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§ 1. Statement of results

Let A be a class of mappings f: [0, 1] «> satisfying the following condi-
tions:

(1) feC?,
(2) f has finitely many critical points,
(3) f has negative Schwarzian derivative

3
Sf=r1"If '—5( f"/f)* <0 outside critical points.

In the present paper, we study the typical (with respect to Lebesgue
measure 4) behaviour of orbits {f"(x)}s>, of a map f eA. The majority of
papers on this subject are devoted to unimodal maps, i.e. maps having one
critical point (see [1], [2] containing further references).

Let w(x) denote the limit set of an orbit {f"(x)}2,. Following Milnor
[3], by an attractor we will mean a compact set A < [0, 1] such that the set
¢(4) = {x: w(x) = A} has positive Lebesgue measure A and, moreover,
A(e(A4)\e(A4") > 0 for any proper closed subset A’ = 4. An attractor is called
indecomposable if it is not the union of strictly smaller attractors, it is minimal

if it does not contain strictly smaller attractors.
p—1

An interval I [0, 1] is periodic if fP(I) = I; in this case |J f*(I) is
k=0

called a cycle of intervals. If additionally the map f?: I +o> is topologically
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transitive (i.e. has a dense orbit), then I is called a transitive (periodic)
interval.

A set X =[O0, 1] is called wandering if f"(X) "X =Q (n=1,2,..). A
map f is conservative if it has no wandering sets of positive measure, and
ergodic if there is no decomposition [0, 1] = X, u X,, where X; are disjoint
invariant sets of positive measure.

Finally, a point x is called recurrent if x ew(x). Now we may formulate
the main results of the present paper.

THEOREM 1. Let feA. Then for ae. x€[0, 1] one of the following
statements holds:

(a) w(x) is a periodic orbit,

(b) w(x) is the cycle of a transitive interval I of period say p. The map
f?. I “> is conservative and ergodic,

(c) w(x) = w(c) for some recurrent critical point c.

Thus, there are attractors of three kinds. By Singer’s theorem (see [1])
each attractor of kind (a) attracts some critical point or endpoint of [0, 1].
Each attractor of kind (b) contains some critical point and does not contain
strictly smaller attractors of kind (c) (the last follows from the proof, see § 2).
So we obtain the following result which provides the answer to some
Milnor’s questions [3]:

CoroLLARY 1. (a) A map f €A with d critical points has at most d+2
indecomposable attractors.

(b) Let f €A be a unimodal map with a critical point ¢ and f: ¢ =1 —0.
Then f has a unique attractor A and w(x) = A for a.e. x.

An interval J < [0, 1] is called a homterval if
(1) the iterates /" have no critical points inside J (neN = {0, 1, 2, ...}),
(2) w(x) is infinite for xeJ.

CoRrOLLARY 2. Suppose that each recurrent critical point of f €A is
periodic. Then

(a) f has no homtervals,

(b) each minimal attractor of f is a cycle of periodic points or a transitive
interval,

(¢) w(x) coincides with some minimal attractor for a.e. x €[0, 1].

THEOREM 2. Let f €A be unimodal with critical point ¢ and let f™(c) # 0
for some n > 0. If f is topologically transitive, then f is ergodic.

COROLLARY 3. Let feA be unimodal with critical point c¢ and let
f™()#0 for some n>0. Then f has at most one absolutely continuous
invariant measure. If f has such a measure u, then the dynamical system (f, p)
is ergodic.
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We make use of the following properties of functions with negative
Schwarzian derivative:

THE FirsT DisTORTION LEMMA. Let @: I —J be a monotone function, S¢
<0. Let Y,, Y, be measurable sets in J such that supY, <y <infY,..Then
™YY )l < Téllﬁgi(fp"()’.-))/l(Yi)-

THE SECOND DISTORTION LEMMA. Let ¢: I —J be a monotone function,
S¢ <0 E, be a measurable set in J, 0 <n < 1. Divide J into two intervals J~
and J* by a.point y€int(J). Then there exists an interval K, = [y, z,] which
is contained in J' for some ye|+1) such that

Ao " (ENK,) _ AENJT)
o 'Ky A

The First Distortion Lemma easily follows from the properties of
functions with negative Schwarzian derivative. The Second Distortion Lem-
ma will be proved in § 4.

In § 2 a preliminary version of Theorem 1 is proved (Lemmas 2,3). The
proof is completed in § 3 (Lemmas 4, 8), except ergodicity in the case (b). The
last property and Theorem 2 are proved in § 4. The main tool there is the
Second Distortion Lemma. We conctlude the paper with some remarks
concerning the general smooth case (§ 5).

(1)

§ 2. A-wandering points and conservativity

By an interval we mean an open, closed or semi-open interval; (x, f) denotes
an (open) interval with endpoints «, f without the assumption that o < .

