INDECOMPOSABLE $\mathbb{Z}_p[G]$-LATTICES
FOR A CLASS OF METABELIAN GROUPS

BY

R. MARSZAŁEK (WROCŁAW)

1. Introduction. Let \mathbb{Q}_p be the field of p-adic numbers and \mathbb{Z}_p its ring of integers. In this paper we determine all finitely generated and \mathbb{Z}_p-torsion-free $\mathbb{Z}_p[G]$-modules for a class of metabelian groups G (Theorem 2.4). This generalizes Théorème II.5 of [3]. An application of this result to the study of the Galois structure of unit groups in certain real algebraic number fields will be given elsewhere (see [4]).

In the sequel G will denote a non-abelian group of order pm which is a non-trivial semidirect product of the cyclic group S of order p by an abelian group T of order m such that the order of every element of T divides $p-1$. It is known (see [3], Proposition 1.3) that every such group G is uniquely determined by S, T and a non-trivial p-adic character χ of T. We have then $tst^{-1} = s^{\chi(t)}$ for $s \in S$, $t \in T$.

We shall apply the method of Rosen [7] which utilizes skew group rings. The same approach was earlier used by Pu [6] for classifying integral representations of metacyclic groups of order pq (with prime p, q).

Let R be an integral domain and let A be an R-algebra. A left A-module which is finitely generated and projective as an R-module will be called a A-lattice. Observe that in the case of a Dedekind ring R every finitely generated and torsion-free module is projective.

If Γ is a finite group, R is a ring and $\text{Aut}(R)$ denotes the group of all automorphisms of R, then the skew group ring $R \ast \Gamma$ is defined as a free left R-module with Γ serving as a system of free generators, in which multiplication is defined by putting

$$ rx \cdot sy = r^\Psi_x(s)xy $$

(for $x, y \in \Gamma$, $r, s \in R$), where Ψ is a fixed homomorphism of G into $\text{Aut}(R)$. The image of x under Ψ will be denoted by Ψ_x.

Let M, N be $R[\Gamma]$-modules. We treat $\text{Hom}_R(N, M)$ as an $R[\Gamma]$-module with the action of Γ defined by

$$ (xf)(m) = xf(x^{-1}m) $$

for $x \in \Gamma$, $m \in N$ and $f \in \text{Hom}_R(N, M)$.

Every cocycle \(F \in Z^1(\Gamma, \text{Hom}_R(N, M)) \) (i.e. a map \(\Gamma \to \text{Hom}_R(N, M) \)) satisfying \(F_{xy} = xF_y + F_x \) for all \(x, y \in \Gamma \) defines an \(R[\Gamma] \)-extension of \(M \) by \(N \) (treated both as \(R[\Gamma] \)-modules), which is defined as the \(R \)-direct sum \(M \oplus N \) on which \(\Gamma \) acts by
\[
x(m, n) = (xm + F_x(n), xn) \quad (m \in M, n \in N, x \in \Gamma).
\]

We shall denote this extension by \((M, N; F)\), and in the cases where the choice of \(F \) is obvious we write simply \((M, N)\).

We shall use the following two lemmas:

(1.3) **Lemma** ([5], Lemme III.2). Let \(\Gamma \) be a finite group, \(\Delta \) its normal subgroup and \(M \) an \(R[\Gamma] \)-module such that \(M^\Delta = 0 \). If we define the action of \(\Gamma/\Delta \) on \(H^1(\Delta, M) \) by the formula
\[
(x\Delta) F_g = x^{-1} F_{xgx^{-1}} \quad \text{for} \ g \in \Delta, \ x \in \Gamma \text{ and } F \in Z^1(\Delta, M),
\]
then the groups \(H^1(\Gamma, M) \) and \(H^1(\Delta, M)^{\Gamma/\Delta} \) are isomorphic.

(1.4) **Lemma** ([1], Corollary (3.45)). Let \(M, N \) be \(R[\Gamma] \)-lattices and let \(F, F' \) be cocycles in \(Z^1(\Gamma, \text{Hom}_R(N, M)) \). Then the extensions \((M, N; F)\) and \((M, N; F')\) are \(R[\Gamma] \)-isomorphic if and only if there exist
\[
a \in \text{Aut}_{R[\Gamma]}(M), \quad b \in \text{Aut}_{R[\Gamma]}(N), \quad c \in \text{Hom}_R(N, M)
\]
such that for all \(x \in \Gamma \)
\[
aF_x(xm) - F'_x(xbm) = xc(m) - c(xm).
\]

We shall consider skew group-rings of the form \(R \rtimes T \), where \(R \) is either \(Z_p[\xi] \) or \(Q_p(\xi) \), and the homomorphism \(\Psi \) in (1.1) is defined by \(\Psi_t(\xi) = \xi^{|t|} \) for any \(t \in T \), where \(\xi \) is a fixed primitive \(p \)-th root of unity.

