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Abstract. In this paper we consider a difference method for elliptic differential
equation F(x, u, g, wzy) = 0 with Dirichlet’s boundary conditions in an arbitrary
bounded domain within R”. A convergence theorem is proved and the error estimate
is given.

1. Introduction. Let us consider the elliptic differential equation
{1.1) Fe,u, uy, u,) =0,

where z = (21, ..., 2") is a point of the open and bounded subset £ of

space R", u is a function defined in 2, u_ i8 the gradient of « and %, denotes

the » X n symmetric matrix of second order dcrivatives with respect to .
Along with (1.1) we consider the boundary condition

{1.2) u(z) = u(x) for xedQ,

where % is a function defined on 0.

Malec in his paper [2] uses the well-known seven-point scheme where
F'wij are of constant signs (here w,; is the argument of F replaced in the
equation by Uszz,;)- The constant signs of ¥, . does not allow us to consider
e.g. the equation u,, -+ xyu,, +u,, = 0 for (z,y) e (0,1)x(—1,1).

Fitzke [1] has proposed a nine-nodal point difference scheme (for
n = 2), however, because of the assumption adopted, the study does not
even cover the equation u,, - u,,+u,, = 0.

In the papers mentioned above only the cubics n-dimensional and
the square nets are allowed.

A difference scheme on an arbitrary rectangular net but without
mixed derivatives is considered in [3].

There are no restrictions on the sign of Fwij in the method exposed
by Voigt [4]. Yet, the existence of a certain matrix is assumed there that



126 J. Kaczmarczyk

is hard to find (particularly for » > 2) in the case of the non-linear equation.
In the example cited by Voigt, with a Minkowski matrix, also adequate
assumptions are fulfilled, warranting the convergence of the method
in my paper.

Let me recall Professor Szarski in this place. I participated in his

seminar for many years and it was with his discreet support that I worked
in the present paper.

2. Assumptions. Let the functlon F of arguments re 2, zeR,

4= (%) R w=(w)e R™ be of class (" with respect to 2, ¢, w
and satisfy the assumptlons

(2.1) Fw,-]-("”’z’%w) =ij,-(mvzaq’w) (4,5 =1,...,m),
(2.2) F,(z,2,q,w)< —L, L>0

for all #, 2, g, w. Let us assume further that there exists a bounded sym-
metric matrix G(z) = (G7(x)) for # € 2 such that

(2.3) Py (@, 2, ¢, W) <G (@) (4,5 =1,...,m; § #])
and there is a g, € (0, 1] such that

H 1
(24) S 1Fy(@,2, 0, 0)| < Py (07,0, 0)— — > @)
Q =

(z=1,...,m)

for all 2, 2, ¢, w and H > 0 sufficiently small.
It follows from (2.3) and (2.4) that ¥, = (Fwij) is diagonally dominant,
which ensures the ellipticity of (1.1).

3. Examples.

n

(a) It F(z,2,q,w) = 2 a;(2)wy;+b(2, 2, ¢y W11y -0y Wyy), Where

3JJ=

a = (ay) is a symmetric diagonally dominant matrlx and b, > 0, then
we put G¥(z) = |a;(x)|. Since in this case F,, g (8 ;éj) (2.3) is
satisfied. Condition (2 4) remains in the form
H 1 .
o ]bqi(w,z,q,wll, ceey Wpp)| < 0 (@) — — Ia ()] (i =1y.0ym)
Co J#i
since Fy,, = @;+by, > ay.

(b) ]'.f in the general non-lincar case there is a §ymmetric, bounded
matrix A(x) = (A;(z)) such that

(3.1) Fu, (@, 2,0, w) > Au(x), |Fy, (2,2, w)|< |4;5(@)]
(i, =1y .eym5 @ FJ)
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and

62) 0<g<dyle)—= M ldy@) (i =1, m); ee(0,1]

i

then by putting G (x) = | Ay ()| it is simple to verify that assumptions
(2.3) and (2.4) are fulfilled as soon as F,, are bounded (for Fy, = 0, g might
equal 0). If there is a Minkowski matrix which satisfies besides (3.1) other
additional assumptions (see [4]), the condition (3.2) is satisfied as well
and hence (2.3) and (2.4).

