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On the branching property of entropy ’

by INDER JEET TANEJA (Delhi, India)

Abstract, A characterization of Shannon’s entropy through axioms 'by'formi.ng
Jessen—Karpf—Thourup’s [9] system of functional equations hasg been made in first
section. While second section deals with a joint characterization of Shannon’s entropy
and entrepy of type § through axioms. Corresponding functional equatlons stuched
by Rathie and Xanunappan [11] have also been formed

Introduction. The pr oblem of assoclatmg a measure of information
w113h a discrete finite probability distribution P = (Py,...,2,); p;= 0,

), p; = 1, started with Shannon’s entropy

1eml

(1) CH, D1y Pa) = — _)jpilogpi-
i=1

Oharacterizations of thiz meagure ariging out of natural considerations’
have been extensively studied by many authors (for details refer Aczél [2]).
Faddeev [6] characterized measure (1) by taking the branching property

(2) Ho(D1y Doy oos Bp) —Hu 1 (P1-+ Dy sy ooy Dn) = P Ho (01D, P2lDi),

where p; = p,+p, > 0, along with other postulates
Generalization of measure (1) studied by Havrda and Charvat [8]
using in place of the branching property (2) a

(3) Hﬁ(l’ul’z, ""pvt)—Hﬁ—l(pl+p27 Dy - :Pﬂ)
= PiH"(Ih/pu.pz/.'Pt), ﬂ> 0,
where p; = p,+p, > 0. This leads to the entropy of type § given by

(4)  Hi(psy ..o p,) = (20— [S’p ~1], B #1, 8>0.

Quantity (4) has also been studied by Daréezy [4] by taking a Hiné-
tional equation which actually can be shown to follow from the. branching
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property (3) for n = 3, together with symmetry. Some functional gener-
alizations of meagsure (4) have been characterized by Sharma and author
[14]. While a joint characterization of measures (1) and (4) through the
generalized additivity have been made by author [15].

It i3 & matter of natural curiosity to examine what are all such meag-
ures if we replace p,H,(p,/p;y P2/p;) by & function é,_, (p,, p,) in (2) and by
replacing p; or pf by a continuous function f(p,) in (2) or (3). In this paper,
we cxamine these situations. ,

In first section of the paper, we characterize Shannon’s measure (1)
by replacing p; H(P1/Py, P2 [P:) DY 0,1 (D1, P2), Where 6;(py, p) is 2 continu-
ous function and form Jessen—Karpf-Thourup’s [9] system of functicnal
equations by taking certain axioms.

The investigations made in second section show thzut no new meas-
ures arise by replacing p, or p? by a continuous function f(p;) in (2) or (3)
and the only entropies arising by such a study are those given in (1) or (4).

In what follows we shall take 0log 0 = 0 and all the logarithmg are
considered to the base 2.

I. Characterization of Shannon’s entropy. In this section, we study
thoe basic quantity of information theory known as Shannon’s entropy
by some axioms. Barlier these axioms have also been considered by Daré-
czy [3] (vefer also Forte and Dardczy [7]). Though the study in this direec-
tion has been made extensively but still we are in a position to give yet
another characterization for Shannon’s entropy. For this, we consider
the following axioms:

(I). H,(p4, ..., P,) is symmetric function of its arguments;
(L) Hppr(Pry ooy Puy 0) = Hy (D15 -5 D)

(II) H,(P1y ovey Dp) = Hp1 (D1 + D2y Doy ooy By) = O5a (D1, D3) (0= 3),
'where d,(py,Ps) 18 @ continuous function in the region D = {(p,, p,):

D1y P22 0, p1+ps < 1}

(IV) Hup(D1¢, D1(1 =), vvs Da Da(L—0)) = Hy(D1y ooy Pa) +
+H,y(q,1—4)- o :
We prove the following theorem based on above axioms:

n
THROREM 1. If H, (P, .-y Pn)s Pi= 0, 2 p, =1 satisfies axioms
(I)—(IV), then

(5) Hy(D1y -y Pu) = —Zh(pi),
_ i=1

where h satisfies a functional equation

(6) h(pg) = ph(q)+qh(p)

Jor all p,qe[0,1].
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Before proving the theorem, v_v're state two lemmas due to Daréezy [3].
LemMMA 1. Let D(py, Do) = 03(P1y D2)y (D1, Pa) € D; then

(7) - _ 0n_1(D1y P2) = P (D1, Do)-
Lemma 2. Let r be any number lying in [0, 1]; then
(8) D(rg, r(1—q)) =rP(g,1—q)

for every q e [0,1].
Proof of Theorem 1. Now sctting

| rq =P, r(L—¢) =Dy,
in (8), we get

(9) P(p1y P2) = (P1+22)P (
where p, +p, > 0.
Now taking

D1 P )
P1+Ds ’ P1+Ps ’

