoint operator and B is a
bounded skew-adjoint operator, and let T =(I—B)"'A. Also let

P, =(I+1*4)"", Q =tA(I+1*4%)"" and B, =(1-A)I+AB
for teR and 0 <1 < 1. Assume, for some constants ¢ < o0, m < oo, that
® dt 1/2
{I Q. (B, P)* uIIZT} < c(1+k™ [IB,)1* [lull
0
and

© dt 1/2
{I Q. (B P,)*unzT} < c(1+ k") 1B [l
0
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for all ueH, Ae(0, 1] and k =0, 1, 2, ... Then there exist we[0, 1n), M eR
and x€R (depending only on ¢, m and ||B|]) such that

o(T) =8S,,
WI+itT)" Y| < M for all real t, and condition (Q) holds.

Proof. First suppose ||B|| < 1, in which case we take A = 1. (Here there is
no need to invoke the assumption that B = —B*) Then

(I+itT)"' = (I+it(I—B)~' A)"! = (I—B+itA)~*(I-B)
= (I+itA)"'(I-B(I+it4)~ ")~ (I—B)

=R, Y (BR)'(I-B)
k=0
where

R, =(+itA)~' = P,—iQ,

and the series converges because ||R,|| <1 and ||B|| < 1. Indeed

Therefore

(T +it T)~ M| < (1+1IBI/(1 = |IBI).

PT) = 3 0+ =0 =i

= 1IR T (BR}~R., ¥ (BR_}}(~B)

k=0 k=0

k=0s=0

© k
1Y ¥ {(RB'°Q,(BP)+(R_, B}~ Q,(BP)}(I—-B).

Hence

@ Zﬂ 1/2 o® k R -] iy 2?1 1/2
JIgEDuSe < X3 BIF) [0, (BPY (I~ Bul*~

0 =

k=0s=0

o k
< Y X IBIFc(1+s™ M —Bil Jlull = ||l

as required. The dual estimate is proved similarly. We leave it to the reader
to show that the spectrum belongs to a double sector.

It remains for us to remove the restriction that ||B|] < 1. Recall that B,
=(1-A)I1+4iB, so I-B, = A(I-B), and

(I+itT)~ ' =(I+itA(I—B;)" 1 4)~ 1.

We can now proceed as before (with ¢ replaced by At and B replaced by
B;) provided that we can find 1 €(0, 1] for which ||B|| < 1. Indeed it suffices
to take 4 = (1+||B||»)!, for then (using the skew-adjointness of B)

IBill = {(1—A)*+A*||B||>}¥? = J1-1 < 1.
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6. The Cauchy integral on a Lipschitz graph

Let X be the graph of a Lipschitz function g: R" —=R. It is our aim to show
that the Cauchy singular integral operator T; defined at the end of Section 3
is L,-bounded. An immediate corollary is that the singular double-layer
potential operator is also L,-bounded, for it is the scalar part of T;.

When n = 1, this result was first proved in [2] and [3]. The result for
n>1 can be reduced to one-dimensional estimates using the Calderén
rotation method as indicated in [2]. Our aim here is to show ‘that an
analogue of the one-dimensional proof actually holds in higher dimensions,
provided Clifford algebras are used. The idea of using Clifford algebras is R.
Coifman’s, though it was M. Murray who first proved this result in the case
of graphs with small Lipschitz constants [6].

Coifman noted the following remarkable identity:

Ty=sgnT

where T=(I—B) ! D, and B denotes multiplication by b = Dg =) 7 b;e;
with b; = 0g/0x; € L, (R". Observe that B is a bounded skew-adjoint oper-
ator and D is a one-to-one self-adjoint operator in H = L,(R"),, so
o(T) =S, for some w < !im and |[(/+itT)" ! < M <. So sgnT has at
least a formal meaning. Its boundedness is a consequence of the quadratic
estimates (Q) which are in turn a consequence of the estimates stated in the
Theorem in Section 5, with A = D.

These estimates will be proved in Section 7.

We conclude this section with a brief discussion of the identity Ty
=sgn T with T =(I—B)~! D. Recall from Section 4 that it is true in the
special case when g = 0.

In the middle of Section 5 we showed, given ueH = L,(R"),,, how to
construct tunctions u. (t) for t > 0 and u_(f) for t <0 which satisfy

u, (O)+u_(0) =u,
Uy (0)—u- (0) =(sgn TNy,

d
5fm+ntm=m t#0.

