FASC. 1

ON SUBSPACES OF THE PIXLEY-ROY EXAMPLE

BY

SZYMON PLEWIK (KATOWICE)

Notation. Our set-theoretical and topological terminology is standard. If X is a set, then |X| is the cardinality of X. The set of real numbers is denoted by R. Natural numbers are denoted by n, i, m and k. By λ we denote a cardinal number.

Introduction. Suppose we are given a topological space S. Then by X(S) we denote the space of all finite non-void subsets of S with the topology generated by sets $\langle x, V \rangle = \{y \in X(S) : x \subset y \subset V\}$, where $x \in X(S)$ and V is open in S. The space X(R) was introduced by Pixley and Roy in [6]. Spaces X(S), for $S \subset R$, were considered by Przymusiński and Tall in [8] and [7]. The following facts can be found in the above-quoted papers:

- 1. Sets $\langle x, V \rangle$ form a base for X(S).
- 2. If $S \subset P$, then X(S) is a closed subspace of X(P).
- 3. If S is a T_1 -space, then X(S) is a T_1 -space, sets $\langle x, V \rangle$ are closed, and thus X(S) is completely regular.
 - 4. If S is a first countable T_1 -space, then X(S) is a Moore space.
 - 5. The density of X(S) equals the cardinality of S.
 - 6. If P is metrizable and has cellularity λ , then X(P) has cellularity λ .
- 7. If Martin's Axiom (MA) is assumed, then each subspace Y of X(R), $|Y| < 2^{\aleph_0}$, is perfectly normal.

Metrizable subspaces of X(R). Let $S = \bigcup \{S^k : k = 1, 2, ...\}$ be a subspace of R such that all non-empty open subsets of any S^k (in the relative topology) have cardinality $|S| = \lambda$, and sets S^k are dense and form a partition of S. Take

$$Y(n) = \{y = \{y^1, \ldots, y^n\} : y^1 \in S^1, \ldots, y^n \in S^n\}$$

and

$$Y(S) = \bigcup \{Y(n): n = 1, 2, ...\}.$$

We have $Y(S) \subset X(S) \subset X(R)$, and thus Y(S) is a subspace of X(R).

Let

$$\left\langle y, \frac{1}{m} \right\rangle = \left\langle y, \bigcup \left\{ \left(t - \frac{1}{m}, t + \frac{1}{m}\right) : t \in y \right\} \right\rangle$$

and let

$$\delta(y) = \min\{1, |t-s|: t, s \in y \text{ and } t \neq s\} \quad \text{for any } y \in X(R).$$

The space Y(S) has a σ -discrete base. Such a base for Y(S) consists of elements of families

$$U_{n,m} = \left\{ \left\langle y, \frac{1}{m} \right\rangle \cap Y(S) : y \in Y(n) \text{ and } \delta(y) > \frac{1}{m} \right\}$$
 for $m, n = 1, 2, \ldots$

Each $U_{n,m}$ is discrete in Y(S), since if $z \in Y(S)$ and $|z| \ge n$, i.e. if $z = \{z^1, \ldots, z^n, \ldots\}, z^1 \in S^1, \ldots, z^n \in S^n, \ldots$, then $(\{z^1, \ldots, z^n\}, 1/m) \cap Y(S)$ is the unique set which can belong to $U_{n,m}$ and can intersect any set $(z, V) \cap Y(S)$. If |z| < n, then the open neighbourhood $(z, 1/m) \cap Y(S)$ of z intersects no element of $U_{n,m}$.

Let

$$X(R) = \bigcup \left\{ V_{n,m} = \left\{ y \in X(R) : |\dot{y}| = n \text{ and } \delta(y) > \frac{1}{m} \right\} :$$

$$n, m = 1, 2, \ldots \right\}.$$

Each $V_{n,m}$ is discrete in X(R), since $\langle x, 1/m \rangle \cap V_{n,m}$ can contain only x for any $x \in X(R)$. Thus, by Bing's metrization theorem [3], the subspace Y(S) is a σ -discrete metrizable space of cardinality λ .

Recall that a space is universal in a class U if it belongs to U and each space from U can be embedded in it.

THEOREM 1. Let $\aleph_0 < \lambda \leqslant 2^{\aleph_0}$ and let S be a dense subspace of R such that all non-empty open subsets of S have cardinality λ . Then the space $Y(S) \subset X(S)$ is universal in the class of all σ -discrete metrizable spaces of cardinality (weight) less than or equal to λ .