Some further notation is needed. We put:
\[
L = Q_p(\xi), \quad R_L = Z_p[\xi], \quad T_0 = \text{Ker} \chi, \quad n_0 = \# T_0, \quad n = m/n_0,
\]

\(t_1 \) is a fixed representative of the generating coset in \(T/T_0 \), and \(P = (1 - \xi) R_L \).

\(\tilde{H} \) will denote the character group of an abelian group \(H \). For any \(X \in \tilde{T}_0 \) we choose a character \(\bar{X} \in \tilde{T} \), whose restriction to \(T_0 \) coincides with \(X \), and by \(\chi_1 \) and \(\bar{X}_1 \) we denote the principal characters of \(T_0 \) and \(T \), respectively. Finally, for any \(X \in \tilde{T} \) we set
\[
e_X = (\sum_{t \in T} X(t^{-1}) t)/m.
\]

2. **Indecomposable lattices over the skew group-ring** \(R_L \rtimes T \). Let
\[
T = \bigcup_{i=0}^{n-1} T_0 t_1^i
\]
be the decomposition of \(T \) into disjoint cosets with respect to \(T_0 \).
(2.1) Proposition. The left ideals $L \chi$ (where $\chi \in \hat{T}_0$) form a complete set of simple $L \ast T$-modules.

Proof. Since $L \ast T$ is obviously semi-simple, it suffices to show that all minimal ideals of $L \ast T$ are of the asserted form. First of all observe that

$$L \ast T = \bigoplus_{\chi \in \hat{T}} L \chi.$$

Since all ideals $L \chi$ are minimal, it remains to show that for any χ, η in \hat{T} which coincide on T_0 we have $L \chi \simeq L \eta$. Indeed, under this condition the element $X(t_1)/Y(t_1)$ of Q_p is an n-th root of unity, whence its norm from Q_p to $Q_p(\xi)$ is 1. Using Hilbert's Theorem 90 we can write (with a suitable $c \in Q_p(\xi)$)

$$X(t_1)/Y(t_1) = \Psi_{t_1}(c)/c,$$

and this allows us to construct an $L \ast T$-isomorphism of $L \chi$ onto $L \eta$ mapping $ae \chi$ onto $ace \eta$ for $a \in L$.

We need two lemmas:

(2.2) Lemma. The ring $R_L \ast T$ is hereditary.

Proof. Since the extension L/L^T is tamely ramified, the trace map $Tr = Tr_{L/L^T}$ on integers is surjective, and hence there exists $s_0 \in Z_p[\xi]$ such that

$$Tr(s_0) = \sum_{t \in T} \Psi_t(s_0) = n_0.$$

If now M is a left ideal of $R_L \ast T$, then it is also an R_L-submodule of the R_L-lattice $R_L \ast T$. Therefore it is R_L-projective. Now let $F : N \rightarrow M$ be an $R_L \ast T$-surjection of an $R_L \ast T$-module N on M. Then there exists $a \in \text{Hom}_{R_L}(M, N)$ which splits F, i.e. $Fa = 1_M$. Put

$$a' = \left(\sum_{t \in T} ts_0 at^{-1}\right)/n_0 \in \text{Hom}_{R_L \ast T}(M, N).$$

Then

$$Fa' = \left(\sum_{t \in T} ts_0 Fat^{-1}\right)/n_0 = \left(\sum_{t \in T} \Psi_t(s_0)/n_0\right) = 1,$$

whence a' splits F, and this shows that M is $R_L \ast T$-projective.

(2.3) Lemma ([1], 26.12 (ii)). Let R be a Dedekind ring and assume that the skew group-ring $R \ast T$ is hereditary. Then an $R \ast T$-lattice M is indecomposable if and only if $K \otimes M$ is a simple $K \ast T$-module, where K denotes the quotient field of R^T $(T$ acting on R by right multiplication, as defined in (1.1)).

Now we can prove the main result of this section:

(2.4) Theorem. Every indecomposable R_L-lattice is isomorphic to $P^j\chi$ with a suitable $0 \leqslant j < n$ and $\chi \in \hat{T}_0$.
Proof. From Proposition 2.1 and Lemmas 2.2 and 2.3 it follows that M is an indecomposable $R_L \ast T$-lattice if and only if $L \otimes M = Lx_\chi$ with a suitable $x \in \hat{T}_0$.

