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On some theorems on distortion and rotation
in the class of #-symmetrical starlike functions of order a

by RoMUALD ZAwWADZKI (L6dZ)

Introduction. Let S*(k) (¥ =1,2,...) be the family of all functions
of the form

(1) w = f(z) =2+ ch‘)z(ﬂ-—l)k+l
n=2

regular and univalent in the circle = {z: |2| < 1} which map the circle £
onto starlike regions with respect to the point w = 0. Thus the func-
tions of this family satisfy the condition

4 (2)
f(?)

Consider for a fixed a,0 < a << 1 the family 8% (%) of all functions
f(2), 2l <1 of form (1) for which

#f'(2)
f(2)
Such functions are called starlike of order a, (cf. [3]). We have
Sk (k) = 8*(k), 8; (k) = 8" (k).
In this paper we shall make use of the following parametric repre-
sentation of a function f(z) of the family S (k):

(2) Te

>0, =zek.

(3) Te

>a, zek.

(4) f(z) = zexp{—o | log(l—z"-e‘“)dp(t)],

2(1—
where o = —( @)

and x(!) is a certain non-decreasing function of the
variable ¢ in the interval (— oo, oo) satisfying the conditions
(5) pt+0) = pu@), ptt2m)—p@) =1.

If the function f(2)eS%(k), then there exists a function u(t) of the
type described above for which formula (4) holds. Conversely, functions
defined by formula (4) belong to the family S (%) (cf. [3]).
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In the present paper we prove four theorems of the type of theorems
on rotation and distortion in the class S (k). Here we base on a theorem [4]
which we formulate as follows:

THEOREM. Let
(6) P = D(iy, dyy ...y Uy)
be a real function of the arguments @,, i, ..., @y differentiable in a suffi-
ciently large region D and such that grad® == 0. Let

2r

(7 w, = [ gt)du), k=1,2,..,¥,

0

where ¢, (1), 0 <t < 2r are given differentiable and periodical functions with

the period 2w and u(t) €@, G denoting the family of non-decreasing functions

of the variable t defined in the interval (— oo, co) and satisfying conditions (5).
N

Let for arbitrary numbers A,, Z’ |A;] # 0 the function
k=1

N
(8) I IAL
k=1

have in the interval (0, 27> mot more than s roots (ta?cing into account their
multiplicity). Then the funclional

2n 2r
(9) O(u) = ([ p(Odu(®), .-y [ ot du(t))
0 0

attains its extremal values in the interval {0, 2x) in the subclass G, < G,
where G, is the family of those functions u(t) which have not more than

1
q = [Hz_ ] Jumps in the interval 0 < t < 2m.

If the jumps of the extremal function u,(t) are at the points i,
j=1,2,...,q, and

(10) Uy = Zl;i?’z(tj)’
F=1
(11) D=1, 1>0,
j=1

then t; and A; satisfy the system of equations

N
(12) D Bigilt)—2 =0, j=1,2,..,4,
=1 ’

. N
(13) ZBl(p{(ty')=07 i=14L2,...,4q

=1
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where
(14) B, = (p;l(“u Ugy «-vy Uy)

and A i8 a real constant.

1.A. Consider, for an arbitrary fixed z, z¢ FE, the functional
f@"f ()™

z‘n

(1.1) L(f) =

’

in the family 8} (%), where m and » are arbitrary fixed numbers satisfying
the condition m2+ n? + 0. Without any loss of generality we may assume
that 2 =7r, 0 <r<<1. Let

(1.2) T= ”ks T, = (1—2a)'r".
Since
nup =10 10T ) 5
we have '
(1.3)  2logL(f) = 2log! _f_(%{(ﬁ
f f( )

= nlog—— +n1 og—— +mlogf’(r)+mlogf(_r_).

Differentiating function (4) we obtain for z =r

1+ 6 —it
1—Te

(1.4) f'(r) = du(t): exp{ flog(l—Te‘“)dy(t)}.