= p, in (93), we geb
Ptpe 0 » We 8

(10) PsP(P1y D2) = P(D1Ps) DaDs)-
As H, is symmetric (by axiom (I)), this gives
(11) . D(P1y P2) = P(Pay P1)-
Now consider .
D(P2+ D1y Ps) — P(Ds +Pa,?1)
= {Hy(1,0) + P(ps, P1) + P(Da+ D1y D)+ P(Pa+P1+Day 1 —P1—Da— Ps)} —
—{H,(1, 0)+ D(ps, P2) + P(Ps+ P2y P1) + ‘
+ D (pa+p1+2s, 1_1’_1—1’2_—293)} +qj(fps’ P2) — P (P, Pl‘)
= H,(P2; D1y Pay L—P1—D2—Da) —'._354(293, P2y P1s 1 —D1—Pa—2s)+
A+ P(pay P2) — P (P2, P1) = D(Ds, D) — P (D2, P1),
i.e.,
(12) D(P2+P1y Ps) +DP(Pay D1) = P(Ps+ Doy P1) + DP(Dsy P2)-

Now the continuous solution of the system of functional equations
(10)—(12) (refer Jessen—Karpf-Thourup [9]) is given by

(13) B(Da,y Do) = h(Dy+D10) —R(ps) =k (Ds),
where h satisfies the equation
(14) ' h(pg) = ph(g)+¢h(p)

for all p,qe[0,1]
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Now from axiom (III) and Lemma 1, we can write

-(15) H,(P1) -y D) = D(Pyy Pa) + P(PL+ Dy Do)+ ... +
+O (P +pat oo +Pp_1s D) +Ha(1,0)

(from. axiom (IV), we have H;(l, 0) = 0 by taking ¢ = 1). H
Thus (15) together with (13) gives

Hy(Pay -oey Pr) = ML) = D) (D)),
i=1

_ — S’h(pi) (as h(1) = 0, from (14)),

which is (5), where h satisfies equation (14).
Characterization of Shannon’s entropy. Now, if we suppose

that the function % in (14) is continuous, then continuous solution of (14)
(refel Aczél [1]) is given by O

(16) h(p) = dplogp,

where A is an arbitrary constant.
Thus (5) together with (1.6) reduces to

(17) En(pli"“spn) = —Azpilogpi' ;
i=1

If, we further take the normalizing condition H,(%, ) = 1, then (17)
reduces to Shannon’s entropy (1). T
Note. The functional equations (10)—(12) have also been used by

‘Aczél [2] for obtaining the Kendall’s [10] or Tverberg’s [16] functional

equation.. a

II. A joint characterization of Shannon’s entropy and entropy of type 3.
For the purposes of characterizing the measures of information associated
with a probability distribution, we take certain axioms. It will be recog-
nized that these are modifications of Faddeev’s [6] axioms nsed for cha,ra,c-
terizing. Shannon’s measure.

The information measure H/(p,, ..., p,) of a probability diatribution

n

P ={(Pyy..ey0,),0: =0, 2 p; = 1 satisfies the following axioms:

(a) HY (pyy..-5p,) 18 a continuous funetion in the region p;=>0
2 p‘i = l; N

i=1
(b) H,(py, ..., p,) is symmetric with respect to its arguments;
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(e) H n+m~ 1{P1y ooy Doty V1 ooy Uiy Digay oovy Pp) = H{L(Pn ooy Dy)
+f(P) By (01015 - -1 O fpy), Where v, 0, k =1,2,...,m, Z'Uk =p;> 0
and f is & continuous function in [0, 1] such that f(0) = 0;

‘Hf(‘}_y 3) =1, H{(l; 0) =0.

THEOREM 2. The enitropies determined by axioms (a)—(d) are only of
one of the following two forms: g

(18) Hn(.'pl’ . 3pn. Z.’pzlog.’pii
and
(19)  Hy(pa, o) = (77— [21»1 1], B %1, 8>0.

We give some intermediate results based on above axioms in lemmasg
below: mg

LEMMA 3. If’v,j 0 ] —1 2 ,mi,Z'v,-,- =p1> O,i= 1,2, ceey Ny
2 j=1
2191: = 1, the%

=1
(20) H{}q+m2+...+mn('011 RREP 'ulm.li Vaty «evy ”2m'2; o3 Unpy ooy 'vnmn)
' n
= B (D1 ooy Pa) + O F(D) Hlgy (0 /iy« Vi, [D3)
=]
This lemma directly follows from axiom (c).
LemmA 4. If F(n) = HL(1/n, ..., 1/n), then

(21) F(n) = Alogn, when f(1/n) =1/n,
or .»

(22) F(n) = Bnf(1/n)—1],

where f satisfies a funct_ional equation

{23) f@Amm) = f(Lm)f(1/m), f(1/n) #1[n,

n, m being arbitrary positive inlegers and A, B are arbitrary constants.
Proof. Replacing in Lemma 3, m; by m and v; = 1jam,t =1,2, ...
., n; § =1,2,...,m, where n and m being positive integers, we have
(24) F(wm) = F(n)+nf(Lm)F(m).
.There arise two cages:
Case L. When f(1/n) = 1/n. In this case (24) reduces to

(25) : F(nm) = F(n)+F(m).
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Also, from the condition Hj(1,0) = 0, we have F(1) = 0, which
gives
(26) lim, F(n+l)—TF(fn)] = F(1) = 0.

