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The existence of periodic solutions of an autonomous
second order non-linear differential equation

by G.J. BurLEr* (Canada)

Abstract. Necessary and sufficient conditions are sought for the existence
of (infinitely many) periodic solutions of the equation

& +f(@)h(@?) +g(z) =0,

where the “damping” term & is non-linear and the “restoring force” term g is free
of the usual sign restrictions.

Additional conditions are found under which the equation admits solutions
with different periods.

1. A number of authors, [4], [7], [8], [11] have recently considered
the equation

(1.1) z’ +f(z)a ™ +g(z) = up(t),

where f, g, p are continuous, xg(z) >0 for # # 0, p(¢) is periodic with
period o, |g| is sufficiently small and » > 1. The object has been to find
sufficient conditions for (1.1) to admit at least one periodic solution with
period . (Henceforth, we shall mean a non-constant periodic solution
whenever we refer to a periodic solution.) '

The method of approach to this problem is normally to proceed by
considering the autonomous equation

(1.2) & +f(@)a™" +-g(x) = 0,
the link between (1.1) and (1.2) being the following Lemma of Bernstein

and Halanay [1].

LemmA 1.1. If (1.2) has a periodic solution with period w, # w, then,
Jor |u| sufficiently small, (1.1) has a periodic solution of period w.

We should also mention here that in [7], Rab has investigated the
more general equation

(1.3) T’ =gz, a')+ py(@, ', 1, p).

* Research supported by National Research Council of Canada grant NRC-A-
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Our main concern in this paper is to obtain necessary and sufficient
conditions for the existence of infinitely many periodic solutions of an
equation with a more general damping term than that of (1.2) and without
the usual sign restriction of the “restoring force” term g(x).

The problem of further resolving those equations for which there
are periodic solutions with different periods seems to be rather difficult;
we shall give some partial results in this direction which slightly extend
a Tesult of Heidel [4], and in one special case we are able to give a fairly
complete answer to the problem.

For an indication of the physical significance of (1.2), we refer to

[9], (10}

2. The equations to be considered are

(2.1) o+ f(@)h(x2) 1 g(x) = up(?),
(2.2) @’ +f(x)h(2'*) +g(x) =0,

where f, g, h and p are continuous, p is periodic with period o, |g| is suffi-
ciently small, and k(%) is increasing for « > 0. For convenience, we shall
also assume that h(u) is continuously extended for # < 0.

We shall also require the Bernoulli equation associated with (2.2),
obtained by substituting z = 2’2 on intervals of constant sign for 2’

dz
(2.3) iz +2f(z)h(2)+2g9(x) = 0.
Utz considered (2.2) when # is linear and gave the following result:

THEOREM [9]. Let the zeros of g be isolated. Then (2.2) has infinitely
many periodic solutions if and only if there is a real number ¢ and a deleted
netghbourhood I of ¢ such that (x—e)g(x) > 0, for vel.

We shall prove the following generalizations of this theorem:

du
THEOREM 1. Let f 1) = + oo and assume that g has countably

many zeros and that (2 3) has uniquely solvable initial value problems. Then
(2.2) has infinitely many periodic solutions if and only if

b z
(P)  there exist a, b with a < b such that fg ydu = fg(u)du > f g(u)du
for all xe (a,b). 0 0

With a slightly greater restriction placed on k, we may dispense
completely with conditions on the zero set of g to obtain
THEOREM 2. Let h be locally Lipschitz in a neighbourhood of zero. Then

condition (P) is mecessary and sufficient for there to be infinitely many
periodic solutions of (2.2).
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For the case h(u) = u™ (n > 1), Theorems 1 and 2 are sharper than
the result given in Theorem 1 of [10].

