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On integral equations in a Banach space

by J6zer PI6rREK (Krakéw)

Abstract. The paper deals with integral equations of the Urysohn-Volterra type
in a Banach space, i.e., with equations

11
1) a(t)=[f(s, ¢, x(s))ds,
0

where f: [0, 1]2x E — E is continuous, E is a Banachspace, z: [0, a) > E is contin-
uous and the integral is considered in the strong sense. Having the set of continuous
functions f: [0, 1] x E - F endowed with the topology of uniform convergence on
bounded sets, the following theorem is true:

The set of functions fe X for which equation (1) has one and only one unlimited
solution (for the definition see below) is a generic set in X.

The paper contains a detailed proof of this theorem and of some auxiliary results.
The most important of them is Lemma 2 on the existence, uniqueness and continuous
dependence of tho solution of cquation (1). The author also quotes Lasota and Yorke’s
results and Vidossich’s results concerning the same problem, and compares briefly
these results with the theorem of the paper.

1. Imtroduction. The purpose of this paper is to state a theorem
concerning the problem of existence and uniqueness of solutions of an
integral equation of Urysohn—Volterra type. To formulate this theorem
we need some preliminary, definitions.

Let E be a real Banach space and let X be the space of all continuous
functions f defined on U = [0,1]2 X E with values in E, endowed with
the topology of uniform convergence on bounded sets. Further, let us
consider an integral equation of Urysohn-Volterra type:

!
(1) x(t) =7’o+ff(37t197(3))d3’

where f is in X and 7, in ¥ and the integral is interpreted in the strong
sense. A solution of (1) is a continuous function z( -) defined on any interval
starting at 0 and contained in [0, 1], with values in Z.

A solution (or more generally: a continuous function with domain
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in [0, 1] and values in E) is said to be unlimited (more precisely: positivly
unlimited) iff it has no limit when its argument tends to the right end
of its domain, unless it is defined on the whole interval [0, 1].

The main result of this paper is the following

THEOREM 1. The set of all functions f e X for which equation (1) has
a unique unlimited solution is generic, i.e., its complement is a set of first
category (in the sense of the Baire Category Theorem).

This paper had been inspired by works of Orlicz [2] and of Lasota
and Yorke [1]. The first part of this paper contains a detailed proof of
the main theorem. The author has decided to present all the details because
of their absence in almost all literature known to him and concerning
integral equations in Banach spaces. In the second part we shall briefly
compare our theorem with the result of Lasota and Yorke [1] and with
results obtained by Vidossich [3] in an other way, with the use of general
topological properties of function spaces.

2. Lemmas. For simplicity of proofs and without loss of generality
we may assume that the topology in X is that of uniform convergence.
One can easily show that no but little changes are necessary in the case
of the topology of uniform convergence on bounded sets. The topology
of uniform convergence in X is metrizable, Indeed, the function

”f(sy t,z)—g(s,1, 2
d = ’
(,9) = Sup T s, T, ) =90, 1, a)]

where ||*|| is the norm in E, is a bounded meftric in X consistent with the
topology of uniform convergence.

For brevity sometimes we shall say “z(-) is a solution of f,” instead
of “z(-) is a solution of (1), letting f be f,”.

Let E, and E, be any Banach spaces with norms ||-||, and ||-||,, respec-
tively. Let U, be an open subset of H,; a mapping G: U, — E, is called
locally Lipschitzean if for each z, € U, there exist an open neighbourhood
of z,, say V,, contained in U, and a number L, > 0 such that

1G (@) —G W)l < Lolle—yll, for z,y e V,.

We shall also need the weaker notion of functions f € X locally Lipschi-
tzean with respect to the variable in E (shortly: locally Lipschitzean).
They are defined by the condition: for each u,e U = [0,1]2 X F there
exist an open neighbourhood V, of %, and a number L > 0 such that

If(sy t, &) —f(s, ¢, Y < Llw—yll for (s,t,x),(s,t,y) e V,.
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The result stated below for locally Lipschitzean functions remains true
also for functions just defined.

LeMMA 1. Let Ey and E, be Banach spaces with norms ||-|l; and |- |lo,
respectively, and let U, < E, be open. Let F: U, —~> E, be continuous and
let 6> 0. Then there exists a locally Lipschitzean function G: U, E,
such that |F(x)—G ()|, < 6 for z e U,.