This final equation can be rewritten as
d
u-w%ﬁm+nugn=o

or

Ou 4 % (0 0
W(t’ x)+ (Eej—bjeja)ui(t, x) = 0.

j=1 J
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Using the change of variable xo, =t+g(x), and writing x = xoe,+ X, this
becomes

ou " ou
S+ Y ==

0xo =1 0x;

(x)e; =0

or
Du,(x) =0, xq#g(x).

In other words, u, are monogenic functions on R"*! ~ X.
By analogy with Section 4, this leads us to guess that
i % oy i dt
— [ (I+itD) e ™ u—(x)
2n T

Ysgn Nu(x) = Y(Tzu)(g(x)+x), =0,

{u,L(t, x) = (J su)(g(x)+1+x), t>0,
- —u_(t,x) =(Tsu)(gx)+t+x), <0

which provides an explanation, if not a proof, of the formula Ty =sgnT.

7. Square-function estimates

We now present a proof of the estimates stated in the Theorem in Section 5,
in the case when H = L,(R"),,, A =D and B denotes multiplication by a
function b = Z;  bje; with b; €L, (R", R). Actually we note that B; and B}
are also of this form with the summation going from 0 to n, so in the sequel
we use the symbol B for such an operator. Elements of R" are denoted by x
rather than x.

The proof uses a combination of ideas from [2] and [3], and from [4].

The following spaces and norms will be used. Each space consists of
equivalence classes of measurable functions for which the corresponding
norm is finite.

(i) Ly = Ly (R™; |lull2,

(i) Loz = Lo 2(RYY); lull o2 = ”?l:l.ﬂu(x’ NlLy@n>

dxdt
() L,, =L, (R"++l, —t—_>’ ||“||2,2,
(iv) Tyz = T2 (RYY); Ul w2 = || sup [u(y, OlllL,ux-

ly—x| <t
Each space can be embedded in its corresponding “Cliffordized™ space.
For example, L, < Ly, Loz © Ly,2m» €tC.
We note the estimates for P, =(I+t>D*»"!, Q,=tD(I+t>*D)"!
and R, = P,—iQ, = (I+itD)"!:

IPully <llullz,  11Qrullz < Yllullz, (IR, ull; < lullz,
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© dt||? 1
Q2 lully = —=llull,.
g t t 2 \/i ”2

Let B denote multiplication by b =Y. ,b;e; with b;eL,(R", R).

< ,dt]'?
||Q:u||2,2={_“|Q:u||z } <
0

t -

THEOREM.
Q. (BP, :)k € L(Lymy> L2, 2m)
and

- ) dt 1/2
{flle (BP)* u||§7} S c(1+h) (bl llull,  for k=0,1,2,...
0

Proof. Let M = ||B|| = ||b|| . If

Q= Z Qt.jeji

then
k—1

Q.;(BP) = (P,B)*Q,;+ } (P.B}""'(Q,;BP,—P,BQ, ;) (BP)'.

r=0

The result follows from the facts that

IPlly oty =1 1Qsilly -1y, = 1/A/2,
”Pl B“Lz'z(”) —'Lz'z(") < M’

together with the estimates (which still need to be proved):
(i) WBP) ull,2 < € M ||tz 4 €Ly,
(i1) Q. BP,— P, BQ; ) ull;,; < ¢, Mllull 2, uEL,,,.
To prove (i), let ¢, (x) =t " (¢t~ ' x), where @(&) = (1+1€*)~*, and note

that P,u = ¢, * u and that ¢, is a radially decreasing function with [|¢,|], =1
(cf. p. 132 of [7]). Then

IBP)Y u(x)) S M" @, %, %... % @, *ul (x) < M"u*(x),

where u* denotes the Hardy-Littlewood maximal function of u. The last
inequality follows from an n-dimensional version of Lemma 3.6 of [3].
Therefore

(BP) ull,, < M |Ju*l; < ¢y M"|lull,.

This completes the proof of (i).
To prove (ii) we introduce a Littlewood-Paley decomposition. Fix a
function 0 e C*(R") such that 0(&) =11if |¢| < 1/2and (&) =01if [] = 1. and
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define §,, by
0y (&) =027 19)-0(27%y, k=0,1,2,...,
b-1)(&)=6(0).

Then
Y bu®=1, ¢eR,
k=-1
spptOy = (€| 271 <E <2, k>0,
sppt O, < <,
and
0
a—f"otk) <, 27H,

We also write @y, = é(,‘,q‘) where ¢ is defined above, and note that for
all multi-indices a,

a!
- -k
@;‘p(k) < ¢ 27 Mkl
x
a
A ~k(la] +2~
|;3“€;(Pm 1 < ¢ 27Kl 2mm,

|y () < cad7* 9,4 (x), xeR",
where @ (x) =t""@(x/t) and @(x) =(1+]x|"" )~
Define the operators Py, by Py, = @4, (tD) and &, by
Swu(x, 1) =u(x, 2%,

and note that &£, is an isometry on both L,, and L ,.