7—>c0

The continnous solution of the number theoretic functional equatlon
(25) under condition (26) (vefer Daréezy [5], Rényi [12]) is given
by (21).

Oase IT. When f(1/n) # 1/n. In this case, symmetry in n, m unphes

' I'(nm) = F(mn),

Le., _ g

. T (n)+nf(1/n)F(m) = T (m)-+mf(L/m)F(n),
ie.,

(21) T _ I g (ay),

nf(lin)—1  mf(l/m)—1
provided f(1/n) # 1/n.
Expression (27) gives
F(n) = Blnf(1jn)—1], if f(1jn) % 1/n,
which is (22).
Now substituting (22) in (24), we obtain (23).

LEMMA B. The function f in axtom (c) satisfies a functional equation
given by ¢
(28) f(p9) = f(p)f(9)
for all p,qe[0,1]
Proof. From axiom (c¢), we can write
(29) H{;+m—1(P1: corsPi1y Vs ovey Vppy Pigyy oo ’Pn)
=H£+1(P1: ooy Pim1y Y1y By Dig1y ooy D) +f(2_’> m=1{02/Dy -3 U [P)y
where » =v,+ ... +v,>0
H{z(?lr cery Pn) 'l“f(Pi)H'zf(%/Pw Blp;) +f(P)H, —1{02/Py <.y U [D),
' where p; =0, +P = 0,4+ ... +0,,.
Alternatively, we can write again from axiom (e),
(30) ’ H{1+m—l(p17 veeyPi1y V1 evey Uy Pigrs ---yPn)
= H] (D1 -+ Pu) FF(00) HI (04 [D15 - -y V[P
= Hi(p,, ... y Dp) +f(Pi){H£(”1/P11 Plps) +
+ 1 (Blp:) Hppe1 (v2]) ...y 0, [ D)}
= B (D1 -y Dn) +F(D)) H"(vl/p” Blpo) +
+f(2:)f(P/p;) H: 1('”2/?3 vy O[B) -
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Comparing (27) and (30), we get

P f(?)
(31) f(:pi) =ty TEO#O

‘Finally, (31) together with (23) under the continuity of the function f
gives
fpg) =f@)fl)
for all reals p, ¢ € [0, 1]. This proves the lemma.

Proof of Theorem 2. We prove the thecorem for rationals and.
then continuity axiom (a) glves the result for reals. For this let p, = r;/m,.

i=1,2,...,m, where Zfr =m; 7’5 and n being positive integers.
i=1

Then an application of Lemma 3 gives

H (1jm,...,Lm;...;1[m,...,1|/m)
S~———’ N——’
1 ™
= H(B1, -y Po) + D F @) B (Lhrgy oy L),
i=1
ie.,

F(m) = H(ps, ..y 2a) + D F @) F(r),

i=1
ie.,

(32) H(pyy vy Pu) = F(m)— Zf(?

Equation (32) together with (21) gives

Hy(p1y -y Pa) = —4 D pilogp;.

i=1

Again equation (32) together with (22) gives
(33) Hy(P1y -5 1) = B[ D' fl2) —1],
1=1

where f satisfies the functional equation (28).
From axiom (d), we have

A=1 and B =[2f(})—

Thus (33) can be written as
(34)  Hi(py,...,pn) = 2FB -1 D00 —1], flo) #p,
i=1

where f(pq) = f(p)f(g) for all reals p, qe[0,1].
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The most general continuous solution of the functional cquation: (28)
{(refer Aczél [1]) is given by

(39) fo) =9 B>,

where. f { # 1) is an arbitrary parameter..

Now (34) together with (35) gives (19) While f(p) =p (ie., f =1),
we have (18).

A functional equation. Let us take

{(36) hip) = HJ;(Pyl_p)’ 0<p<y
then from symmetry, we have
(37) h(p) = h{1—p).

Again, if we consider the branching property (i.e., axiom (¢})) for "= 3,
this leads to
; A I Ay —anl—2—
G - () = wo+a-on(72)
for all p,q e [O., 1) and p+¢q< 1.
Next, using the branching property for any =, we get

(39) H](P1y -y Pa) Zf )b (Balsy)

i=2
‘where s, = ps+ ... +9;,>0; 4 =2,3,...,n and f satisties a funotional
-equabion (refer Lemma 3) given by

(40) f(pg) = f(p)f(9)

for all reals p,qe[0,1].
The functional equation (38) (refer Rathie and Kannappan [11])
has the general continnous solutions given by

’
\
R}

(1) A(p) = —plogp—(1—p)log(1—p), when f(p) =p,
and
(42) h(p) = [2f(H)—117 ' [f(p)+f(L—p)—1], if f(p) # p,

where f satisfies a functional equation (40).

Now (39) together with (41) gives Shannon’s entropy. While (39)
together with (42) gives (34), which under the general continnous solution
{35) of the functional equation (40) reduces to type # catropy (19). '

Author is thankful to Dr. B. D. Sharma, Reader in Mathematics,
University of Delhi, Delhi for guidance in the preparation of this paper
and discussions at various stages. s
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