3. In this section, we shall prove Theorems 1 and 2. It will be con-
&
venient to denote [ g(u)du by G (x).
0

Proof of Theorem 1. To demonstrate the necessity of condition
(P), let z(?) be a periodic solution of (2.2). We can find «q, B, 1,, {, with
a< P, to<ty, such that o« =2(,)<z(l)<z() =, and 2'(t)>0
= &' (t,) = 2'(t,) for te (¢, t,). Our next step is to show that for any é > 0,
there exists x e (a, a4 ) with g(z) < 0. For otherwise g(z) > 0 in (a, a+ ;)
for some J, > 0, and we may suppose that é, < f— a. Then (2.3) implies
that

%+2f(a;)h(z)<0, on (a, a4 d,)

which gives
2(a+385) a+d8,

{ﬂ —2ff(u)du

z&) h(u)

Letting z -~ e+, we obtain

z(a:l-dn)

re-]

+0

du
h(u)

clearly a contradiction.

In a similar fashion, we may show that for any J > 0, there exists
re(f—9d,p) such that g(z) > 0. Combining these conclusions with the
continuity of g(z), we find @,, #,, 2;,x, wWith e< ;< T, <2y < 2, < f
such that G(xz,) > G (x,), G(x;) < G(z,).

A simple argument on the continuity of ¢ now yields the existence
of numbers a, b satisfying condition (P).

Now let us assume that condition (P) is satisfied by two numbers
a,b. We have G(a) = G(b) >G(z) for a <2z < b. Let ¢, be the least of
those numbers 2 in (a, b) for which G(z) = min G(u). Then g(¢,) = 0.

a<u<b

b
Let M = [ |f(u)/du and choose K > 0, but less than min (1, G(b)—G(c,)),
@ 1

such that fd—u >2M.
sk h(u)

Define a, to be sup{z: < ¢, and G(x) = G(c,)+ K} and b, to be
inf{z: x > ¢y and G (z) = G(¢,) + K}. If 2(x) solves the initial value problem
comprising (2.3) and 2(z,) = z,, where a, < 2y < by and |2,] < K, we have,
on integrating (2.3) over any subinterval (#,, ) of (a,, b,) for Which z(x)
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is extendable,

(3-1) 2(@) < 2(@)+2 [ If(w)l[hfe(w)|du—2(G (2) —G(w,)).
Thus ’
lo(@)] <BK+2 [ If(w)lh(lz(u)l)du.

Zo
Bihari’s inequality now gives
[2(2)} du z
<2 [Ifwldu <23
h ()
3K zg
which implies that |z(2)| < 1. It follows that 2z and dz/dz are uniformly
bounded on all subintervals of (a,, b,) on which z is extendable. Thus
z is. extendable to the whole of (a,, b,).

Now choose ¢ with 0 < ¢ < 3 K so that for 0 < u < ¢, we have h(u)
du

h(u)

Finally, choose 7, so that @,<r,<¢, and 2(G(z)—G(z,)) > —6
for all z, in (7,, 0,) and all z in (¢4, by). Let zye (74, ¢;) such that g(z,) < 0.
The existence of a subinterval J of such values of z, contained in (r,, ¢,)
is guaranteed by the definition of ¢,. Consider the solution z(z) of (2.3)
which vanishes at z,. We shall show that it vanishes again for some
value of # > z, and is positive between these two zeros. That the solution

>2M.

< K/2M, and then choose 6 with 0 < 6 <& so that f
3]

d.
is positive locally to the right of z, follows since —:- = — 2¢g(zy) > 0.
T=
Integrating (2.3) and using Bihari’s inequality as above gives z(z) < e
on the maximal subinterval of (z,, b,) for which 2 > 0. Using this bound
in (3.1), we have

K
#(@) < 5372 M +2(G () — G (a)

= K 42(G(mo) —G(co) +G(co) — G ()
< K+26+2(G(cy) —G(2))
< 2K +2(G(co) —G ().

As z tends to b, — the right-hand side of the above inequality tends
to zero 5o that z(x) must vanish again before # = b,. Denoting the first
zero in (wy, by) of z(x) by y(w,), we note that the uniqueness condition
on (2.3) implies that y(z,) is a (one-to-one) strictly decreasing map of J

into the real line. Since g(#) has by hypothesis countably many zeros,
there exist (uncountably many) @, in J- such that 0 = z(z,) = 2z(y(=,)}
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< z(x) for we (2o, y(x,)) and g—z(xo)-%(y(wo)) %« 0. A standard argu-
ment now shows the existence of a periodic solution z(t) of (2.2) with
z(0) = x,, ' (0) = 0, and the proof of Theorem 1 is complete.