(This is to say, the set of locally Lipschitzean funetions is dense in
the set of all continuous functions from U, to E, with the sup norm.)

A proof of this lemma (with the use of techniques of partitions of
unity) is outlined in the above mentioned paper [1] and therefore it is
omitted here.

LeMMA 2. Let f = f, € X be locally Lipschitzean. Then:

1° Equation (1) has one and only one unlimited solution xy(1);

2° If, moreover, {f,} is a sequence in X uniformly convergent to f, and
if x,(t) s an unlimited solution of the equation

t
(1,) Ta(t) = ut [Fuls, by @a(s)) ds  for m =1,2,...

with r, € B and r, — ry, then xz, = z,.
Here the notation z, = x, means that, for every compact interval J

contained in the domain of z,, all but finitely many z, are defined on J
and the sequence z,(-) tends uniformly to z,(-) on J.

Proof of Lemma 2. Without loss of generality we may assume
that 7, = 0 and so r, - 0. We first prove assertion 1°.
Step 1. Using the Banach Fixed-Point Theorem we shall prove

the existence and uniqueness of solution of f, in some right neigh-
bourhood of 0.

Let Y be the set of all cotninuous functions z: [0, 1] — E with the
sup norm. Let ¢ > 0 be such that f, is Lipschitzean with a constant L > 0
for ¢ with |lz]| <c¢ and for 0<s, t<e¢, and let M = sup{||f(s,t, 0)]:
8,1€[0,1]}. For T'> 0 write Y, ={zeX: |z@®)<ec, te[0,T]}. We
ghall choose 8 > 0 so0 small that the operator ¥: Y - Y given by the
formula

¢
(Fz)(t) = [f(s,t, x(s))ds

maps Yg into itself and such that F'|Yg is a contraction. At first, observe
that Y, is a non-empty closed set. From the inequality

¢
|zl = sup |( Fa) (2)l| < sup [ |£(s, ¢, (s))]|ds < T(M + Lo)
t<? t<T §
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it follows that F(Y,) c¢ Y, if T < c¢(M+ Le)™'. Furthermore, F|Y,is a
contraction if T < min{l1/L, c}. Indeed,

WFz, — Fa,l| = sup [(Fa,)(t) — (Fa,)(2)]
i<T

< Squ“f(s’ t ‘”1(3)) _‘f(37 t, wa(s))“ds < TLsup ||z, () — 25 ()| < TLljw, — 2.l
I<T o T

Thus it is enough to choose § < min{l, ¢, ¢/(M + L¢), 1/L}. According
to the Banach Fixed-Point Theorem there exists exactly one x € Y such
that (F|Yg)(2) = .

Step 2. Let us define

T, = sup{T: x(-) is defined on [0, T] and is a solution of f}.
There are two possible cases:

(I) limz(t) does not exist or 7, = 1; then by definition z: [0, T,) > E

t->Tg
is unlimited.
(IX) limz(t) exists; then we set #(T,) = limz(f). In this case, applying
T, t—T,

the argument of Step 1 to the equation
1
o(t) = o(T)+ [fls, 1, ©(s))ds
Ts

we may define a solution of (1) in the interval [0, T,) for some T, > T,,
and this contradicts the definition of 7,. So case (II) is impossible and 1°
is proved.

Now we are going to prove assertion 2°.

Step 3. Under the assumptions of Lemma 2 we shall prove the exist-
ence of ¢ > 0 and T > 0 such that all but finitely many ,(-) are defined
in the interval [0, T] and |z, (¢)|| < & for t € [0, T'].

Let a = f,(0, 0, 0); there is ¢ > 0 such that

lle—fols, t, 2} <1 for each s<<e, t<e, |2 <e.

Since f, = f,, we have |[f,(s, ¢, )< |all+2 for s<e, t1<g |2]|<g,
and for sufficiently large =, say, for n > ny. Let us set K = fla||+2 and
T = ¢/4K. Choosc n, > n, such that [r,|| < te for n > n,. We claim that
for £, K and T chosen above

(2) ,(+) is defined on [0,T] and we have |x,(1)|< e for te[0,T]
and n > n,.