We say that f is monotone on an interval I if f'(x) # 0 inside I. Let C be
the set of critical points of f; H,(x) be the maximal closed interval contain-
ing x on which f" is monotone Put M,(x) = f"(H,(x)). The endpoints of

M, (x) belong to the set U fX(Cu !0, 1)). Let r,(x) be the distance from

f"(x) to the nearest end-pomt of the interval M (x) ThlS function will play a
crucial role.below.

A point x is called wandering if it has a wandering neighbourhood. The
set of nonwandering points is denoted by Q. The structure of Q for an
arbitrary continuous map of the interval is described in [4]. This description
implies

LEMMA 1. Let fe€eA. Then

(@) int(2) is the union of all minimal transitive intervals I,
(b) int(I,) Nint(I;) = @ (k # j) and each orb(l,) contains a critical point,
(c) for any interval J < orb(l,) there exists N such that f¥(J) =1I,.
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The last property means that the map f?: I, <> is mixing (Where p is
the period of the interval I,).

A point x will be called A-wandering if any neighbourhood of x contains
a wandering set of positive measure. Let W, denote the set of i-wandering
points and €, be its complement. It is clear that W, is closed and
xeW,\f(Cu |0, 1)) implies f~!(x) eW,.

LEMMA 2. (a) 2, is the union of the interiors (in the intrinsic topology of
[0, 1]) of some transitive intervals,

(b) the map f: Q, > is conservative,

(c) the limit set w(x) for a.e. x€Q, coincides with the cycle of the
transitive interval containing x.

Proof. It is clear that Q, — int(Q2). Let I be a transitive interval of period
p—1
p, L= {) f*(I). Suppose that L contains a wandering set X of positive
k=0
measure. Let x be a density point of X which does not belong to

Ul fM(Cu {0, 1}). Then x and all its preimages are A-wandering. Since the

set of preimages is dense in L (Lemma 1), we obtain L < W, and (a), (b)
follow.

p—1
Let L= (J f*(/) be the cycle of transitive intervals such that
k=0

int(I) = Q,. Consider an open interval J — L and the invariant compact set
K=L\U f~"(J). By Lemma 1 the set K is nowhere dense. Suppose that
n=0

A(K) > 0. ‘Consider any interval Rc L\K. Lemma 1 implies that
A(f"(R)nK)>0 for some n. Choose minimal such n and put S

n-1
= RN f"(K). It is easy to see that the set T =S\ {J f~!(S) wanders and
i=1

has positive measure. This contradicts the conservativity of f: L «>. Hence
A(K) = 0. To finish the proof consider a countable base of intervals J, and
the corresponding sets K;,. We have A(JK,)=0 and w(x)=L for

x €[0, 1]\(U Ky).
LEMMA 3 (cf. [S]). For a.e. x €[0, 1] one of the following statements holds:

(@) ry(x) =0 (n —00);
(b) f¥(x)eQ, for some N.

Proof. Fix ¢ >0 and 0 < g <e&. By V(a) denote the complement to the
a-neighbourhood of 2,. Divide V(¢—g) into intervals J, such that A(J,)
< /2. Each J; contains a wandering set S, of positive measure. Let ¢
= min A(S,).

k
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Now consider the set
X,=X,(e, 0= x: ff(x)eV(e), r.(x) = ¢

Connected components X, ; of X, are intervals of the form X, N H, ;, where
H, ; are maximal intervals on which f" is monotone. The interval f "X, ) 18
contamed in M, ; = f"(H, ;) and the length of each component I} ; (y = +1)
of M, ;\f"(X,;) is at least go. Hence each I} ; contains some interval J, = J, ;
and the corresponding set S, =S} ;, where k = k(n, j, 7). Let /" M, ; = H,;
be the branch of the inverse function. The First Distortion Lemma implies

A X)) <max—(——_"(—s’)—)
r=1%1 o

Summation over j and n gives

Z A(X) < Z Z A(f"(54)-

kn—

Since S, wanders, the last sum us finite. By Borel-Cantelli lemma,
A{x|3n > 0: xeX,}=0.
Hence for a.e. x the following property is valid:

Property P. If n, —oo and infdist(f™(x), 2,) >0, then r,(x) =0
(k = 00).

It remains to check that if x satisﬁe_s Property P and dist (f L (x), 2,) -0
for some sequence I, = oo but f"(x)¢€2; (neN), then r,(x) =0 (k = o0).
The set- 0(R,) Nw(x) = R, Nnw(x) is finite and invariant. Hence, the

problem reduces to the case when f u (x) tends to a periodic point a €3(£2,).
To complete the proof it remains to make a simple analysis of different cases
(a is attracting, neutral, repelling). It will be omitted.