The module M has R_L-rank one, hence it is isomorphic to R_L as an R_L-module. Consequently, in view of $M \subset L \ast T$ we arrive at $M = R_L xe_\chi$ with a suitable x in L, and this is of the asserted form.

(3.1) Proposition. For $x \in \hat{T}$, $y \in \hat{T}_0$ and $j = 0, 1, \ldots, n-1$ let

$$M = \text{Hom}_{Z_p}(Z_p e_x, P^j e_y).$$

Then the group $H^1(G, M)$ is cyclic of p elements if $x = \chi^{j-1} y$, and is zero otherwise.

Proof. Since $M^S = 0$, Lemma 1.3 reduces our task to computing $H^1(S, M)^{G/S}$.

Denote by a a generator of S and let c be a cocycle in $Z^1(S, M)$. It is determined by $c_a(e_x)$. The fact that the class of c is fixed by G/S is equivalent to the existence of an element v of M such that, for any $t \in T$,

$$t^{-1} c_{x \cdot t} c_x - c_a = (1 - \xi) v.$$

Hence, with $y_i = (1 - \xi^{x(t)})/(1 - \xi)$, we have $y_i c_a - t c_a = (1 - \xi^{x(t)}) t v$ because $c_{x \cdot t} = y_i c_a$. Since $(t c_a)(x) = t c_a(t^{-1} x)$ for any $x \in Z_p e_x$, and with suitable $a \in R_L$ we have $c_a(e_x) = (1 - \xi^j a e_\bar{y})$, we get

$$y_i (1 - \xi^j a e_\bar{y} - X^{-1}(t)(1 - \xi^{x(t)}) \Psi_i(a) Y(t) e_\bar{y} \in P^{j+1} e_\bar{y}.$$

Using $y_i \equiv \chi(t) \pmod{P}$ and $\Psi_i(a) \equiv a \pmod{P}$ (for $t \in T$), we infer finally that for all t in T

(3.2)

$$a X(t) Y^{-1}(t) - a \chi^{j-1}(t) \in P.$$

If now $X \not= \bar{Y} \chi^{j-1}$, then a must belong to P, since otherwise we would have $X(t) \equiv \bar{Y} \chi^{j-1} \pmod{P}$, which gives a contradiction since all n_0-th roots of unity are distinct \pmod{P}. But $a \in P$ implies that c must be the zero cocycle, and hence $H^1(G, M) = 0$ in this case.

If $X = \bar{Y} \chi^{j-1}$, then (3.2) is satisfied by all $a \in R_L$, which implies that $H^1(S, M)^{G/S} = H^1(S, M)$, so it remains to show that the last group has p elements. To do this consider a cocycle f which is determined by the value

$$f_a(e_x) = (1 - \xi)^j a e_\bar{y} \quad \text{with} \ a \in R_L.$$

Write $a = a + h(1 - \xi)$ with $0 \leq a < p$, $h \in R_L$ and put $g_a(e_x) = (1 - \xi^j a e_\bar{y})$. Then

$$g_a(e_x) - f_a(e_x) = (1 - \xi) w e_x,$$

where $w \in M$ and $w(e_x) = h(1 - \xi)^j$. Thus g and f are equivalent, and so define the same element of $H^1(S, M)$.

If two cocycles \(f, g \) are equivalent and
\[
f_\sigma(e_\chi) = (1 - \zeta)^j a e_\gamma, \quad g_\sigma(e_\chi) = (1 - \zeta)^j a' e_\gamma
\]
with \(0 \leq a, a' < p \) and \(a \neq a' \), then there exists \(b \in M \) such that
\[
f_\sigma(e_\chi) - g_\sigma(e_\chi) = \sigma b(e_\chi) - b(\sigma e_\chi),
\]
whence \(a \equiv a' \pmod{P} \), thus \(a = a' \), a contradiction. This shows that \(H^1(S, M) \) has \(p \) elements, and so the proposition is established.

(3.3) Lemma. For every integer \(j \) satisfying \(0 \leq j < n \) and every \(Y \in \hat{T}_0 \) there exists exactly one (up to \(\mathbb{Z}_p[G] \)-isomorphism) non-trivial extension of \(P^j e_\gamma \) by \(\mathbb{Z}_p e_{\chi^j-1} \).

