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This note extends the results from [4] and [5] for the continuous self-
mappings of the n-dimensional cube I". The theory of Li-Yorke chaos in
dimension n > 1 is not very much developed yet (cf. [1], [2], [3).

Let f: I" = I" be continuous. Recall that S is called scrambled set (for f)
if for every x, yeS and for every periodic point p of f

1) lirknqsux)d (S, f* () > 0,

2 liminfd(f*(x), f*(»)) =0,
k —

(3) limsupd(f*(x), /*(p)) > 0.
k—wo

Denote by u the Lebesgue measure on I", by 4 the linear Lebesgue measure
on I.

THEOREM 1. There exists a continuous mapping G: I" = I" for which there
exists a scrambled set T with u(T) = 1.

Proof. For simplicity of notation, suppose that n = 2; the extension to
n > 2 is obvious. Define the product of maps h,, h,: I =1 to be the map
H: I* > 1? (write H = hy x h;) such that H(x,, x,) = (h, (x,), h,(x,)) for all
(x,, x) €I

Let g be a Misiurewicz “chaos-almost-everywhere” transformation of the
interval (cf. [4] — here and further in the proof we follow the notation from
this paper). We show that G = g xg satisfies the statement of Theorem 1.
The transformation g has a scrambled set g(S) with A(q(S)) = 1. Let T = q(S)
x q(S). Clearly, u(T) =1; we show that T is a scrambled set for G.

Since q(S) is a linear scrambled set, (1) and (3) for T follow immediately.
The homeomorphism g conjugates g with the “tent” map f, f(x) = 1—|2x—1].
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Hence, G is topologically conjugated by the product homeomorphism Q = g
xq, with the map F = fxf It suffices to establish (2) for F and for
Q™ (T) =S xS as its scrambled set.

Let zeS. Let 1z(k)}2, be the itinerary of z:

o [0 i@, 172,
20 =11 it e, )

(note that the orbit of z cannot contain 0, 1/2 1). Let A, = {n?+1, n?
+2,...,n*+n}, B U A,n-1- We have § = U S,; if zeS,, then z(k)

n=1
=1 for all k€B, (cf. [4])
Let x =(x;, X3), y =(y1, y2) be elements of S xS. Let x, €S,, x, €S,,
y1 €S,, y,€S8,. Let e =max{a, b, c,d}. Since B,., =B, for all n, x, (k)
= x,(k) = y, (k) = y,(k) = 1 for all keB,. By the properties of f we obtain
that '

LF9 () =" ()l < m(i),
'O (x2) =" (p2)] < m(i)

where (i) = i24°"'+1, m(i) = 27'2°"". This implies (2) and completes the
proof.

Let C° be the space of all continuous self-mappings of I" endowed with
the uniform metric.

THEOREM 2. There exists a first Baire category set M < C° such that any
f€C°\M has only (if any) nowhere dense scrambled sets of zero Lebesque
measure.

Proof. Again, we restrict ourselves to the case n = 2 for simplicity. The
proof is similar to that given in [5]. For k =1,2,3,...,let 0 <§, <27 %*"1,
For i=1,2,3,...,2% let a(k,i) =(—-1)2"% a(k,2*+1) =1, b(k, i) =i27*
— 0. Let

I(k, i, j) = [a(k, i), b(k, )] x[a(k, j), b(k, j)],
I1(k) = UI(k, i, J).

Let

= {feC° f(I(k) cintI(k)},
let B, = (J A4,, (note that here A, and B, have different meaning than in the

m2k
proof of Theorem 1). Clearly, B, is open. To show that B, is dense in C°, fix
f€C°® and its e-neighbourhood U,(f). There exists an mteger m = n such
that 2°™*1Y2 < ¢/4 and

) . d(f(x),f(y)) <¢/4 whenever d(x, y) S 27mrz
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We construct a function g €4,, " U, (f). First we define an auxiliary function
h: 1(m) —I(m) letting f (a(m, i), a(m, j)) be the image of the whole I(m, i, j)
under h, provided f(a(m, i), a(m, j)) eint I(m). If this is not the case, we take
some perturbed value f(a(m, i), a(m, j))+n which already lies in int I (m); it
suffices to take n such that

() d(0, n) <6, <¢/8.

LemMA. Let a rectangular lattice, containing the boundary, be given in I?,
let N be the set of the lattice points. Let h: N —1? be given. Then h can be
extended to a continuous function g: 1> =12 such that if R is a rectangle with
vertices a, b, c, deN containing no other points from N, then

6  d(g(x), g(y) < diam lg(a), g(b), g(c), g(d)} for all x, yeR.

Proof. Let a, b,c,d be the vertices of R taken in the anti-clockwise
direction. Every x€R can be uniquely written in the form

x=(1-s)(1-t)a+(1—s)tb+s(1—t)d+stc,
where s, t €(0, 1). Put |
g(x) =(1-s)(1—1) h(a)+(1—s)th(b)+s(1 —1t) h(d) +sth(c).

We can see that h(x) =g(x) for xeN; g is continuous on rectangles; the
definition of g on the edges of rectangles depends only on the boundary
points of the corresponding edge — hence it is consistent. The second part of
the statement follows from the fact that g(x) and g(y) both lie in the convex
hull of ig(a), g(b), g(c), g(d)}.

Now we use Lemma for the rectangular lattice formed by all points with
coordinates a(m, i) or b(m, i). Let N be the set of lattice points. There are
some xeN for which h is not defined: we then put h(x) = f(x). Let g
be a continuous extension of h as in Lemma. Note that in view of (6) g is
constant on I(m, i, j) for every i, j. Clearly g €A4,,. It remains to show that
d(f(x),g(x)) <e for all xeI?>. Let R be a rectangle with the vertices
a, b, c,d, as in Lemma, let xeR. We have

Q) d(f(x), () <d(f (), f(@)+d(f (a), g(a))+d(g(a), g(x)).

By (5), the middle term on the right of (7) is less than ¢/8. By (4), the left term
on the right of (7) is less than ¢/4. By Lemma, (4) and (5),

d(g(a), g(x)) < diam {g(a), g (b), g(c), g (&)}

< 2¢/8+diam | f(a), f(b), f (), f ()} < ¢/2.

Summing, we have d(f(x), g(x)) <e. Note that y(Iz\I (k) <27* The
rest of the proof is the same as in [5] (relying of the fact that each
component of I(k) is mapped into some component of I(k)).
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Remark. Li-Yorke chaos in C° is generic. To see this, note that the
“horseshoe”, i.e. the configuration consisting of two closed disjoint sets U, V
with nonempty interiors such that U u V cint(f(U) n f(V)), is stable under
small perturbations of f and can be created near a fixed point of any C°
function in any neighbourhood of that function.
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