Proof. Assume that $Z = \bigcup \{Z_n : n = 1, 2, ...\}$ is a σ -discrete metrizable space, where sets Z_n are discrete in Z and form a partition of Z. Let $\{W_z^n : n = 1, 2, ...\}$ denote a base, consisting of closed-open sets, at a point $z \in Z$ such that $W_z^n \subset W_z^{n-1}$. Let $\{V_z^0 = W_z^n : z \in Z_1 \text{ and } n = n(z)\}$ be a discrete family which simultaneously separates points of Z_1 . Take $V_z^m = W_z^{n+m}$ for $z \in Z_1$.

Assume $\{V_z^n\colon n=0,1,\ldots\}$ have been defined for $z\in Z_1\cup\ldots\cup Z_{k-1}$. We define $\{V_z^n\colon n=0,1,\ldots\}$ for $z\in Z_k$. Let

$$V_z^0 = W_z^i \subset U_0^z \cap \ldots \cap U_{k-1}^z$$
 and $V_z^n = W_z^{i+n}$,

where $\{U_0^z: z \in Z_k\}$ is a discrete family which simultaneously separates points of Z_k . Sets U_m^z (m = 1, ..., k-1) are defined in the following manner:

A. If $z \in V_x^1$ for some $x \in Z_m$ (by induction hypotheses, such a point x can be unique for each m provided $z \in V_x^n \setminus V_x^{n-1}$), then let us take $U_m^z = V_x^n \setminus V_x^{n-1}$.

B. If z does not belong to any set V_x^1 for $x \in Z_m$, then — since the family $\{V_x^1: x \in Z_m\}$ is discrete and sets W_y^n are closed-open — there exists a W_z^n which is disjoint with any element of $\{V_x^1: x \in Z_m\}$. Take $W_z^n = U_m^z$.

The family $\{V_x^n : n = 1, 2, ...\}$ is a base for a point $x \in Z$. Let $P(x) = \{y \in Z : x \in V_y^1 \text{ and } x \neq y\}$ for points $z \in Z$. The sets P(x) are finite and there is at most one point $y \in Z_n$ such that $y \in P(x)$ for each n. If $h, g \in P(y)$ and |h| < |g|, then

$$V_{\mathfrak{g}}^{1} \subset U_{|\mathfrak{g}|}^{h} = V_{h}^{i} \setminus V_{h}^{i+1} \subset V_{h}^{1}.$$

Therefore, we can order elements of $P(x) = \{y_1, \ldots, y_n\}$ so that

$$\emptyset = P(y_1) \subset \ldots \subset P(y_n) \subset P(x).$$

Taking Y(n) instead of Z_n , we can define, similarly as above, bases

$$\left\{V_y^n = \left\langle y, \frac{1}{i+n} \right\rangle \cap Y(S) \colon n = 1, 2, \ldots \right\}$$

for points $y \in Y(S)$.

A desired embedding $f: Z \to Y$ will be defined inductively with respect to the cardinality of P(x). Let f be a one-to-one map on the set $\{z \in Z: P(z) = \emptyset\}$ into the set Y(1).

Assume that f has been defined on $\{x \in Z : |P(x)| < n\}$. We define f on $\{x \in Z : |P(x)| = n\}$ in the following way.

If $x \in V_y^i \setminus V_y^{i-1}$, where y is the last element of P(x) in the ordering (0), then we assume that the value f(x) is in the set $Y(n+1) \cap V_{f(y)}^i \setminus V_{f(y)}^{i+1}$ and that $x \neq x'$ implies $f(x) \neq f(x')$. It is possible since S is dense and each S^k contains open non-empty subsets of cardinality λ . Therefore, the set

$$Y(n+1)\cap\left\langle z,\frac{1}{i}\right\rangle \setminus \left\langle z,\frac{1}{i+1}\right\rangle$$

has cardinality λ for any $z \in Y(n)$.

The function $f: Z \to Y$ is one-to-one by definition. To prove that f is an embedding it suffices to verify that $f(V_x^m) = f(Z) \cap V_{f(x)}^m$ for each $x \in Z$ and m = 1, 2, ...

If $y \in V_x^m$, $x \neq y$, i.e. if $y \in V_x^i \setminus V_x^{i+1}$ for some $i \geq m$, then x is a member of P(y). Assume that x has the index k in the ordering (o). We

dorff Moore space is metrizable. For $\aleph_1 < 2^{\aleph_0}$, the consistency of positive answers to (*) and (**) with ZFC can be deduced from Baumgartner's results in [2]. However, we do not know any full solutions, i.e. solutions in ZFC.

Some examples of non-metrizable (normal) subspaces of X(R). Let $S \subset R$ be a set with a countable partition $S = \bigcup \{S^k : k = 0, 1, ...\}$ into dense subsets such that each intersection of every S^k with any interval has cardinality |S|. Let

$$A_i=\{x\subset S^0\cup S^1\cup\ldots\cup S^i\colon |x\cap S^k|\leqslant 1\ \text{for}\ k=1,2,\ldots,i\}$$
 and let

$$A(S) = \bigcup \{A_i : i = 0, 1, ...\}.$$

The space A(S), as a subspace of X(R), has the following properties:

(i) If S is uncountable, then each non-empty open subset of A(S) has cellularity |S|.