Proof. First we show that all non-trivial extensions are isomorphic. Let \(M \) be defined as in Proposition 3.1, with \(X = \chi^{j-1} Y \). Write
\[
f_\sigma(e_\chi) = (1 - \zeta)^j a e_\gamma, \quad f'_\sigma(e_\chi) = (1 - \zeta)^j a' e_\gamma
\]
with \(a, a' \in \mathbb{Z}_p \setminus p \mathbb{Z}_p \). Since \(a/a' \) is a \(p \)-adic unit, the \(\mathbb{Z}_p[G] \)-endomorphism \(\alpha: x \rightarrow (a/a') x \) of \(P^j e_\gamma \) is in fact an automorphism. Since \(f_\sigma(e_\chi) - \alpha f'_\sigma(e_\chi) = 0 \), Lemma 1.4 implies that the extensions defined by \(f \) and \(f' \) are \(\mathbb{Z}_p[G] \)-isomorphic.

It remains to prove the existence of a non-trivial extension. Let \(f_\sigma(e_\chi) = (1 - \zeta)^j e_\gamma \). If the extension defined by \(f \) were trivial, then there would exist a \(\mathbb{Z}_p[G] \)-automorphism \(\alpha \) of \(P^j e_\gamma \) and \(c \in M \) such that
\[
\alpha f_\sigma(\sigma e_\chi) = \sigma c(e_\chi) - c(\sigma e_\chi) = (\zeta - 1) c(e_\chi).
\]
Since \(c(e_\chi) \in P^j e_\gamma \), this would imply \(\alpha((1 - \zeta)^j e_\gamma) \in P^{j+1} e_\gamma \), and hence
\[
\alpha(P^j e_\gamma) \subseteq P^{j+1} e_\gamma.
\]
Thus \(\alpha \) could not be an automorphism.

Finally we prove our main result, giving a classification of indecomposable \(\mathbb{Z}_p[G] \)-lattices:

(3.4) Theorem. Every indecomposable \(\mathbb{Z}_p[G] \)-lattice is isomorphic to one of the following modules: \(\mathbb{Z}_p e_\chi \), \(P^j e_\gamma \) and \((P^j e_\gamma, \mathbb{Z}_p e_{\chi^j-1}) \), where \(X \in \hat{T}, Y \in \hat{T}_0 \) and \(0 \leq j < n \).

Proof. Since \(p \chi [G:S] \), the Lemma in [2] shows that every indecomposable \(\mathbb{Z}_p[G] \)-lattice is isomorphic to a direct summand of \(\mathbb{Z}_p[G] \otimes M \) for a certain indecomposable \(\mathbb{Z}_p[S] \)-module \(M \). We have three choices for \(M \), namely \(\mathbb{Z}_p, R_L \) and \(\mathbb{Z}_p[S] \).

Observe that
\[
\mathbb{Z}_p[G] \cong \bigoplus_{X \in \hat{T}} \mathbb{Z}_p[S] e_\chi,
\]
the isomorphism given by the map

\[x \mapsto \sum_{x \in \mathcal{T}} xe_X \quad (x \in \mathbb{Z}_p[G]). \]

Since the element \(\sigma \) acts trivially on \(\mathbb{Z}_p \), we have

\[\mathbb{Z}_p[S] e_X \otimes_{\mathbb{Z}_p[S]} \mathbb{Z}_p \simeq \mathbb{Z}_p e_X; \]

hence

\[\mathbb{Z}_p[G] \otimes_{\mathbb{Z}_p[S]} \mathbb{Z}_p \simeq \bigoplus_{x \in \mathcal{T}} (\mathbb{Z}_p[S] e_X \otimes_{\mathbb{Z}_p[S]} \mathbb{Z}_p) \simeq \bigoplus_{x \in \mathcal{T}} \mathbb{Z}_p e_X. \]

Now consider

\[N = \mathbb{Z}_p[G] \otimes_{\mathbb{Z}_p[S]} R_L \simeq \bigoplus_{t \in \mathcal{T}} (\mathbb{Z}_p[S] \otimes R_L) \simeq \bigoplus_{t \in \mathcal{T}} t \otimes R_L. \]

Clearly, the \(\mathbb{Z}_p \)-rank of \(N \) equals \((p-1)m\). Since \(S = 1 + \sigma + \sigma^2 + \ldots + \sigma^{p-1} \) annihilates \(N \), it follows that \(N \) (as a \(\mathbb{Z}_p[G] \)-module) is an \(R_L \ast T \)-lattice, because the rings \(\mathbb{Z}_p[G]/\mathcal{S}\mathbb{Z}_p[G] \) and \(R_L \ast T \) are isomorphic. Thus Theorem 2.4 implies

\[N \simeq \bigoplus_{j=0}^{n-1} \bigoplus_{l=0}^{n_0-1} P^r e_{Y_l} \]

with suitable \(0 \leq r < n \) and \(Y_l \in \mathcal{T}_0 \). Since \(N \) is \(\mathbb{Z}_p[G] \)-cyclic, the summands here are pairwise non-isomorphic. Hence

\[\mathbb{Z}_p[G] \simeq \mathbb{Z}_p[G] \otimes_{\mathbb{Z}_p[S]} \mathbb{Z}_p[S] \simeq \bigoplus_{j=0}^{n-1} \bigoplus_{Y \in \mathcal{T}_0} P^j e_{Y}. \]