If the claim is true, the proof in Step 3 is finished.
To prove the claim (2) let us write

7, = min{T, sup {i: z,(!) is defined}) for n>n,.
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Of course, |z, (?)]| < ¢ in some interval [0, ?,). Then forn > n,and ¢ € [0, ?,)
¢
(O < rall + [ [IFalsy ¢ @a(s))l|ds < 2o+ K < e
0

This and the continuity of z,(.) shows that
(3) Iz, <e for tef0,7,) and n=>n,.

It remains to prove that r, = T. Condition (3) implies
t2

120 (t) — @, (@) < [ [[Falss 8 20(5))][ A8 < Klta—2s]  for 8y <ty < 7,5
3

L.e., @,(*) is a Lipschitzean function (with the constant K) on the interval
[0, 7,)). Thus there exists the limit of z,(?) at 7,.

Now, if v, < T we obtain a contradiction with the assumption that
@, (%) is unlimited. Thus we have 7, = T, which finishes the proof of (2).

Step 4. Since the constant TI' chosen in Step 3 depends only on ¢
for a fixed K, we obtain as an immediate corollary:

(4) For every ¢ << ¢ there exist T,> 0 and a positive integer n(c) such
that ||z, () < ¢ for te[0,T,] and for n > n(c).

This will be useful in the proof of the uniform convergence of z,( ) to z,(-)
in some right neighbourhood of 0.

Let ¢ < eand T, > 0 be such that f(s, ¢, #) is Lipschitzean with a con-
stant L for s <T,, t < T,, [#[| < ¢ and such that (4) is true. Furthermore,
let 8 > 0 and let n, be such that

Ifn(8,t, 8)—fols, t, )| < 3 and )< 3d for n > n,.
Then

¢
e (8) =26 (01 < Irall+ [[|fa (52, @0 (8)) —fiols, 2, 20(8))]| ds
¢ ¢
ru 14 [ | Fa (858, 20(8)) —fo (8,1, (8| ds + [ [ fols, 2, @al8)) —
0 0

t 1
—fofss ts @ls))[|ds < 38+ [ $ods+ [ Liiw,(s)—wo(s)lds.
0 0

Hence, for n > n,, s <T,, t < T,

t
e, (8) — @, (1) fll:an(s —xo(s)| Lds + 6.
0
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Now, by virtue of the Gronwall inequality, we have
(1
ke (1) — @ (1)l < dexp [ Lds = d6™ <de”.
0

This means (since & is an arbitrary positive number) that
lim (sup ||z, (£) —, (¢)]l) = O
n—>o0 (T,
and consequently the sequence z,(-) converges to z,(-) uniformly on
[0, T.].
Step 5. Clearly, repeating the above argument with regard to the
problem

[
@(t) = 3o(To) + [ fols, 1, @o(s)) ds,
Te

t
To(t) = @ (To) + [ fu (8,1, @, (s))ds  for m =1,2,...
Te

we may prove the uniform convergence of z,(-) to x,(-) on some larger
interval [0, T'] (with T > T,).

Now let t, = sup{t € [0, 1]: x,(s) is defined for s e [0,t]} (this is
to say, #,(-) is an unlimited solution on [0, ?,] or [0, %,)). Further, let
t, =sup{t' €[0,1]: @, =, on [0,t']}. To end the proof of 2° it suffices
to show that ¢, =¢,. To this end, let us suppose, on the contrary, that
t, < t. Then the definition of ¢, implies the existence of the smallest integer,
say my, such that

”mn(t) —mo(t)" < % for t € [0’ ts _%ts] and n > Mg
We now define a sequence {n,} for k > 2 as follows:
n, i3 defined above; for k > 2, n,,, is the smallest of the positive
integers which are greater than n, and such that

1
li,, (8) — o (8) || < T Ll for te [0’

—m t‘] and #» = Ngeg1e

(Such an integer exists again by the definition of #,.) Now let {t } be the
sequence given by the formula

0 for n < n,,
E—1

ty, for mpy<nmn<my,, and k =2,3,

This sequence has the following properties:
t, — t;; more precisely, |, —1,] < 1/k for n > n;

1
1z, (t) — 2o ()] < m for n > n, and ¢ €[0, ¢,].
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We are going to prove that these properties imply the uniform conver-

gence of x,(-) to x,(+) in some right neighbourhood of {,, contrary to the
definition of ;.