By (4), (1.2) and (1.4) formula (1.3) becomes

(1.5) 2log L(f) = (m+ n)ou,+ mlogu,+ mlogu,,
where
(1.6) " = fzncpl(t)du(t), 1=1,2,3,
and '
Pilt) = log (l—Te‘“l)(l—-Te“) ’
(1.7) .
wat) = 2TIC0 ) = 0.

1—Te %’
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Findiny the derivatives of functions (1.7) we get
(1.8)
?:T(G“—— e—it)
(1—Te *)(1—Te%)’

—ie *(T,4T)
(L—Te %) °

o1(t) = P3(t) = 23 (1) = (1)

Let A; (I =1,2,3) be arbitrary numbers not vanishing simul-
taneously. Then function (8) has the form

(1.9)

S o T (z—1/z) —i(1ja)(T,+T) , i@(T;+T)
g 4m() =4, (1—Tz)(L—T/=x) s (1—T/x)? 4s (1—Tx)?

where ¢ = ¢“, or the form

. P
(1.10) 2490 = gy

where P(z) is a polynomial of degree s < 4.
Consider the function

(1.11) D(@y, Gy, Hs) = (M4 n)oid,+ mlogi,+ mlogii,

of three variables i,, 4,, #, defined in the cartesian product D, X D, X D,,
where D, denotes the real axis, D, and D, are open planes, #,¢D,, iiyeD,,
flyeDy, ity = %,. We see that function (1.11) and the functional @ (u,,
Uy, Uy), Where u, (I =1,2,3), are defined by formulae (1.6) and (1.7)
satisfy the assumptions of the theorem given in the introduction and by
(1.10) the function x = y,(¢) for which the functional @ (u,, #,, %) attains
its extremal value has not more than

(1.12) q = [8“] =2

2

jumps. Now we shall write explicitely the system of equations (12)-(13).
By (1.12) it takes the form

B1‘P1(t1)+B2Wz(t1)+Bs‘Pa(t1)_}~ =0,
B¢ (ts) +Bapa(t:) +Bags(t,) —4 = 0,

(1‘13) ’ ’ ’
B, (t1) +Bagy (1) +Bsps () =0,
By, (t2) +Bag; (1) +Bagy (1) = 0,
where
0P od m 0P m
1. B, =— = B, =— = — - = —.
(1.14) 1 0y (m+mn)o, 2 Juty '”'a’ B, Jity u
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By (1.12) and (10) we have

%y = A1 (t1) + 2201 (22)
(1.15) Uy = Ai@a(t)+ Aogo(ts),
Uy = A19s(t1) + 2295 (22)
with
(1.16) A+, =1.
It can easin be proved that the function y,(f) has exactly one jump-

point. Denote this point by ¢,. Let f*(2) be the extremal function in
relation to functional (1.1), i.e. such a function that

L(f) = L(f), or L(f*)< L(f)

for each f(z)eS% (k).

Since u,(f) has one jump-point ¢,, the system of equations (1.13)
can be reduced to a system of two equations, where ¢, is the root of the
equation

(1.17) B9, (1) + B3, (1) + By, (1) = 0

with the unknown ¢ to which the greatest value of the functional L(f)
corresponds.
Simultaneously we have

(1.18) Uy = @1(t), U = @a(ty)y, %y = @s(ty)-
By (1.14) and (1.18) equation (1.17) becomes

' mea(t) | mey(2)
. 9 1 t =
(1.19) (m+n)ap, (1) + 72 (0) + 720

Substituting ¢;(t) and ¢;(t) (j =1,2,3) from (1.7) and (1.8) to
equation (1.19) we obtain after some transformations the equation

(1.20)  sint-[20T,T(m- n)cost+ T (m+n)(A+T7)+
+m(T,+T)1+T,T)] =0.