4. Discretization. Let [h}]jsz (1 =1,...,n) be a sequence of numbers
such that

(4.1) h = max{suphi} < co, x = min{infhi} >0

1<i<n  jeZ i<isn jeZ

andletusputaf = 0,2}, = ¥4+ hi,,, b = 3(hi,,+h)forjeZ (i =1,...
...y n) (cf. Fig. 1).

x!
hl, hy h h3

Fig. 1. The space intervals ki (for n = 2)

We denote by .# the set of multiindices m = (m,, ..., m,), where

m; € Z and we put z,, = (w},,l, evey Ty ). Let the set of nodal points @, be
denoted by 2.
For z,, e 2 we put
P n
(4.2) Py = U {weR": o, <& <af ;5 ol <o <ad o
1,J=1

ot =ap , k=1,..,m, k #1,j}.
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Weput & = A8 and

H = max{ki: hj = o} —a_,, where o}, ] , are coordinates of nodal

1<izn points in X},
(4.3)
X = min{hi: B} = «} —a}_,, where o}, z;_, are coordinates of
I<ten nodal points in }.

It is obvious that y < X< H k.
We denote by ¢ (0 << ¢<1) the number X/H. For ¢ = 1 we have

the square net.
The nodal point z,, € ¥ is called: (i) internal nodal point when P(=z,)
©Q; (ii) type I boundary nodal point when z,, € 2 and P(z,,) ¢ 2 (there
exists then an 2’ € P(%,,) n 02, such that the segment [z,,, '] is contained
in 2); (iii) type II boundary nodal point when z,, € 6!2
We introduce the sets of multiindices
My = {me.H: x, is an internal point},
My = {meM: z, is a type I boundary point},
My, = {meM: z, is a type II boundary point}
and we put #p = Mp UMy and Mz = MypUMg.
Let us denote for m e .#

t(m) = (Myy ooy My_y, my+1, Mypys ey My)

(4.4) _ (i=1,...,m).
—i(m) = (May eeey My_y, M;—1, My, ooy my,) reen2 ™)
5. Auxiliary lemmas. For m,m e # let us put
d(m, @) = Z(m —m)?, 8, = {meHM: 0<d(m, m)<2).

If me Ay, then §,, c M.

LEMMA 1. Let us assume
g: Ay ~R, n: My R, & Mp—>R, y: #3 >R,
a™: §,, >R for meHy, lyll = max{ly(m)|: me #s}.

If
(6.2) a">=0 for meMy, = P> 0, n<1 10> 0, £< &,

(5.1)

where By, 14, £, are constants and

(63) D am@)yim)—( 3 a™@m)+p(m)y(m)> —nim)

meS,, meS),
for m e My,

(5.4) y(m) < e(m) for me My,
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then
(5.5) y(m) < max{ey, no/fo} for meMs.

The simple proof of Lemma 1 will be omitted.
LEMMA 2. Under the assumplions of Lemma 1 and

(56 D amy(m)—~( 3 a™(m)+pm)y(m) < n(m)

meSy, meSy,
Jor me My,
(5.7) y(m)= —e(m) for me My
we have
(5.8) y(m)>min{—e, —7n/fo} for me.Ms.