Proof of Theorem 2. The necessity of condition (P) follows by an
identical proof to that given in Theorem 1. As regards the sufficiency,
the proof follows that given in Theorem 1 up to and including the defi-
nition of y(x,) for each z,eJ < (ry, ¢,). The one modification required
up to this point is as follows: k(u) is uniformly Lipschitz in some interval
|u] < p. Choose (a,, b,) with the additional requirement that there exists
g > 0 such that all solutions z(x) of (2.3) with |2(x)| < &,, for some xe
€ (@, by), aTe uniformly bounded by p in (a,, b,).

The problem that remains is to exhibit the existence of x,¢J for
which g(y(wo)) # 0, since we no longer have a restriction on the zero set
of g to enable us to proceed with the argument given in Theorem 1.

It will be convenient at this point to introduce the notation z(u, v; x)
for the solution z(z) of (2.3) with z(#) = ». Without loss of generality,
we may assume that g(z) < —m < 0 for some m >0 and for all weJ.
We have for ued and u < z < y(u)

0 = 2(u, 0; u) = =z(u, 0; y(u)) < 2(u, 0; x).

Suppose it were the case that g(y(u)) = 0 for all ueJ. By the uni-
queness of solutions of initial value problems for (2.3), it follows that y (%)
is strictly decreasing for ueJ. Thus y(u) is differentiable for almost all
ued. If ue J and 6 > 0 and sufficiently small, we have

_ 2(ut8, 05 y(ut8))—2(u, 0; y(u)
5
=[z(’"q 0; y(u+ 8))—=2(u, 0; ’y(u))] [1/(“+ 5)—2/(“)] n
y(u+98)—y(u) é

[z(u+ 8,05 y(u—+08))—=2(u, 0; y(u+t a))]
+ 5 -

(32) 0

For almost all e J,

iy Y0 —y(w)
3—0 6
is finite and

i 209590+ D) e Gy 0o
20 y(u+8)—y(w) 0z lz=v(u)
which is

—fly(w)h(ey(w))—g(y(w) = 0.
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Thus for almost all ue J, we have

(3-3) lim 2t 05yt 0) —2(u, 05y(u+9) _
. 60 o =

0,

and so for 6 >0 and sufficiently small we may write z(u, 0;y(u+ 9))
= 6FK(u, 6), where lim E(u, ) = 0.

60
Choose ueJ for which (3.3) holds. Denote z(y(u+ 6), 6E(u, 6);:1:)

by 2(®) 2(y(u+3),0;7) by 2(2), and let I(z) = 2 (@) — 2 ().
Note that

2(y(u+ 8), 6B (u, 6); y(u-+8)) = 6B (u, ) = 2(u, 0; y(u+9)),

so that uniqueness of solutions of initial value problems of (2.3) implies
that
(3.4) 2 (u) = 0.

We have

L) = 0E(w, 8)+ [ f(s){h(er() —h{2a(s))}ds
Y(u+9)
so that

x

E(@)] < 6B (u, 8)+4 [ If(s)1C(s)lds,

Y(u+d)

where A is the Lispschitz constant associated with &, and then Gronwall’s
inequality gives

(3.5) I£(z)] =o0(d) uniformly for xe (a,, b,).
Similarly, we may show that
(3.6) . |24(®)] = 0(d) uniformly for z¢ (ay, b,).

However, on integrating (2.3) and using (3.4), (3.6) we have

u+-0 n4-od

L(ut o) =a(ut0) = — [ g(e)ds— [ f(s)h(ea(s)ds > md+o(d)

in contradiction to (3.5).
‘We may therefore conclude, as in Theorem 1, that there are infinitely
many @,¢ J with g(y(z,)) # 0 and so Theorem 2 is proved.