To this effect let us denote
V(a, 8, y) = {(31 t,x) e U: |s—1,| < a, [t—1t,| < ﬁ’ ”w"mo(ts)”< 7}

and let us choose a number ¢ > 0 such that f, is Lipschitzean in V (e, ¢, &)
and |[fo(w)ll < M+1 for ue Ve, e,¢), where M = ||fo(ts, s, Zo(ts))||-
Since f, =3 f,, there is a positive integer m such that ||f,(u)| < M +2
and ||f, (%) —fo(u)]| < ¢/8 for u € V (e, e, ) and n > m. Since z,(-) is con-
tinuous, there is a number § > 0 such that é < t,—1?, and ||lz,(s) —x, (%,)|le/8
if |s —¢] < 4. Since f, is continuous, there is a number §, > 0 such that
Ifo(s, 2y @) —fols, &, @) < &/8 if [t—1,| < 8y, [E—1,| < 8;. Then, if n>m,
[t—1g| < 0yy B—15| << 6y, [8—1,| < & and | —=,(%)] < &, we have

Ifn(8s 2, ®) —Fuls, Ev ) < Wfulsy 2y @) —Sols, ¢, @)+
+1fo(8, t, @) —fols, t, z)|+ llfo(s, i; z) —fa(8, t, x) < 3¢/8.
Now, take an integer k such that k™' < £/8 and write

. . &
Ny = mm{m, 'nk}, N = mm{&, 61, '8(.M,—+2)}.

Then the points (¢, ?,, %,(t,)) are in V(z, n, &) for n > n,. Indeed:
25, () — @ (2)1| < |12, () — @ (B) || + 1o (£) — 2o (B) 1 < £/4.

Since #,(-) is unlimited, it is defined in some right neighbourhood of ¢,.
Moreover, there is s,>?, such that the point (s,?,1,(s)) belongs to
V(n,n,e) for s,t e[t,, s,] (by the continuity of z,(-)).

Let us denote by ¢, the supremum of the numbers s, > ¢, such that
#,(8) is defined and (s, t,=,(s)) e V(n,n, ¢) for s,te[t,,s,]. We shall
show that t,, = t,+1.

First, observe that for n > n, and s, ¢ € [¢,, 1,)

¢
B) () — @) < Iz () — @)+ [ |78, 8y @a(9))]]ds +

‘”
'n
+ [ 1Falss by @a(9) —Fulsy tay @a(®))llds < jo+20(M+2)+ie<{ne.
0

In other words, if (s, ¢, z,(s)) € V(n, 5, &), then also (s, t, z,(s)) €
€Vin,n, %3)-

Further, one can see that z,(-) has a limit at ,. So we may put
z,(t,) = limz,(i).
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Now, if we had t, <t, 47, then, by virtue of (5), (t,,t,, 2,(t,)) €
€ V(n,n, ), and since z,(-) is unlimited, it would be defined and remain
in V(n,n, ¢) for arguments right to t,, contrary to the definition of ¢,.
This contradiction implies that #,() are defined on [t,, t,+ 5] for n > n,.
Repeating the argument of Step 4 we can prove the uniform convergence
of z,(-) to z,(+) on the interval [0, {,+4 ¢] for some v > 0, which contra-
dicts the definition of ¢,. This conclusion completes the proof of assertion 2°
and, consequently, of Lemma 2.

LEMMA 3. Let X be a metric space and let X, be a dense subset of X.
Let @ be a non-negative real-valued function defined on X. Further, let

(6) o(fp) =0 of f,—>f for some f in X,.

Then the set A = {f € X: @(f) #* 0} is meager, i.e., is a set of first category
in X.

Proof. Let us define 4, = {feX: ¢(f)>¢}. Then 4 =1J 4,,
n=1

and it suffices to prove that cach A, is nowhere dense. The last condition
is equivalent to the following one: for every ball K, = X there exists a ball
K, « K,suchthat K,nA, = 0. S0, let K, be a ball contained in X. Since X,
is dense, there cxists fe K;nX,. We claim that K, = K(f, 6) for some
0 > 0 has the desired property, i.e., that K, <« K,\ 4,. In other words,
we claim that there exists é > 0 such that ¢(g) < ¢ for every g € K(f, 9).

