EN
CONTENTS
INTRODUCTION...................................................................................................................................................................... 3
1. TERMS NOTATION AND LEMMAS.................................................................................................................................. 4
A. Quasi-algebras and algebras....................................................................................................................................................................... 4
B. Subquasi-algebras and sets of generators............................................................................................................................................... 4
C. Homomorphisms of quasi-algebras.......................................................................................................................................................... 5
D. Direct. products quasi-algebras and homomorphisms.......................................................................................................................... 10
E. Congruences of quasi-algebras and homomorphisms.......................................................................................................................... 10
F. Terms and equations...................................................................................................................................................................................... 14
G. Analytical operations defined by terms in quasi-algebras...................................................................................................................... 15
H. Tensor product of quasi-algebras................................................................................................................................................................ 16
I. The general transposition law of operations and algebras of homomorphisms and of bilinears of quasi-algebras.................. 17
J. The form of congruences determined by terms......................................................................................................................................... 20
§ 2. ON EXTENDING QUASI-ALGEBRAS TO ALGEBRAS............................................................................................................................ 21
§ 3. ON THE COMMON EXTENSION OF QUASI-ALGEBRAS TO ALGEBRAS.......................................................................................... 30
§ 4. A THEORY OF EXTENSIONS OF MAP-SYSTEMS IN EQUATIONALLY DEFINABLE CLASSES OF ALGEBRAS........................ 33
A. Map-systems in equationally definable clauses of algebras.................................................................................................................. 33
B. Quasi-ideals and ideals in A-map-systems...................................................................................................................... 35
C. On dividing map-systems by ideals............................................................................................................................................................ 41
D. Operator-systems in equationally definable classes of algebras......................................................................................................... 43
E. The equivalence of the notions of quasi-ideals and ideals for A-operator-systems over R..................................... 45
§ 5. ALGEBRAS WITH DIFFERENTIAL OPERATORS................................................................................................................................... 52
A. Algebras with differential operators over commutative, algebras R...................................................................................................... 53
B. Algebras with differential operators in the classes in which the general transposition law of operations holds........................ 54
References............................................................................................................................................................................................................ 61