The simple proof of Lemma 2 will be omitted. _
From Lemma 1 and Lemma 2, as a simple conclusion, we obtain

LEMMA 3. Under the assumption of Lemma 1 if >0, e>0 and
59 | 3 a@my@—( > a™(@)+B8im)y(m)| < n(m)
meSy, meSy,

for me #y,

(6.10) ly(m)| < e(m) for me Ay,
then
(5.11) Iyl < max{eo, 70/Bo}

6. Difference expressions. For a function y: £ R we put YUm
= y(x,,) and introduce the following difference expressions:

1
(6.1a) (Ym)i = o (yi(m) —Y_itm)s
th‘

1 (Yimy=Ym  Ym—Y—itm) )
(6.1b) (Ym)is =7 ( Mo . ’
1
(6'10) (ym);j- hfn o hg (yi(j(m)) —Yitm) — Yjm) + ym) ’
1
(6.1d) Um)yt = h‘h—fw (Yiom) —Y—itim)) —Ym T Y—im)) 1
i
_ 1
(6.1e) Uy~ = W (Yim) — Ym — Yi(—smy) T Y—somy)»
1+1m;
_ 1
(6.1f) (Ymdg~ = WA (Ym —Y—ttm) — Y=gy + Y=i(—gem))) »
g
(6.1g) Ym)y = 25T+ Wl +Um)s ™+ (Ym)y ]

9 — Annales Polonicl Mathematici XLII
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(cf. Fig. 2),

4li
43‘ -i(J(m)) ] Xj(m) Xi(i(m)
Ax -i(m) Ex m ‘LX itm) -
] -
[ X-1(-itm))

Fig. 2. For simplicity, in Fig. 2 the nodal point z,, is placed at the origin. For example
Yi(jm)) denotes the value of the function y at the nodal point Zi(j(m))

n

eam)  wma = > 6y

1
ity + i Yisomy
(7(m)) hmihtjnj+l (j(m))

=1 h:ni+lhznj+l
t#£j
h;:n"+ 1 hZJlj t( _j(m)) h :.n/; h‘ljnj -1( _j(m))
b, 1 1 ki
§ i My .
— - - Yimy + = Y_; )]+ . - y}
[hin1+1h'1’nj (h:n,-+1 o h:n, o h:ni'l-lhimi h:nj+1 h’:nj "

(cf. Fig. 3),
(Y = ((?/m)u ceey (ym)n)’ Ym)1 = ((ym)ij)'
LEMMA 4. If u is a function of the class C* in Q, then

(6‘2) max l'u’z,- (a"m) - (»um)tl < ﬂl(H) ’ max luz,-:cj (wm) - (/“’m)ijl g. ﬂz(H) ?

1<ig<n 1<i,i<n
meApr meNpy
(6.3) max (%)) < 7s(H),
mE.IIW
where
(6.4) limﬂ,-(H) =0 (¢ =1,2,3).
H—>0

Proof. We shall prove (6.4) for ¢ = 3 only because the proofs for
1 = 1, 2 are easy. For simplicity let us assume that hj = hfori =1,...,n;
j €Z (cf. (4.1)). Then from the symmetry of the matrix ¢ and (6.1h) we
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have
6.5 < Y 6Y 1 '
(6.5) l(un)al < m| o (s emyy + U—igemy) F Yi(—gemy) T U—s(—jmp) —
i<f
1
77 (Wiom) F Yimy + 2 (m)+“—1(m))+
h x/
xx-i(j(M)) ’xj(m) xxi(j(m))
h,{uﬂ
X-itm) Xm Xi(m)
__(L > A -
hr’n, hr’n"‘ﬂ x?
h{r.u'
xx -i(-jan) X0 XX i{~j )

Fig. 3. Let us write 2 in place of hm 15 hm .11, Pm,. Then the Laplacian L +u_,,,
can be approximated w1th the a.uf of the difference expression

Uitm) — LU + U—igm) | Ujtm) — 2%m + U—_j(m)
(h)? (h)? ’

as well as with the aid of the quantity u;(;m)) + %—i(j0m)) + Vi —j(m)) +u_¢(_j(,,,)) — 4u,,
divided by 2h%. In a similar way we obtained formula (6.1h)

Using Taylor polynomials we obtain (because  is a function of the
class C2 in Q):