Remarks 1. As an illustration of a function g(x) which has an
uncountable zero set with no isolated zeros and satisfies condition (P),
let 8 be the ternary cantor set on [0, 1) repeated periodically and let
y(x) be a continuous function on [0,1] with 0 = (0) = y(1) < y(x) for
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0 <z < 1. Then define
0, if ze 8§,

r—a,
gz) = {37y (—

bn_a’n

)sgnx if ze(a,,b,),

where (a,,, b,) is a “deleted interval” of length 37"

d
2. Some condition similar to f TZ) = 4+ oo 18 to be expected,
0+

as is demonstrated by the equation z"’'—2|z’|+2 = 0, which has no
periodic solutions, and yet satisfies all the hypotheses of Theorem 1 other
than the integral condition on k.

3. For the equation z''+g¢g(z) = 0, H. I. Freedman and the author
[2] have shown that (P) is a necessary and sufficient condition for the
existence (in the Carathéodory sense) of a periodic solution assuming
only that g(z) is locally integrable

4. Our investigation of the existence of periodic solutions of (2.2)
with arbitrarily large period begins with the following result of Heidel:

THEOREM ([4], see also [7], [5]). Assume that

(i) xg(z) >0 for x # 0, f(x) >0 for all x,

(i) dnitial value problems for (2.2) are unique, and

(iii) there exists a function y(x)e C1(— oo, 0] such that p(z) >0,

%> —2f(x)h(y)—2g(x) for <0, and f dl_ = oo,

Then (2.2) has periodic solutions with arbitrarily large periods.

The method of proof is essentially in three parts: (a) the existence
of a periodic solution z, (t) is shown; (b) Wazewski’s topological method (see
[3]) is used to demonstrate the existence of an extendable, non-constant,
non-periodic solution z,(¢) whose graph intersects that of z,(?); (¢) the use
of continuous dependence of solutions of (2.2) on initial conditions enables
the proof of the Theorem to be completed. The last part of the argument
may be used in the presence of solutions z,(t), z,(t) of the appropriate
type for the more general equation that we are dealing with and so we
state the following

LEMMA 4.1. Assume that the hypotheses, either of Theorem 1 or of Theorem
2 hold and that initial value problems for (2.2) are unique. Then the existence
of a periodic solution z,(t) of (2.2) and of a mon-constant, non-periodic,
extendable solution z,(t) of (2.2) whose graph intersects that of z,(t), will
guarantee that (2.2) has periodic solutions of arbitrarily large period.
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Proof. We refer the reader to the last part of the proof of Theorem 1
in [4].

Without a sign restriction on g, however, we are unable to employ
the topological method used in the paper referred to above to demonstrate
the existence of x,(f) and need therefore to impose alternative conditions.

We shall prove the following

THEOREM 3. Assume that limh(u) = oo and

. U—>00 .
(i) the conditions of either Theorem 1 or of Theorem 2 hold, and that
f(z) >0 for all x.

(ii) 4mitial value problems for (2.2) are unique, and

(iii) there exist a, B, y, 6 with y <a< f < d such that G(a) = G(B)
> G (z) for ze(a,f), and g(y) = g(8) = 0.

Then (2.2) has periodic solutions with arbitrary large period.

Proof. We shall adopt the notation xz(§,?) for the solution z(f) of
(2.2) satisfying z(0) = &, 2'(0) = 0, and shall use z(&, ) for the corres-
ponding function z(x).

By Theorems 1 and 2, there exist numbers a,b with a X a<bdb < g
and a periodic solution z, () of (2.2) with min z,(f) = e, max z,(f) =b.

te(— o0, 00 te(—o0, 00

From the uniqueness of initial value p'robiems,)we have g(af) < (;, g(b) >0,
and so we can find §, < é such that g(z) > 0 for b < # < ¢, and ¢(é,) = 0.
Define & to be sup{B:b< B < §;, and z(B,?) is periodic}. We have
< é,. If £ =96,, then z(&,t) = & a rest point in the phase plane for
(2.2); if § < 6,4, and z(&, t) were periodic, then from the continuous depen-
dence of solutions on initial conditions, it would follow that #(&+¢, 1) is
periodic for sufficiently small |¢], contradicting the definition of & Thus
(& t) 18 a non-periodic solution of (2.2). A similar argument with
=inf{d: 4 < a, and z(4,1t) is periodic} reveals that z(zn,t) is a non-
periodic solution of (2.2). We note 5 < & Suppose that both z(¢,?) and
x(n, ) were non-extendable, and denote their maximal intervals of existence
by (w_(£), 0, (&), (w_(n), w (7)), respectively. If it were also the case
that there exist &,, #, such that

lim z(§,1) = &, lim z(n,t) = 7,
t—ow_(8) I—bm_'_(q)
we would have
lim 2(&, ) = oo, lim 2(n, ) = oo.
z—>El+ | Ty —