By (1.5), (1.18) and (1.7) we get

14T, )™
Il _Teitll(m+ﬂ)d+m ¢

(1.21) L' = L(f*) =

In our further study we shall distinguish two cases: 1° m+n =0,
2° m+n #0.
In case 1° functional (1.1) takes the form

zf’ (z) m
f(2)

(1.22) L(f) =
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in case 2° it becomes

min m

(&) "f ()"

l—,“

y M=

(1.23) L(f) ‘ !

m+'n,'

In what follows without any loss of generality we may restrict
ourselves to the study of functionals

2f'(2)
2 E —
(.20 =128
and
(1.25) a() = |1? _z’:_f,, =)

and to take into account in the final results their relation to functional
(1.1): L(f) = [E(f)]" in the case m+n =0 and L(f) = [H(f)I"™" if
m+n #0.

Now we shall find the extremal values of functional (1.24). In this
case equation (1.20) takes the form

(1.26) (r+1Y(1+T,T) -sint =0

and the extremal values of functional (1.24) according to formula (1.21)
are given by the equalities
14T, e

(1.27) By (f*) = IT—TT

where {,, t,¢(0, 2n) are the roots of equation (1.26). From (1.26) we have
gin? = 0, so

(1.28) 1 =1 or €2 =—1, 1t and t,¢(0,2x).
Thus we ultimately obtain the following extremal values of func-
tional (1.24):

14T . 1-T
1_1: and E; = Tl

(1.29) B =

Now we proceed to functional (1.25) for which equation (1.20) takes
the form

(1.30)  sint-[20T,Tcost+ oT(14+T5) + p(T,+T)(1 +T,T)] = 0.

To each root {,, 0 < i, < 2n of equation (1.30) there corresponds an
extremal value of functional (1.25) given by the formula

11 4-T',6")"

™.
(1.31) Hs 1— Tg‘l‘slﬂ+ﬂ
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Analysing equation (1.30) we find its solutions and the extremal
values of the corresponding funectional (1.25). Thus we arrive at con-
clusions formulated in the theorem we formulate nexf.

Let, according to formula (1.31),

1—|—T 6ia.l‘ccoaz_.,u

s |1_T6ia.rccosa:s|a+y7

s =1,2,3,

where 2z, =1, z, = —1 and z, is a root of the equation
(1.33)  g(») = 20T, To+oT(14+T)+u(T,+T)(1+T,T) = 0,

where T =7%, T, = (1—2a)T, ¢ = 2(L—a)/k, r = |2|.
Let, moreover,
(1—(—1y-T,]

: =1,2.
kQ41,7) ’ ’

(1.34) a; = a;(r, k, a) =

For fixed r, k, a we denote by I, and J; (I =1, 2,3, 4,5), respec-
tively, the intervals of values of the parameter u:

I: (— 00y —0), (— 0, — ay), (—a;, —ay), {—ay,0), <0, )
for 0 < a< } and

Jy: (— 00, =@, (—ay, —a;), {—a,, —0), {—a,0), {0, )
for }<ea< 1.

THEOREM 1. The following sharp estimations of the functionals E(f)
and H(f) hold in the family Sk(k):

(1.35) E, <E(f)<E
and
Hi<Hf)<H' for puel, ud, ud,,
(1.36) B SH()<H  for pely 0y U Ty,
Hi<H(fy<H; for pel, VI,
H <H()<H, for pely UJy,
where
H' = min[HY, H], H: — max[H?, HY),

ﬁ’: = min[H,, H,, H,], Ii; = max[Hy, Hy, H3].
The equality signs in estimations (1.35) and (1.36) hold on the circum-
ference |2| = r for the functions
z

f:(z) = (l_zkeiarccosxs)o’ § = 1’ 2’ 37

respectively.
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COROLLARY. If f(2)eS*(k), then

(1.37) < 1f(2)] < —1—,
(147 (1—r*)
1—(ok—1)r* ! 1+ (esk—1)7*
(1.38) —(JW" < I (R) < (1_—11,)1_H,’

estimations (1.37) and (1.38) being sharp.