§ 3. Asymptotic behavior of orbits for which r,(x) =0 (n — o)

Results of this section preceding Lemma 8 concern an arbitrary smooth
piecewise monotone map f: [0, 1] «>. Now we introduce notation which
we use up to the end of the section. For a critical point ceC let [¢~, c],
[c, c*] denote maximal intervals (maybe degenerate) on which all iterates /™
are monotone. By ¢” for ye {11} we denote one of the points c¢*, ¢~. Note
that w(c) = w(c*) = w(c).

Let C(x) be the set of c eC with the following property: for any ¢ > 0
there exist n,teN (t <n) such that ¢ is an endpoint of the interval
f"*(H,(x)) and |f"(x)~ f*(c)| <e. If, moreover, c is the right-hand endpoint
of f""*(H,(x)), then we set ¢~ eC™ (x). Similarly we define the set C* (x).
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Let g > 0. The;l p(P) denotes the least p for which f? has a critical point
d’(c) in each interval (c’, ¢"+yB); 6 = 6(B) is some number for which the
interval I’(c, B, 8) = (c"+7d, ¢’ +7y(B—9)) also contains d’(c). Finally,

e(f) = min {A(f*(I(c, B, 9)): k=0,...,p(B)—1, c’eC* (x)uC‘(x)}.

LEMMA 4. Let r,(x) =0 (n = o0). Then one of the following statements
holds:

(@ xe10,1ju U f7"(0),
n=0
(b) x belongs to a homterval with endpoints from the set
0. 130 U £7(C)

(c) the orbit of x tends to an attracting or neutral cycle,
(d) each point c* e C?(x) belongs to w(x); in this case if ¢ # c?, then [c, ¢”]
is a homterval. :

Proof. Let >0, ¢’eC”(x) and assume for definiteness y = —1. Find
n,t€N (¢t <n) such that ¢ is the right-hand endpoint of f"~*(H,(x)) and
Lf"(x)—f*(c)) <e(B). If f*"*(x) = c~, one of the cases (a){c) holds.

Assume that " ‘(x) <c¢~ and show that

2 S"Hx) > e =B

If t < p(P), then the inequality |f*(c)— f*(c” —B)| = €(B) implies (2). If ¢
= p(p) the function f* is not monotone on the interval (¢~ — f, ¢). Since it is
monotone on the interval [ f" *(x), c], we obtain (2) again. Since B > 0 is
arbitrary, ¢~ ew(x). .

It remains to note that [c¢~, c] is not a homterval only in the case when
¢~ is a neutral periodic point and {f"(x)} tends to its cycle. Then the case (c)
takes place.

Let X be the set of x such that r,(x) =0 (n = c0) but x does not satisfy
conditions (a){c) of Lemma 4. For a finite set S = [0, 1] denote by S, the
set of maximal elements of S with respect to the following quasiordering: x
<y if o(x) c w(y). Put 0(S) =) o(x).

xeS

LemMA 5. If x€X, then w(x) = o(C, (x)) = o(C; (x) U Cy (x)).

Proof. It is easy to see that the definitions of X and C(x) and the
finiteness of the set of critical points of f imply that w(x) = w(C(x) U {0, 1}).
If we cannot remove some ae{0,1} from the right-hand side -of the
inclusion, then a is the endpoint of H,(x) for all neN. Then either x = a or
the orbit of x tends to a cycle, or [a, x] is a homterval. All the possibilities
are excluded for xeX. Thus w(x) € w(C(x)) = w(C, (x)).

On the other hand, by Lemma 4 w(C; (x) U C, (x)) = w(x). It remains
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to remark that w(C,(x))=w(C; (x)u C, (x)) since w(c)=w(")=w(c")
for any ceC.

LemMma 6. Let xeX. Then any point c'€Cl(x) is recurrent.

Proof. Lemmas 4-5 imply that ¢’ ew(b) for some beC(x). Hence w(c)
= w(c’) < w(b). Since ¢ is a maximal element of the ordered set C(x), we
.have w(c’) = w(b). Consequently ¢’ ew(c?).

There exist a number ¢ > 0 and a function o(x) > 0 (x€X) with the
following properties:

Property A. If b, ceC and 0 <|f"(c)—b?| <o then b’ ew(c).

Property B. "Let x €X, ceC, t < n. Let c be the right-hand endpoint of the
mterval f*"(H,(x)) and | f (x)=f*(c)] <a(x). Then ¢~ €C~ (x) (correspondin-
gly c* eC™ (x)).

LeMMA 7. Let xeX. Then w(x) = w(c) for each c€C,(x).

Proof. Fix ¢"e€C}(x). To be definite, let y = +1. Let 0 <a <d(p) =9,
a(|fl+1) < g, where ||-|| denotes the supnorm. There exists k €NV such that
f¥(x)e(c*, ¢* +a) and r,(x) < min(a, €(g), 6(x)) for n > k. Let us show that
dist (f**/(x), w(c)) <a for jeN (where dist(y, Y) =inf{ly—z|: zeY}). Sup-
pose that this is not the case and let j be the least natural number for which
the reverse inequality holds. Note that j >0 since dist(f k(x), w(c) <
f¥(x)~c* <a.