Ui(jm)) = Ym + Uy ( m)h"["uxj(mm)h'{'%uz,;z, )h2+ sz( m)h-
+%u.’bj$j m)h2+6:j'+(wm)h27

u’i(i(M)) = Up — “‘i(wm) h + uzj- (.’Dm) h +%'u’z iZ; (5(}
- 'u’zia:j (mm) h2 + % ua:ja:j (wm) h2 + 6 ( )h2

(6.6). Uy jmy) = Um T Uz, (Tr) —uzj(wm)h +iuz e (25) B — Uiz, () B+
+ %ua:j:’- ("vm) hz + 6;';- (wm) hz ’

u_ i(—jm)) = Um — ux,- (mm) h— u;cj (wm) h+ éuziz,-(mm) h? +
Uiy (T) I+ F g (T) B+ 05 () B,

Usimy = Y+ U (Ta) B+ F 0050 (2) B + OF (@) 17,
U_im) = Um — U, (@) h+%uz,-zi(mm)h2 + 07 (#,,) 3
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(for all 4,5 =1, ...,m; © # j), where there exists a function §(k) such
that

6.7) 185 ()l < O(R), 1057 (@u)] < 6(R), 185 (@)l < O(R),
105~ @a) | < 8(R), 167 (zm)| < 8(R), 167 ()| < 8(R)
(for all 4,5 =1,...,n; 7 #j and » € #}) and
(6.8) lim 6(h) = 0.
h—0

Putting (6.6) in (6.5) and reducing the expressions, we get

(6.9) ) sl < D) GE6(R)
i<j

Since the matrix G is bounded, there exists a constant I" such that
(6.10) GI<TI formedy (i,j=1,...,m),
whence in (6.9) we have
(6.11) (18,) 4] < 2 6I'6(k) = 3n(n—1)T'6(h).

i<j
By (6.8) from (6.11) we obtain (6.3) and (6.4).
This ends the proof of Lemma 4.

7. Difference problem. Let a function v: £ - R be a solution of
the difference equations system

(7.1) F(wm’ Vs (Vm)1) (’Um)n)‘}‘(’vm)a =0 for me Ay,
(7.2) v, = u(x,) for m e./!Bz,
(7.3) v, = u(x) for me .My,

where z € 92 nP(x,,) (cf. (4.2) and Fig. 4) and [z, 2] < O.

Fig. 4. The point z,, is a type I boundary nodal point and = ¢ 32 is a point such that
the segment [@,, 2] < Q
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Remark 1. Normally the difference equations (7.1) associated with
the differential equation (1.1) could be written in the form

(7.4) F(wm’ Oms (V)1 ('vm)II) =0 for medy.

The term (v,,), in the difference equations (7.1) has appeared because
without it the adequate assumptions of Lemmas 1, 2, 3 (cf. (5.2)) which
we use in the proof of Theorem 1 are not satisfied (cf. Part 8, Convergence).

LevmA 5. If the function F has bounded derivatives F, .  and F,,
1.¢. there are constants g, D such that

(7.5) Fw“(wyzyq"w)<pa \Fo (2,2, g, w)I<g (1=1,...,n)

Jor all z, 2z, q, w, and u is a solution of the differemtial problem (1.1), (1.2)
of the class C* in 2, then

(7'6) F("L'ma um’ (u’m)I) (u’m)II) +('u‘m)4 = ﬂm(H) fOT m e '/[W’

(7.7) Uy, = U(@)+ e, (H) form € Mp

where

(7.8) limy(H) =0, limg(H) =20
H-0 H—0

and

(7.9) n(H) = max |n,(H)|, &(H) = max |e,(H).
medyy mek B,

Proof. From (7.6), (1.1) applying the mean value theorem, we have
(7.10) [, (H)]

= ]F(wm7 Um s (um)Ia (um)II)'l‘ (um)A _'F(a"m: Uy uz(mm)y ua:x(wm))l

< 2 IFqi( N)I I(um)i - ua:i (mm)l + 2 IFw‘j( N)I I(u’m)ij —ua:,-mj(wm)l + I(u’m)A' .