By the uniqueness of initial value problems, any solution x(4,1?)
with 7 < i1 < & must satisfy

n< inf x(4, )< sup =x(4,1?)<E.

te(—o0, ) te(—o00, 00)

Now, from the definition of &, it follows that there exists a sequence:
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&, 4 & such that z(&,,t) is periodic. Biy the continuous dependence of
solutions on initial conditions, it follows that z(&,, ,) > oo as n — oo,
where z, is such that z(&,, #) attains its maximum value at ¢ = z,. It
follows that

dz

= % (Em wn) = _2f(wn)h(z(5n7 wn)) _2g($n);

since h(z(&n, w,,)) — o0 a8 n — oo, and g(x) is bounded on [, £], we deduce
that f(z,) > 0 as n— oo, and so there exists zye [4, £] with f(z,) = 0,

contradicting hypothesis (i). It follows that Ilim «(§,2) = — oo, or
t-ao_(%)
lim x(n,t) = + oco. In either ease, an argument in the phase plane
t—w y (§)
shows that a contradiction of the uniqueness of initial value problems

of (2.2) is obtained. Thus we finally conclude that x(&,%) or z(x,t) is
extendable. It now follows from Lemma 4.1, or by direct appeal to
continuous dependence on initial conditions, that (2.2) has periodic solutions
of arbitrarily large period, and the Theorem is proved.

Remarks 1. It is quite easy to find examples which show that the
existence of just one rest point of the phase plane for (2.2) lying outside
a periodic orbit is not sufficient to ensure the existence of solutions with
arbitrarily large period.

2. It is apparent from the proof of the Theorem that we used the
non-vanishing of f, rather than its positivity; if this assumption is removed,
it would seem that some kind of growth condition on f is necessary to
obtain the required result. °

The following is an immediate Corollary to Theorem 3 (see Lemma 1.1).

COROLLARY. Let the hypotheses of Theorem 3 hold. Then (2.1) has
periodic solutions of period w if |u| is sufficiently small.

To conclude, we indicate one special case of (2.2) for which quite
precise information concerning the existence of periodic solutions may
be obtained.

THEOREM 4. Let f(x), g(x) be continuous, with xg(x) >0 for = # 0.
Defme F(x) to be ff(u du and G(x) to be fg(u)du Let fe”‘"’du and
f e"™ du be denoted by a* and a-, respectwely, and let ¢, D be defined on
I =(a",a") by

'p(feF(u)d“) =e"g(z), &(z) = ftp(u)du.

Let E, be min(¢(a"), ¢(a+)) and let ¢, be V2E,. Fihally, for zel,
define X (x) to be V2P (x) sgna, with range J, say, and for XedJ, define
E(X) to be p(w(X)), where x(X) is the inverse function of X (z).
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Then a mecessary and sufficient condition for
(4.1) @’ +f(@)z'*+g(x) =0
to have periodic solutions with different periods is that for no choice of positive

A is the funmction

5X) —1 an odd integrable function of X on (0, E,).

z
Proof. If r(z) = fe"™du, the substitution y = r(z) transforms
(4.1) into C

(4.2) ¥ +o(y) =0, yel.

Periodic solutions of (4.1) with the same period are transformed
into periodic solutions of (4.2) with the same period and whose energy
functions £ = 4y'?4 @(y) are bounded by F,, and the converse occurs
under the inverse transformation x = r~'(y).

The Theorem now follows because the condition stated is preecisely
the contrapositive of that obtained by Levin and Shatz [6] for (4.2) to
have all solutions, whose energy functions are bounded by F,, periodic
with the same period.
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