Indeed, if not, then for each integer n there is a g, € K(f, 1/n) such
that ¢(g,) > ¢, and this contradicts assumption (6).

3. Proof of Theorem 1. Let us recall that F is a Banach space,
U=[0,12xE and X is the set of all continuous functions f: U - E
endowed with the topology of uniform convergence. Let {U,} be a se-
quence of non-empty closed bounded subsets of U such that U,

(-]
intU,,, for » =1,2,... and such that |J U, = U.
n=1

For any f € X we define W, (f) = {(s, ¢, ) € U,: |f(s, t, z) —f(0, 0, 0)]|
< n}. Note that (J W,(f) = U for each fe X. Furthermore, for every

n=l1
feXand n =1,2,... the set W,(f) is a ncighbourhood of 0 in U. Let
us fix fy e X. We shall write W, instead of W,(f,). Let #(-) be a solution
of f for some fe X and write o,(2(+)) = sup{t’' > 0: #(t) is defined and
(8,2, @(s)) € Wpy 0 < 5,8 << ¥} If @,(+), @s(-) ave solutions of equation (1)
for some f,, f,, respectively, we shall write

I, = In(wl(')y mz()) = [Oa min {o'n(ml('))’ Gn(wz())}]
and

Mon, = .‘“u(aﬁ(’)a wz()) = sup{|lz,(t) —x,(¢)l|: t € L,}.
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Let By(fo) = {feX: d(fo,f)<é} (d(-,) stands for the metric
in X). Let

Ts = Ts(fo) = {(=(*),f): z(-) is a solution for fe B,(fy)}.
Let us sef
.“n,a(fo) = sup {:un(wl(')’ wz()) (mz()’fz) €eTy(fy), 4 =1, 2}
and
Vu(fo) = 1i1:180up Pn,s(fo)-

We shall prove some properties of the numbers V,(f,).

(i) If V,(f) =0 for some feX and for n =1,2,..., then there
exists at most one solution of f.

For, let z,(-), 2,(-) be solutions of f, let {, > 0 be such that both
2;(*) and z,(-) are defined on [0,?,]. If s,? [0, ¢,], then there exists
a constant K > 0 such that

lz; (<K and |f(s,t, 5)|<KE for i =1,2.

Thus one can find a positive integer n, such that ||f(s, t, #;(s)) —£(0, 0, 0)||
< 1y and
{(s, 2, z(s)}: 8, €[0,2], llz(s)ll <,‘K} U, fori=1,2.

But then (s, ¢, z;(s)) e W,, for s,te[0,¢] and ¢ =1, 2. Hence [0, t,]
< Jp(#1(7); @2(+)). It follows that ,(s) = @,(s) for se[0,¢?,], since
Pong (%15 Z2) < Vno(f) = 0.

(ii) If V,(f) =0 for some fe X and for n =1,2,..., then there
does exist an unlimited solution of f.

For, let us choose a sequence {f;} = X such that f; — fin X and such

that, for each ¢, f; has an unlimited solution ;(-). (This is possible by
Lemma 1 and Lemma 2.1°.) At first, let us observe that if all but finitely
many «;(-) are defined at the point ¢, > 0 and if there is an integer n,
such that (s, t, z;(s)) € W,, for s, t € [0, ¢,] and for all but finitely many 1,
then {z;(-)} is a Cauchy scquence of functions defined on [0, ¢,]; indeed,
for ¢, j sufficiently great we have

sup {llz; (6) —2; (0)li: t € [0, 4,1} < gy,,6(f)
and g, +(f) >0 as 6—0.

Therefore, U being complete (and so being Wno), there exists a contin-
uous function z: [0, ¢,] - F such that x;(!) converges to z(f) uniformly
on [0, ¢,]. Of course, x(t) is a solution of f. So it remains to prove that

(a) there exists #; > 0 such that all but finitely many x,(-) (hence
also z(-)) are defined on [0, t,];

(b) it J =1J{[0,1]: z;(t) Z2(¢) on [0,¢?]}, then x(-) defined
on J is an unlimited solution of f.
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To prove (a) we can use an argument similar to that applied
in Step 3 of the proof of Lemma 2. For (b), let us consider the four possible
cases.

