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On a generalization of the functional equation
for the harmonic ratio of four points
on a projective line over an arbitrary commutative field

by S. Tora (Krakéw)

INTRODUCTION

Aczél, Golab, Kuczma and Siwek gave in [1] the general solution
of the functional equation
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Ay, T+ @y A2 2
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where ¢ is an unknown real-valued function (R denotes the set of all
real numbers).

A function ¢ satisfying (1) is an invariant of 4 points on the real
projective line with respect to the corresponding projective group. One
of the invariants is the harmonic ratio. ‘

Benz determines in [2] all the invariants of 4 points on the projective
line over an arbitrary, in general non-cormmutative field (Sch1efkorper)
with respect to the corresponding projective group.

In the present paper we give the general solution of funetional equa-
tion (11), which is a generalization of (1).

The main result is contained in Theorem 4.

I. DESCRIPTION OF THE GENERALIZATION OF (1)

1. Suppose we are given an arbitrary commutative field D. Let
us denote by L the linear group of matrices of order 2 over the field D.
By L, we denote the group of matrices kE, where keD, k # 0 and F is
the unit matrice of L. L, is a normal subgroup of L. By A4 we denote the
factor group L/L,. The elements of L and A we denote by a = |a;|,
b =|bsll,... and a,p,..., Tespectively.

A defines in L an equivalence relation the classes of which are the
elements of 4. We denote this relation by R,.
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66 8. Topa

2. Let us introduce the set = D XD\ 4. We denote its elements
by & =(@:, @), ¥ = (Y1) Ya)s .. .

In the set 2 we consider the following representation group F of
the group L

2
2) yi = ayw;,
J=1
or shortly
(2%) y=axr, x,Ye¥, aeL.

In (2') aeL may be treated as an operator acting on the elements
of . The relation R, defined by

aRy ¢>3 (k #0, y, =ka,), x,yeX
keD
is compatible with this operator. We denote by Z the factor space /R,
and the factor group F/R, by #. The elements of = are denoted by &, %, ...
The group & may be written in the form 5 = af, &, 7¢&, aeL.
The relation R,, defined in Section 1, is compatible with the group
operation of the group #. We denote by & “the factor group #/R,. The

group F may be written in the form
(3) n=a6b & neE, aed.

3. We consider the following representation group of the group L
i A A 4

(4) Y, = a;%;, 2, yeZ, aeL (l=1,2,3,4;’l:,j=1,2),
or shortly

i A A A
(4") y=ar, &Y%, aecl,

which we denote by 4.

Using the relations 1% i R, (A=1,2,3,4) and R, we may obtain
from (4), in the way described in Section 2, the following group of trans-
formations: .

A i

F A
(5) = af, E,nef, aed (A=1,2,3,4),
which we denote by F,
4. Let us introduce the set

(6) £ = ((&): ‘;‘S’yﬂ & = £y,

If we restrict the transformations belonging to the group F4 to the
set E: then we obtain — as can easily to be proved — a new group

of transformations, which we denote by & .-
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We give without proof the following
Remark 1. The restrictions of the group & : of transformations to
its domains of transitivity are simple transitive groups (see [3]).

5. Let G be given representation group of the group L into an arbi-
trary space U

(7) v =g(u,a), u,veU; aelL.
Under the assumption
A. For every ueU the function g(w, a) in (7) is homogeneous of order

0 with respect to the whole group of variables a = (a;), the relation R,
is compatible with the group operation of the group ¢. We denote the

factor group G/R, by @. This group may be written in the form
(8) v=g(u,a), u,vel, aecd.
The transformation group Gisa representation group of the group 4.

6. Now we consider the functional equation

) plar) = glp(®),a), @e¥, ack,

where ¢: Z* — U is an unknown function.
Besgides (9) let us consider the functional equation

L2 A A
(10) @ (af) =g(?’(5)1a)’ ‘5“'—"'9 ae/l,

where ¢: £4 — U is unknown and § is a given function of the type (8)
(e.g. ge@).