-In particular, hence follow the known estimations of this function
in the class 8* and more general in the class &S.

B. Denote by X(k) the class of functions of the form
2] a ~
(1.39) w="F() =1+ ZZ—::_—I
n=1

regular and univalent in the circle |{| > 1 for { # oo with a single pole
at the point [ = oo and satisfying the condition F({) # 0, zeG, G = {(:
0o > |¢] > 1}. Let Z*(%k) denote the subclass of starlike functions of the
family X'(k) i.e. the subclass of functions mapping the region G onto
a region whose complement to the plane is a starlike region with respect
to the point w = 0. A function F() belongs to the family X*(k) if and
only if
1
fF@/g)
for some function f(z) of the family S*(%).

Functions F(¢) of the family X* (%) are called starlike of order a in
the circle G, if

(1.40) F({) =

o {F'(0)
F(0)

Denote by X (k) the family of functions F () of form (1.39) satisfying
condition (1.41). Obviously F(l)eX* (k) if and only if F(Z) = 1/f(1/¢),
(2) 8% (k).

From Theorem 1 we obtain immediately a theorem on estimation of
the functionals

(1.41)

> a for every (eG.

_|eF)
(}.42) 0(F) = I—__F o
and
B C"“'F’(C)”
(1.43) A(F) = |~ T

in the class X, (k).
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In fact, let

k__ —1)513
1.44 o VB,
- Ty T
and
|9k+ ﬂeiarccoszslu, gﬁ+1
(1.45) 4y = PR §=1,2,3,
where #, =1, z, = —1 and x4 is a root of the equation

(1.46) h(2) = 200" 2+ o (o™ 4 %)+ u(1+ ) (™ +6) =0,

with  =1—2a, ¢ = |{|>1, T =1/¢*. T, = pT.
Let I; and J, (I =1,2,3,4,5) denote the same intervals of values
of the parameter u as in Theorem 1.

THEOREM 2. The following sharp estimations hold in the family Z. (k):

(1.47) 0; < 6(F) < 67,
and .
A; S A(F)< AF for pelg U d, U s,
(1.48) AA;‘<A(F)<41; Jor pel, U J, U Jy,
A< AF)< AF for pel, U I,,
A< AF)K A for pely U dy,
Af = min[ 4}, 431, 4; = max[ 4}, 431,

A% = min[A}, A3, 431, A = max[4}, 4%, 4%].

The equalities in estimations (1.47) and (1.48) occur for the circum-
ference || = o > 1 for functions

(Ck _ e'i arccos ::s)u

Fy = I , §=1,2,3,
respectively.
COROLLARY. If the function F({)eZ:(k), then
k_l -] k+1 a

(1.49) ("—Q,L <1p() < &t
and

1 A
(1.50) =< |F (Ol < —

4, 1

Jor 0<a<l, k=1, Te(0,1) and for < a<l, k=2, T>T,,

: '8 : o +8
o2 Py S =
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for 0<a<, k=2, Te(0,1) and for 1< a<1, k=2 and T<T, with

+1 A+1
e

Qﬂ
[(e"Jrﬂ)(e"—l)"*1 " (eP—B)(F 1)

4} = min

9ﬂ+1
| Qk+ ﬂeia.rccosa:a | . ‘Qk"' e‘im'ccosa:ajra—l )

e Mas of 1
2 = A% [(e"+ﬂ)(e"—1)"“ ' (= B)(F+1)y
gﬂ+1

Iek+ ﬁeia.rccosz3] . ]Qk‘— eiarccosza Ia—] ] ’

3 18 a root of the equation

280 o+ [(0*+ ) — k(o™ +8)] = 0,

k l1—o¢ 1
Tzzk—ﬂ[ -y _%]'

Estimations (1.49) and (1.50) are sharp.