tml 1, j==1

Introdueing (7.5), (2.3) and (6.10) in (7.10) and using (6.2), (6.3),
we obfain

n n

(T11) I (E) < Y gnu(E)+| Y 69(2,)+0D)] 15 (H) +na(H)
t=1 ,j=1
1#J

< ngny (H)+ [I'n(n —1)+nD]n,(H) +74(H)
for m € Ay, whence by (6.4) and (7.9) it follows that

(7.12) limy(H) = 0.
H—0
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Now we shall take into consideration (7.7) and (1.2). We get

(113)  lop(H)] = Ity — (@) = [u(z) —u(@) < 3 I, (~)laty, — 3
=1

for me #p .

Since = € P(z,,) (cf. (4.2) and Fig. 4), by definition H (cf. (4.3)) we
have

(7.14) Dk, — a1 < Vn H,

ja=l

and since the function u is of the class C* in £, there exists a constant
C such that

(7.15) lug (A< C (i =1,...,m).
Introducing (7.14) and (7.15) in (7.13), we infer that

(7.16) lem (H)| < CVn H  for m e My,

whence

(7.17) s(H)< CVn H,

which with (7.13) gives Lemma 5.

Remark 2. The difference problem (7.1), (7.2), (7.3) and the differ-
ential problem (1.1), (1.2) are consistent because (%,,), in the difference
equations (7.6) satisfy the estimates (6.3), (6.4) and #,,(H) in (7.4) satisfy
(7.6).

8. Convergence.

THEOREM 1. We suppose that u is a solution of the class C* in 2 of the
differential problem (1.1), (1.2), v is a solution of the difference equations
system (7.1), (7.2), (7.3), the function F satisfies the assumption specified
in Part 2, Assumption, and the derivatives F, , F,. are bounded. Then

1° the difference method is convergent, i.e.

(81) limllu —v|g = 0,

H—-0
(e=>eq)

where |[yllg = max{|y(m)|: m € A3} and
2° we have the error estimate
(8.2) llu ~vllg < max{e(H), n(H)/L} (e= go)-
Proof. Let us put r = w—v. For m € #5 from (7.7), (1.2),(7.2)
and (7.3) we have
U(r,) —u(z,) =0 for m e My,

Upp — Uy = {’I_J,(-’D)'l‘sm(H)_%—l‘(w) - gm(H) for m E-//IBI,
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(8.3)
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] < len(H) < e(H)  for m e M.

For m € Ay, from (7.6) and (7.1) and from the mean valuc theorem,
applying the definition of the difference expressions and grouping the terms,

we geb

(8.4)

(8.5)

(8.6)

successively:

[F(mmy Uy (Um)1s ('“m)II) F(wm, Vs (V)1 (’vm)II)] +

+ [(%m) s — (Vm) 415

M(H) = Fo(~) Tt D) Fo ()it Y Fup (~) g+ (m)as

=1 2,j=1

Tm(H) = F rm+2 . 2,# (Figm = —om) +

i=1

+ D Fu Ll + it + )™+ )51+

Hi=l
1]
* 1 [r T, 7
F _ i(m?— mo_ 'm — T —1(m) r
" ; e hmg ( h;ns+1 h’ s
2 1
= Fzrm'l' 2 FQ‘Z_ET ( i(m) _r-i(m)) +
=l mi
- 1
+ Z F m,-,-i:[W— (i (semy) — Tiemy — Tjom) + T'm) +
ij=1 m;+1 mj+1
145
1
+ = W W (Tjomy — T —im)) — Tm 7 —iemy) +
my mj
1
Ea TR W (Titm) —T'm —Ti(—jomy) + T=gm)) +
m; mj
1
57 = Tim — o +7—i( )
ms mj
n‘l
b 3 o (e temrim)
i=1 e h:"i h:“i"‘l h:"i