1. J =[0,1], then «(-) is unlimited by definition.

2. J = [0,1) and #x(?) converges to some x, € F as t > 1; then setting
z(1) = z, we obtain an unlimited solution z: [0,1] > E.

3. J =[0,b) and «(f) has no limit as ¢—>b; again : [0,b) > FE
is unlimited by definition.

4. J =[0,b] with b < 1. This case is impossible. To show this,
we can use an argument similar to that which has helped us to finish the
proof of assertion 2° in Lemma 2, and we shall not do it here.

(iii) If f € X is locally Lipschitzean, then V , (f) =0forn =1,2,...
This is an immediate consequence of Lemma 2.

(iv) If V,(f) = 0 for some f € X and for some integer n, then ¥,(g) - 0
as g —f.

For, suppose, on the contrary, that there exist e > 0 and a sequence
{9;} = X such that ¢g;— f and V,(g;) > &. By virtue of the definition of
V.(g;) there exist functions f, ; and f, ; with solutions #, ; and =, ;, respec-
tively, such that u, (s, .(-), #,(:)) > ¢ for ¢ =1,2,... Further, {f, ;}
and {f; ;} can be chosen so that d(g;, f,;) - 0 and d(g;, f,,;) > 0 as ¢ — oo,
again by the definition of V,(g;). But then d(f, f,;) -0 and d(f, f,;) =0
as 4 — oo, and from the definition of V,(f) it follows that V, (f) > e,
contrary to the assumption that V,_ (f) = 0.

Now we are ready to prove Theorem 1. Let us apply Lemma 3 to
the case where X is the set of all continuous functions f: U — FE with the
metrizable topology of uniform convergence, X, is the set of all locally
Lipschitzean functions fe X and ¢(f) = V,(f) for any integer n. By
virtue of (iii) and (iv), all assumptions of Lemma 3 are satisfied. Therefore
the set T, = {fe X: V,(f) # 0} is a set of first category in X for each

(-]

positive integer n. Hence the set T = |J T, is of first category, too.
n=1

But if f € X\T, then by (i) and (ii) there exists one and only one unlimited
solution of f, which we have had to prove.

4. Remarks. This part will be devoted to the comparison of our
result with the results of Lasota and Yorke [1] and of Vidossich [3].
First of all we quote the main results of these papers.

In their paper [1] Lasota and Yorke proved the following

THEOREM 1. Let B < U be a countable union of compact sets. Let T
be the set of f € X for which there is u, € B such that there exists no unlimited
solution of the equation x' = f(t, ) through u,. In the space X, the set T
i3 meager.
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Here F is a Banach space, U = Rx E and X is the set of all con-
tinuous functions f: U - F with the topology of uniform convergence.
Vidossich’s paper [3] contains the following

THEOREM 2. Let X be a complete metric space and M a set of continuous
maps X — X endowed with any topology fimer than the topology of uniform
convergence on X. Let M, be any subset of M such that

(a) Bvery f € M, has a unique fized point x,;

(b) For every f € My, and every sequence {f,}, in M converging in M
to f, if @, is a fixed point of f, for every m, then limz, = z;.

n

Then there exists a Gy-set M* in M such that M* = M,, every fe M*
has a unique fixed point #; and f +» @, is a continuous map M* — X.

The paper [3] contains also the following useful

CoroOLLARY. Under the assumptions of Theorem 2, if M, is dense in M
and if M is of second category, then “existence, uniqueness and approxima-
tion of fized points by fixed points of members of M” is a generic property
wm M.

(This means, the set of members of M having this property is generic)e

The result of Lasota and Yorke and that of ours are independent
{because they involve different classes of functions), however, the proof
of our theorem follows the proof of Theorem 1 in [1].

From his main theorem, Vidossich obtained the Lasota and Yorke’s
result in some the special case in which the right-hand functions in the
differential equation in question are bounded.

It seems that our result cannot be obtained by Vidossich’s method,
even under the assumption of boundedness.
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