Hence follow in particular the estimations of these functions in the
class X*(k) and in the class X*:

moreover,

—1) 1)%
(L51) =1 15y < “’*g‘ )
and

L 241
(1.52) i<t : .

Equalities in estimations (1.51) and (1.52) occur on the circumference
|¢| = ¢ for functions
(C_ 6@'&.1‘0005:1:,,)2

C ’

respectively, with ¢, =1, 2, = —1, z; = 0.

Fy(¢) =

s=1,2,3,

2.A. Now we shall deal with functional

2.1) w(f) =g T TE g i,

where m and = are arbitrary fixed real numbers satisfying the condi-

n., m
tion m?{n? # 0 and arg M is a singlevalued branch U (z) of the
2

f@)"f ()"

multi-valued function w(z) = arg -
2

, such that U(0) = 0.
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In the same manner as in the preceding section we assume without
any loss of generality that z = r > 0. Since

(2.2) 2iarg f_(t)“riﬂ = logw — log Mr{—mi

———

= mlogf (r)—mlogf (r)+ nlogf(Tr) —nlog 1T

H

then by (4), (1.4) and (1.2) in (2.2) we obtain

(2.3) 2iarg ——f(r)n;il " _ (m-+n)o-u,+ mlogu, —mlogu, = z'\?’(ul,ug, Usg)
where
(2.4) u, = [ 11__11,;2 du(t), 1wy = mlli_?:_—_:dp(t), Uy = 1,
0 0

By (7) we obtain from (2.4)
(2.5)  @.(?) =10gT1:TLf“’ pa(t) = ll_i—l,_;i__u—u, ps(t) = @o(1).

Thus
26 gil)= e D, ) = kD =

Then similarly as in the first section we prove that the extremal
funection u,(t) belongs to the family &,. It has one jump-point; thus
w =¢(t) (1 =1,2,3), t, being the abscissa of the jump-point. This
abscissa is a root of the equation
(2.7) Bl‘P;(t)“l'Bz‘P;(t)'l‘Ba‘P:;(t) =0

in which the coefficients B, (I =1, 2, 3) according to formula (1.4) for
functional (2.3) take the form

1 1 m 1m
(28)  Bi=—(m+n)s, By=-——, By=———.
? 2 Uy T Uy

By equalities ; = ¢,(t,) (I =1, 2, 3) and formulae (2.5), (2.6} and (2.8)
equation (2.7) becomes

(2.9) g(@ =2(m+n)ol,\ T2+ [m(T,+T)(1—T,T)+ oT(m+n)(1+
+T1—21,T))a+ [m(I7—1T°) — (m+n) o T*(1+T7)] =0,

where ¢ = cost.
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To every Toot x,, —1<2,<1 of equation (2.9) there correspond
two extremal values K* a.nd — K"', of functional (2.1), where

T'sin (arccosx,)
1— T cos(arccosz,)

(2.10) K* = [(m+n)o+ m]arctan

T, sin(arccosz,)

arcta
+mare n1+Tlcos(a.rccosmo)

and 0 < arccosz, < =«
In fact by (2.3) and u, = ¢,(f,) we obtain successively

(m+n)c 1—-Teér m . 14T m 1—Teéh

»
K 2 M pom T g ME p g T g M8 T

and
K* = [(m+n)o4m]arg(L—Te")4- marg(1+ T 6~%).

Hence easily (2.10) follows.
Similarly as in the first section we distinguish in our further study
two cases:
1°m+n =0 and 2° m+n #0.
In case 1° functional (2.1) takes the form
(2.11) K(f) = fm[arg z;(())

and in case 2° it becomes

212)  K(f) = (m+n)[argw], P

1-u T m4n’

Thus without any loss of generality in the sequel it sufficient to
study, the functionals

o (%)
. M =
(2.13) (f) = arg @)
and
(2.14) N(f) = arg (&) " f ()

zl—ll

and to taking into account relations (2.1) and (2.11)-(2.12) in the final
results.