In view of (3.5) it remains to decompose the modules \(\mathbb{Z}_p[S] e_X \) for \(X \in \mathcal{T} \). Let \(X = \chi^{-1} Y \), where \(0 \leq j < n \) and \(Y \in \mathcal{T}_0 \), and consider the exact sequence of \(\mathbb{Z}_p[G] \)-lattices:

\[0 \rightarrow \mathbb{Z}_p[S] (1-\sigma) e_X \rightarrow \mathbb{Z}_p[S] e_X \rightarrow \mathcal{S}\mathbb{Z}_p e_X \rightarrow 0, \]

where the last epimorphism is the multiplication by \(\mathcal{S} \).

Now observe that the first non-zero term of this sequence is isomorphic to \(P^j e_{Y} \) and the last one to \(\mathbb{Z}_p e_X \). In fact, the second statement is obvious, and to prove the first one write, for \(j = 0, 1, \ldots, n-1 \),

\[v_j = \left(\sum_{t \in \mathcal{T}} \chi(t^{-1}) \frac{\mathcal{S}\mathbb{Z}_p}{m} \right). \]

Using Proposition II.7 of [3] we get \(R_L v_j = P^j \) \((j = 0, 1, \ldots, n-1)\). If we put

\[e_X(\sigma) = \left(\sum_{t \in \mathcal{T}} \chi(t^{-1}) \frac{\mathcal{S}\mathbb{Z}_p}{m} \right), \]
then by the Corollary (Scolie) to Proposition II.11 in [3] we obtain
\[e_x(\sigma) \equiv (1 - \sigma) \mod (1 - \sigma)^2, \]
and thus \(Z_p[S] e_x(\sigma) = Z_p[S](1 - \sigma) \).

Now we obtain the asserted isomorphism from
\[Z_p[S](1 - \sigma) e_{\chi^{-1}} = Z_p[S] e_x(\sigma) e_{\chi^{-1}} \]
to \(Z_p[S] v_j e_{\bar{\gamma}} \) by putting, for \(g \in Z_p[X] \),
\[g(\sigma) e_x(\sigma) e_{\chi^{-1}} \mapsto g(\xi) v_j e_{\bar{\gamma}}. \]

Now (3.6) implies
\[(3.7) \quad Z_p[S] e_x \simeq (P_j e_{\bar{\gamma}}, Z_p e_{\chi^{-1}}) \]
for any \(\chi \in \mathcal{F} \) of the form \(X = \chi^{-1} \bar{\gamma} \).

To complete the proof of the theorem it remains to show that the modules listed in its statement are indeed indecomposable.

The modules \(Z_p e_X \) are obviously indecomposable. Every decomposition of \(P_j e_{\bar{\gamma}} \), as a \(Z_p[G] \)-module, would be also an \(R_L \ast T \)-decomposition, which cannot exist by Theorem 2.4.

For any \(Z_p[G] \)-module \(M \) define
\[\tilde{M} = \{ m \in M : \bar{S} m = 0 \}. \]

If we would have \(Z_p[S] e_X = M_1 \oplus M_2 \), then
\[(Z_p[S] e_X)^{\sim} = Z_p[S](1 - \sigma) e_X = \tilde{M_1} \oplus \tilde{M_2}, \]
and by the indecomposability of \(Z_p[S](1 - \sigma) e_X \) as an \(R_L \ast T \)-module we have, say, \(\tilde{M_1} = Z_p[S](1 - \sigma) e_X \).

Comparing the \(Z_p \)-ranks we see that if \(M_1 \neq \tilde{M_1} \), then \(M_1 = Z_p[S] e_X \). If, however, \(M_1 = \tilde{M_1} \), then \(Z_p[S](1 - \sigma) e_X \) is a direct summand of \(Z_p[S] e_X \), but this is impossible because \(Z_p[S] e_X \) is a non-trivial extension of \(Z_p[S](1 - \sigma) e_X \) by \(Z_p e_X \). The theorem is thus proved.

REFERENCES

INSTITUTE OF MATHEMATICS
WROCLAW UNIVERSITY
PLAC GRUNWALDZKI 2/4
PL-50-384 WROCLAW, POLAND

Reçu par la Rédaction le 22.3.1989