" 1 1
A _ _ N
# 2 O et g e

mj+
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1 1
+ m 7(*3("&)) + h:n‘h;nj "!(—j(TR))) -

[agsgled e el
Wgsr b \ Ry 7 By T

i 7
+ hmihmj ’, }
- - - ’
hi‘;ti+1 h:nihgnj+l hgnj ™

. 1
(8.7)  na(H) = {&(G:!.+F.,,.)—.—.—r,- +
m g i pi i1 hzn-+1 (30m))

+ 3(GY — ) m T—i(jm) T

1
+ i(Gﬁ wij) h hj 1(—j(m)) +

m¢+1"my

1
+3(GE+ F wy) 7537 " h‘ -f(-j(m))} +

v{ w” w,j 1 )_
+t 2 2k, h’ 2. "'2 2hky. 4 hf 5y hz,‘jﬂ
CHERES) i
W1 \ B, h,f,,jH i
1
"’u Wig _ _
+ S‘{2# N +Z[2h‘ ( B W )

™y
)
— - + = r_ —_
2k, \ B, k,’,,J,H fom

_{—F+ Sj h‘ (.1 +h:"l )_

~ P41

S
iy “ii h;,n,+1 mj+1 h hmj+1 h:u{+lhznj
7t pi

i ) D oy }r.
h;n,-hfnj oy mh:n,—l-lht hm_f+lh

From equality (8.7) we shall obtain two inequalities of the form (5.3}
and (5.6), the quantity y(m) being replaced by the error 7, y(m) = 1.
It remains to verify the estimates for the coefficients (5.2).
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For this purpose let us write for m e 4 :

(8.8)
4 1 .
HGn+Fy,) T when 7 = i(j(m)),
m;+1 m_,-+l
. 1 _ o s
m, mj+1
gl _ 1 —
MG —Fop) = when @ = i —j(m)),
mi+1 my
1 .
O+ Fy) =7 T when 7w = —i(—j(m)),
/)
T s Sl e ) -
2h7inq; h:n h’:n,,+1 2h:n ;+1 hfnj h‘ljnj+1
G},’, ( 1 1 )] when 7 ; (m)
e : m =1i(m
2h’m i+1 h'j h7]'lt,+l , ’
—Fq F,. ” 1
i it 7] .
o, T, B +2[2h1 ( B hf;l,.)
G4 ( 1 + 1 ] when 7 — —i
2hm " h:,’nj hz;,j+1 ’ m = —’L(Wb).
We shall prove that
(8.9) a” > 0.

For m = +i(+j(m)) by (1.5) we have |Fwij|<G"", whence GV 4
iFwﬁ > 0; therefore a™(m) > 0. For m = i(m), applying (1.5), (1.6) and
the definitions H, X, ¢, we simply verify that o™ (m) > 0. For m = —1i(m)
we reason analogously and hence obtain finally
(8.10) a”(m)>=0 for meS,.

This ends the proof of (8.9).

Now we write:

(8.11) B(m) = —F, po=1L, n(m)=n,H), n=n(H)
and
(8.12) e(m) = ¢, (H), € =e¢e(H) for me.#g,
y(m) =r, for me sz,
From (8.3)

(8.13) y(m)| = Iyl <e(H) =&, for me.dy
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and from (2.2)
(8.14) m) = —F,>L>0, L=4p, formedy,
and according to (7.9)
(8.15) [n(m)| = [na(H)| < 5(H) = 7,.
It is easy to verify that the expression _2 a™(m)+ B(m) (cf. (8.8),

mesS,
{(8.11)) is equal to the coefficient of r,, in (8.7) (cifu. the last line in formula

(8.7)).
From (8.10), (8.13), (8.14), (8.15) it follows that the assumptions
-of Lemma 3 are satisfied, whence

(8.16) Irlgy < max{e(H), n(H)/L} (e= o),
and hence on the basis of Lemma 5

Iim|u—o|g =0
H—0
(e=ep)

which completes the proof of Theorem 1.
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