We have the following connections between (9) and (10) (we omit
the proofs):

THEOREM 1. If assumption A for the function g is satisfied and if
@ (x) is a solution of (9) and is homogeneous function of order 0 wzth respect

to each variable m(l =1,2,3,4), then the factorization () ¢p(§) of (p(w)
with respect to the relatwn R" 18 a solution of (10).

Conversely,

A
THEOREM 2. If ¢(§) 8 a solution of (10) and assumptlion A for the
function g in (9) is satisfied, then there exists one and only owme solution

() Suppose we are given a function ¢: £ — U and let B be an equivalence
relation in # such that for every xeZ and every ye[z]r we have ¢(z) = ¢(y). We
may introduce a function (&), €% /R, such that ¢ ([z]r) = ¢(x) for every weZ.
The function (&) is named the factorization of the function ¢ (x) with respect to the
relation B or shortly R-factorization of ¢(x).
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a
@(x) of (9), homogeneous of order 0 with respect lo each wvariable z,
A
A =1,2, 3,4, such that its R*-factorization coincides with ¢ (£).

7. If we denote by (z,) the projective coordinates of a point X on
the projective line P over the field D in an arbitrary projective coordinates
system, then (2), or more exactly (3), represents the projective group
of transformations on P. In the case where U =D and g(u,a) =u
equation (10) is the equation for the invariants of 4-points on P,

In this paper we shall consider 4-points such that every two points
are different. This means that we shall say about the functional equation

., 4 aa A a
(11) ¢lad) =g(@(¢),a), &eZi, aed.

II. THE SOLUTION OF EQUATION (11)

The functional equation (11) will be solved bere by using the method
described in [4]. Now we are going to prepare some formulae which will
be needed for the realization of this method.

1. We consider the family X of the domains of transitivity of the
group £+ [3].

DEFINITION 1 (see [4]). A set £, c E; with the property of having

0

one and only one point in common with every element of 2’ will be called
the generator of the set =} with respect to the family X (or with respect
to the group £i).

Without proof we give the following

THEOREM 3. Two points of 4 (as 4-poinis on P) have the same harmonic
ratio(2) if and only if they belong to the same domain of transitivity of the
group 4.

(?) If P is a projective line over D with an arbitrarily fixed corrdinate system

2 . 2
and if there is given a point (&)=}, then there exists one and only one 4 point ()

A A A A
in P with the coordinates £ = (z;) such that £ = [z]r, (A =1, 2, 3, 4).
We give the following well-known definition: The harmonic ratio s of

1
a point (£) is

1 2 3 4 WIsW2s
daf
(13 8(£,&6,5, 8 = Wupn’
where
A A
wan &t gep|
B B
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From Theorem 3 it follows that every generator of the set =, can
be parametrized by the harmonic ratio, which we denote by s.
Let us introduce the set

(12) 5L = L 1(&(s): Eew = (koy(s), keD, b 0, 5¢8),
where

(13) 8 ={s: seD,s #0,1}

and

1 1
61:1, 62:0,

2 2
(14) o, =0, 0 = 1,
3 3

opo=1, o0,=1,
4 4
6, =8, 0, =1.

The parametrization. of the set = ""‘ given by (12), (13) and (14) is

one-to-one. The harmonic ratio of (5(3)) is equal to s. Indeed, we have

i
(15) W (z, &) — - o™
where
i I
o, @
(16) o =det| = ) o™ = —w
o, 0,
From (14) and (16) we obtain
o =1, o =_—1,
(17) w?=1, o¥*¥=—3s,

0t =1, w*=1-s.

Using (15) and (17) we obtain
1 2 3 4 Wis W2 w13 1:(—s)
(§,8,6,8) = Wi Wes = w1t 28 - 1-(—1) =

From this it follows that the set Z¢ defined by (12), (13) and (14)

is a generator of the set Z;. This means tha.t the transformation
A
(18) 7 =ab(s), seS, aed, (n)eZh

obtained by putting § (s) in (b) instead of 5, is one-to-one.
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Now it is necessary to find the inverse transformation to (18). Let

i a
us write (18) using the representatives of classes £(s), %7, a. We have
2 A x
(19) Y; =rayo;(8), ©+=1,2;41=1,2,3,4.
Before calculations let us notice that
A A
1° s does not depend on r but only on y,,

i A
2° a;; depend not only on y; but also on r and the dependence is
of the type ;
a; =¢(May, 1,j=1,2,
A
where ¢ may be an arbitrary function. The quantities r are functions of