Consider now funectional (2.13). In this case equation (2.9) takes
the form

(2.15) g,\(z) =(T,+T)(1—-T,T)a+T;—T* =0, x = cost
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and has always a solution

(2.16) gy = —— 1
' ° 1-T,T

in the interval (—1,1). Thus the extremal values of functional (2.13)
are equal to M; and —M,, where

Tsin(arccosz, T,sin(arccosz,
(2.17) M, = arctan ( ) +arctan — ( %)

1—T cos (arccos,) 14T, cos(arccosa,)

Proceed now to functional (2.14). Equation (2.9) takes now the form
(2.18) g.(2) = 20T, T+ [u(T,+T)(1—T,T)+ T (1+ T1— 27, T)]a+
+ (T —T%)— oT*(1+T3)] = 0.

We have
9:(0) = 4a(l—a)T%[—p—b,],
(2.19) g2(1) = 21— ) T(A—T) (L +Ty) [u+bs],
g2(—1) =2(1—a)T(1+T)(1—T,) [—p—bsl,
where
(2.20) by(r, k,a) = 1%;?, b;(r, k, a) = 1+(_k,1)7'T‘ , j=2,3.

Analysing equation (2.18) we find its solutions and the corresponding
extremal values of functional (2.14) and arrive eventually at the con-
clusions formulated in Theorem 3.

For fixed values of », k, a denote respectively by A,, B,, C, (s =
=1,2,3,4,5) the intervals of values of the parameter u:

A,: (— 00y, — ), (—oy, —by, (—bsy —by), (—b;,0),<0, ), with
0<a<tand 0<T<1,

B,: (—o0, —bg), (—bg —by), (—byy —a), {(—0,0), <0, 00), with

_ ] 1472
0 < —_ R —

}<a<l and 0<T<y2—1 and with }<a<a, ST(1T) and
V2 —1<T<1,

Cg: (—o0, —bg), (—bsy —bs);, {—byy —0), (—0,0), <0, c0) with
e, <a<land V2 —1<T<1.

THEOREM 3. The following sharp estimations of the functionals M (f)
and N(f) hold in the family S:(k):

(2.21) |M ()l < My
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and
IN(f)] < N} for peds v B, U By U C, v C;,
(2.22) V(N < T*N: for ped,,
IN(f)] < N, for ued, A, VB, UB,UC, v,
IN(A)I<N*  for pedy UB, U C,,
with
N = max[N},—N7], ﬁ*=ma.x[N’f,N§, —~N}, — N7,
where
N* — (o-+ p)arotan T'sin(arecosz,) + uarctan T,sin(arccosz,) ’
1—Tcos(arccosz,) 14-T,cos(arccosz,)
s =1,2,

&g m,e<—1, 1> (s =1, 2) are the roots of the equation

(2.23) gs(2) = 20T, To?+ [(p(T\+T)(1—T,T)+ o T(1+ 11— 2T, T)]z+
+ (T} —T?)—eT*(1+17)] = 0.

If ued, U B, U C, equation (2.23) has two different roots z,¢{—1, 1)
(8 =1,2); in the remaining intervals it has one root ;.

In estimations (2.21) and (2.22) equalities hold on the circumference
|2] = r for the functions

. 4 z
f‘(_Z) = . T-T, \o a'nd f: (z) = (1_zkei arc cos:cs)a’ § = 1’ 2.
(1_zkeza.rccos l—TlT)

Taking 4 = 1€4, and then y = 0e¢A; we obtain from Theorem 3
the following
COROLLARY. If f(2) Sk (k), then

T'sin(arccosa,)
1—Tecos(arccosz,)

(2.24) |argf'(2)| < (14 o)arctan

+ arctan T.sin(arccosd,)
14T, cos(arccosz,)
(cf. [4]) and
Tsi
(2.25) arg TP | < sarotan _ Tom(arecoszy)
z 1—Tcos(arccosz,)

estimations (2.24) and (2.25) being sharp.
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In particular from estimations (2.21) and (2.25) we obtain for a = 0
the known estimations in the family S*(k):

o (2) . 2T
ar < 2arctanT = arcsin
’ 5@ 11
(cf. [1]) and
f( ) Tsin(arccosT) 2 .
ST aret 1—Tcos(arccosT) 7 oresinT,

(cf. [2]).