Indeed, each basic set, i.e. each set of the form $A(S) \cap \langle x, V \rangle$, where x belongs to some A_i , contains exactly |S| open disjoint sets of the form $\langle x \cup \{t\}, V \rangle \cap A(S)$, where $t \in S^{i+1} \cap V$.

- (ii) If Martin's Axiom holds and $|S| < 2^{\aleph_0}$, then A(S) is normal.
- (iii) Each space A(S) contains a dense metrizable subspace.

To see this let us consider the family

$$\left\{\left\langle x, \frac{1}{n}\right\rangle : x = \{x_1, \ldots, x_{2k}\} \in A_{2k}, \ x_1, \ldots, x_k \in S^0, \ x_{k+1} \in S^1, \ldots, x_{2k} \in S^k \right.$$
 and $n = 1, 2, \ldots$ for each k .

This family has cardinality |S|. Let $\{V_{\gamma}: \gamma < |S|\}$ be its well ordering. For each ordinal $\gamma < |S|$ let $y_{\gamma} = x \cup \{t_{\gamma}\}$, where $t_{\gamma} \in V \cap S^{k+1} \setminus \{t_{\beta}: \beta < \gamma\}$, and let V be such that $V_{\gamma} = \langle x, V \rangle$. Let G_k be the set of all y_{γ} and $G = \bigcup \{G_k: k = 1, 2, \ldots\}$. To see that the subspace G has a σ -discrete base, we proceed as in the case of Y(S). Thus G is metrizable by Bing's metrization theorem [3].

The set G is dense in A(S). Indeed, if $\langle y, V \rangle \cap A(S)$ is an arbitrary non-empty basic open set, then it is possible to add to y a finite set $h \subset V$ such that $y \cup h \in G_k$ for some k.

(iv) If S is uncountable, then A(S) is locally non-metrizable.

For each basic open set $\langle x, V \rangle \cap A(S)$, consider a subset

$$K = \{x \cup z \in \langle x, V \rangle \cap A(S) : z \subset S^{0}\}.$$

It is uncountable, and hence non-separable. K has cellularity \aleph_0 . If not, then there exists an uncountable family U of disjoint open sets of the form $K \cap \langle y, 1/n \rangle$, where |y| = m.

Let $T = \{y \colon K \cap \langle y, 1/n \rangle \in U\}$. We can consider the set T as a subset of the m-dimensional Euclidean space R^m , identifying a point $y = \{y_1, \ldots, y_m\}$ such that $y_1 < \ldots < y_m$ with the vector (y_1, \ldots, y_m) . Since T is uncountable, there exist v and z in T such that $z \neq v$ and $\varrho(z, v) < 1/n$. Consequently, $z \cup v \in K$ and $z \cup v \in \langle z, 1/n \rangle \cap K \cap \langle v, 1/n \rangle$, but this contradicts the fact that elements of U are disjoint. Thus a non-empty open set of A(S) contains a non-separable subset with cellularity \aleph_0 , and hence it cannot be metrizable.

Thus we have given examples of subspaces of X(R) which contradict the normal Moore space conjecture [5] under ZFC+MA+ \neg CH. However, one can obtain examples of such pathological (normal) Moore spaces in other ways, e.g. using methods from [1].

REFERENCES

- [1] K. Alster and T. Przymusiński, Normality and Martin's axiom, Fundamenta Mathematicae 91 (1976), p. 123-131.
- [2] J. Baumgartner, All ℵ₁-dense sets of reals can be isomorphic, ibidem 79 (1973), p. 101-106.
- [3] R. H. Bing, Metrization of topological spaces, Canadian Journal of Mathematics 3 (1951), p. 175-186.
- [4] W. Fleissner, Normal Moore spaces in the constructible universe, Proceedings of the American Mathematical Society 46 (1974), p. 294-298.
- [5] F. B. Jones, Concerning normal and completely normal spaces, Bulletin of the American Mathematical Society 45 (1937), p. 671-677.
- [6] C. Pixley and P. Roy, *Uncompletely Moore spaces*, Proceedings of the Auburn Topology Conference, March 1969, Auburn, Alabama, p. 75-85.
- [7] T. Przymusiński, Dissertation, Warszawa 1974.
- [8] and F. D. Tall, The undecidability of the existence of a non-separable normal Moore space satisfying the countable chain condition, Fundamenta Mathematicae 85 (1974), p. 291-297.
- [9] M. E. Rudin, Pixley-Roy and the Souslin line, preprint.

Recu par la Rédaction le 26.1.1978