LEMMA.
) P(k)t”Lw,z T2 S cad™. \
Proof.
[Peaku(x, )] < cy4™" @, x|u,| (x)
Ixs—l;})s'IP(k)zk, u(y, )l < 47 @ *luf(x), >0,
where
1’ le s 1’
e(x)= sup @(y)= {
Iyl 2|x| -1 le > 1

14 {|x|—1}"+ 1’
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|||P(,‘,2k,““|ao2 cnd” "llsup_(g, *ull
<c,47* Ilsup_?, *v|, (where v = sup|u,])
t

<c, 47 lgll Ilv¥ll,  (as in proof of (i))
Sc

474l llullw,2-

It is readily checked that ||g||; < co. Therefore

Il 6y Poaye Ulll 0.2 = |||P(k)2k, Sy Ulll w2 < cad7* |64y tllw,2 = €1 4™ ¥ |lUll 5,2

The lemma is now proved.
We now record some facts concerning Carleson measures, where we

define a measure p on R%'! to be a Carleson measure if, for each x, eR" and
t>0,

pix, 0] 0 <t+]x—xo| <d! < ¢, d"

where w, is the volume of the unit ball in R". The first two lemmas below are
n-dimensional analogues of results in [3].

LeEMMA. Suppose ueT, , and u is a Carleson measure. Then

(] JuCx, 0 dp}? < ey /ey lllulll w2

n+1
Ry

Lemma. Suppose. Y €CP (R, W (&) <1¢| and sppty < (¢ |& < 2). If
bel., (R"). then

dx dt
ll//ﬂ(D)bl2
defines a Carleson measure with
cn”bllgxn 0<t< 1,
<
P et bl T2

LEMMA. Suppose 1 <i<n. If j,k> —1, then

x dt
duy, = |84 er(D) tD b(x)lz

defines a Carleson measure with

 fedbliz, k>,
S e blL. >k
Proof. We consider the case when j > 0. (The case j = —1 1s snmllar)

Let ¥ (&) = & 010y (¢). Then (&)l <1¢| and sppty < {¢] 1¢] <
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dxdt o dxdt
: =4"|ll’zu—j,(D)b(x)|2“t—'

duy = |84y O (D) tD; b (X))

and hence puj; is a Carleson measure with the required bound.

We are now in a position to prove the estimate (ii). In doing so we drop
the subscripts on B and b. So beL(R"). We also define a; as follows
4-i*2 kg j-3,
4—k+2’ ] S k— 3’

aj,‘ bl
1, k—-2<j<k+2.

The first inequality below follows on considering the spectral supports of the
various functions. Let velL, ,. Then
Qs BP, = P.BQ:)vllzy = || X Pi 10 (D)eD;b} Pyt

jk=-1
< Z X jk II{ém,(D)tD,-b} Py, vll2,2
jk=—-1
= Z P | et :émx (D)tD; b} Py vll2,,

pkZ -1

= Y % n‘[l-l [y Petye (x5 t)lzdﬂjk}m

Jkz-1 R"

<c, Z O jx \’/C,‘j,‘ ”M(n P V)l 2

jk= -1
<c, Yy, 4TIT2YMAHu|l,,,
-1<k<j-3
+c, Z 4_"+22"M4"‘||v||°0,2
—1<j<k-3

+(',, Z 2k+2M4_k”v“1.2‘

k-2<sjsk+2

< G Mjoll,2-

This completes the proof of (ii), and hence of the theorem.

8. Conclusion

In this paper we have given an introduction to the theory of Clifford
algebras and Clifford analysis, with particular reference to the Cauchy
integral. We have then shown that the Cauchy singular integral operator Ty
is L,-bounded in the case when X is the graph of a Lipschitz function g: R"
— R. We did this by proving the quadratic estimates (Q) for T=(I—B) ' D
where B denotes multiplication by Dg, and using the identity Ty =sgnT.
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A localization argument gives the corresponding result for strongly
Lipschitz compact surfaces:

THEOREM. Let X denote an n-dimensional strongly Lipschitz compact
surface in R"*'. Then the Cauchy singular integral operator Ty is a bounded
operator in L;(Z)y,.

A corollary is that the singular double-layer potential operator (Ty, is
bounded in L, (Z). This result, which was already proved in [2] by reduction
to one-dimensional estimates, was used by G. Verchota in solving the
Dirichlet and Neumann problems for Laplace’s equation in domains with
Lipschitz boundaries.
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