B. Making use of the correspondence between the classes Si(k)
and X (k) we obtain immediately from Theorem 3 the theorem on the
estimation of functionals

)
(2.26) Y(F) = arg 7(0)
and
u+1, B (F\p
(2.27) ¥ (F) = ar, —w

F(C)f‘i‘l

in the class of functions X (k). Let 4,, B,and C, (s = 1,2, 3, 4, 5) denote
the same intervals of the parameter u, as in Theorem 3.

THEOREM 4. In the family of functions X:(k) the following sharp
estimations

(2.28) |P(F)] < Py
hold, where

sin(arccosz, sin(arccosz,
(arccossy) | .o, Psin(arccosa,

Y, — arctan
o k o* + peos(arccosx,) ’

0° — cos(arecosz,)

%, 18 the root of the equation

§1(@) = (B+1) (™ —p)o+2—1 =0

and
|2 (F)| < 27 for ped; U B, U B, L C, L (s,
(229 HEPI<-— 7 for ped,,
() < 21 for ped, v A, VB, VB, U0l UG,
2 (F) <% Jor peds U By, U Oy,
with

7 =max(yi—xil, x" =max[y, 2, — 21 —22)s
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where

sin(arccosz,) gsin(arccosx,)
+ uparctan & ,
—cos(arccosx,) + Bcos(arccosz,)

x; = (0+p)arctan —
e

ﬁ =1—2a, 0 =|l|>1,T=1/c*, T, = AT and x,, v,e{—1,1> (s=1, 2)
are the roots of the equation

(2.30) gu(m) = 2080 22+ [ud* (B+1) (™ — B)+ ao* (2 + B2 —28) 10+
+ [pe™ (B2—1)— o (0™ + 2] = 0.

If ued, v B, U (C,, then equation (2.30) has two different roots
z,e{—1,1) (s = 1,2). In the remaining intervals it has one root z,.

Equalities occur in estimations (2.28) and (2.29) on the circum-
ference || = ¢ for the functions

(Ck ___ ei arc cos :ca)a

¢ ’
From Theorem 4 we obtain for 4 = 0 and 4 = —1 the following
COROLLARY. If F({)e2%(k), then

F(¢)
¢

F(0) =

$§ =0,1,2.

sin(arccosz,)
< sarctan —;

2.31
( ) o* — cos(arccosz,) ’

arg

where x,, xye{—1,1) is a root of the equation

2Be™ a*+ ¢* (¢™ + 2~ 2f)x— (™ + %) =0, @ = cost

and
larg F'($)| < x for 0<a<l and k =1,
(2.32) larg F' ()] < — for 0<a<$ and k> 2,
larg ' ()| < %1 for }<a<1 and k> 2,
where
i =max[y,— 2], x* =maxly, 1, —a1 —xls
sin(arccos sin(arccosz,
% = —(1—o)arctan —; ( %) —arctan kﬂ ( e)
' @ — cos(arccosz,) ¢“+ Beos{arccosz,)

and z,, x,e{—1,1> (8 =1,2) are the roots of the equation
208" w2 — [¢*(B+1) (¢™ — ) — 00® (™ + 2 — 2)Jo— [¢™* (B2 —1) +

+o(e™-+p9]=0
estimations (2.31) and (2.32) being sharp.

In particular for a = 0 we obtain the sharp estimations in the family
Z*(k):

F 1 7
lm_g (C)‘ ' CF (£)

1
— aresin —- ar < 2arctan —.
Qk ) g F(c) ek
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