2 A
representatives of classes £(3), , e. If we change them, we do not change
classes.
From Theorem 3 it follows that s must be equal to the harmonic

A
ratio of the points %, being connected with s by (18). Using the representa-

i
tives of the classes » we may write

Wa(y) W2(y)
T W) wagy)
where W* are defined in (13’).

The same result may be obtained by direct calculations, which are
following:

By the theorem of Cauchy concerning the determinants of the products
of matrices, related to (19), we have

(20)

Au
(21) W (y) = rr dw*(s),
where
A = detlla;ll; 4 #0,
and »*(s) defined by (16) are given by (17).
From (21) we obtain

A I 4 ()
(22) rr—= R _HT(S)_

If we put 4 =1,2 in (19) and use (14), (17) and (22), then we obtain

-

1 1

1
: Yo 3 Y 3 Yi Ys
o = —— == » _— A . = l'
(23) Fiy I r ;; r Wi (y) W13 (y) !
2 2 2 2
Yo 3 ¥ 3 Y; Y;
g = —— = . —_— = A ¢ —_— = . —
(24). %= T T = T ) T U ) 4
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Now if we put A = 4 in (19) and if we use (23), (24) and (14), then
we have

4 1 2
4 r Y1 A
y, =1 I (s° W13 (y) + Waz(y) )’

4 1 2
4 r Y, Y
Y= Z°T(s' Wis(y) + W":(y) )

(25)

Multiplying the first equation of (25) by ¥, and the second by —g,
and adding, we obtain

o l.i(s. Wi(y)  WH(y) )
TP Ry T WeGy)

whence follows immediately formula (20).
Formulae (20), (23) and (24) give us the inverse transformation
to (18).

2. From Theorems 1 and 2 it follows that the solving of functional
equation (11) is equivalent to the solving of equation (9) in the family

A
of homogeneous functions of order 0 with respect to each variable # by
assumption A about the function ¢ and the assumption that the points

A
z are different.
A
If we put arbitrary representatives of classes &(s) in formula (9)

A
instead of #’s, then we obtain (remember that ¢ is homogeneous of order 0)
A A A
(26) ‘P(mifo'j(s)) = 9(9’ (Gi(s))7 a’ii)'
Let us put, by definition,
dat A
(27) PD(s) =‘P(°’(_3)) =¢(1,0;0,1;1,1;s,1), se8.

Using formulae (19) and (27) we may write (26) in the form

(28) q)(y‘i) = g(D(s), ay).

Now we use formulae (20), (23), (24) and from (28) we get

i 1 2 2
Wid(y) W2i(y) ) Y, Y, Y, Y, )’

A
29 1) = 1] ’ ’ ’ ’
#9) ¢l =y ( ([Tt 7o ) T oy T W
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where
A A
W(y) 2 det[ ).
Y Y

We obtain the following
THEOREM 4. If in (9) there is given a function g(u, a;), ue U, |layleL
satisfying condition A, then the general solution ¢ of (9) in the set of all
2
4-points (v) with different points and in the family of homogeneous functions
A
of order 0 with respect to each variable x is of form (29), where @ is an
arbitrary function
o 8->U,
where U is the space of acting of the transformation group Gsg and 8 is
defined by (13). The function ¢ obtained from fumction (29) by using the
operation of factorization with respect to the relation R* introduced in

Section 3 is the general solution of (11), where § denotes the factorization
of g with respect to the relation R ,.

Remark 2. In the case where g(u, a;;) = u, ueD = R we obtain
from (29) the result presented in [1].

Remark 3. Moreover, if we assume for the unknown function ¢
the initial condition

p(1,0;0,151,1;s,1) =35,
then we obtain for the solution of (11)

Wis(y)- Wi(y)
Wi(y)- Whi(y)

2
(¥;)=
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