For appropriate t < k+j one endpoint b of the interval f**/~*(H, . ;(x))
is a critical point and |f**i(x)— f*(b)| —r,‘ﬂ(x) Let sgn(f**/~*(x)—b) = y.
Then b?¢ w(c). Indeed, otherwise

dist (f**/(x), @ (0)) < |f*T(X) = (b < 14 j(%) <.

This contradicts the choice of j.

Further, since |f**/(x)~ f*(b)| = ry+j(x) < o(x), we have b? eC?(x) (Pro-
perty B). Let us show that c*¢w(b). Indeed, otherwise w(c) < w(b). Since
ceC,(x) we obtain w(c) = w(b) and b eC) (x). By Lemma 6 the point b’ is
recurrent and hence b’ ew(c). This is a contradiction.

" Now consider 3 cases.

(1) Let t =0. Then
dist (b, w(c)) < [b—f**i (x)|+dist (f* I (x), w(c))
< e )+ N dist (f*H71 (%), 0() < a+||f la <o,

and hence b’ ew(c) (Property A). We obtain a contradiction.
(2) Let O0<t<j. We have dist(f**/7'(x),w(c))<a<é and
dist (", w(c)) = ¢ (by Property A). Consequently, K =[f**"!(x), b] o

28 — Banach Center t. 23
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[b”+7y(e—9), b]. Since f* is monotone on K, we obtain t < p(J) and hence
A(f'(K)) = €(0). This contradicts the fact that A(f*(K)) =r,.;(x) <e(o).

(3) Let t>j. Set »=t—j and consider the interval J = f*(K)
= [f*(x), f*(b)]. Since f7 is monotone on J and j > 0, we have f*(b) > c. If
f*()e[c, c*] =L, then w(b) = w(L)>c* which contradicts what has been
proved above. Consequently, f*(b) = c¢* + 0. Besides f*(x) <c* +4, and hen-
ce J o [c* +4, ct +¢0]. Using the monotonicity of f/|J once more, we obtain
that j < p(g). Hence, r,+;(x) = 2(f7(J)) = ¢(¢) and we obtain a contradiction
again.

LEMMA 8. Let feA, xeX. Then w(x) = w(c) for some recurrent point
ceC.

Proof. Let b’ eCl, (x). We may assume that y = —1. By Lemmas 6-7
w(x) =w((®™)3b™. If b~ =b then b is the required critical point. In what
follows we assume that b~ <b. Let I' be the family of homtervals J such
that one of the endpoints of each J is a critical point and w(J) = w(x). We
have [b~, b] er.

There exists a family 4 of maximal homtervals such that

(1) endpoints of a homterval K €4 do not belong to {0, 1} U U f(C),

(2 if f"(K)=f"(J) for some K, Jed, n,meN, then K = J
(3) for each Jer there exist K €4 and s(J) such that f*9)(J) = K,
(4) each homterval K €4 contains some homterval f*“’(J), where J eI

Set s=max{s(J): Jel'}, p=min{A(f'V)): Jel,i=0,1,...,s—1}
For any homterval J, the symbols H,(J), M,(J), 6(J), C(J), etc. are meaning-
ful. Let 0 = min {0 (K): K €4}. We have ¢ > 0. Denote by M,/ (J), M (J) the
right-hand and the left-hand components of M,(J)\f"(J) and let H, (J),
H,(J) be the corresponding components of H,(J)\J (ie. f"(H, (J))
= M, (J))

Define the set S = N as follows: n€S if for some K, €4 the homterval
[u,, v.] = f"(K,) is nearer to b~ than all homtervals f(K) (Ked,i
=0,...,n—1). The homterval K, is uniquely determined in view of the
Property (2) of the family 4. Since w[b~, b]2b~, homtervals f*(K,) accumu-
late to b~. Besides they are contained in the left-hand semi-neighbourhood of

1
b~ (in view of property (1) of 4). Let a = Emin(g, é, u, b—b~) and homter-

vals f"(K,) are contained in the left-hand a-semi-neighbourhood of b~.
Let M, (K,) =[f™(a,), f"(cy)], where a,, c,€C, t,, t, < n. Consider two
cases.

(1) f™(c,) <b™ +a for some n> N. Then |f™(c)—b"| <a <g/2 and
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hence w(c,) > w(b™) = o (x) (Property A). Besides A(M; (K,)) =f"(c,)— v,
<20 <o and hence c,eC’(K,) for some y (Property B). By Lemma 4
cew(K,) = w(x). Thus, ciew(c,) = w(x). If ¢} =c,, then ¢, is the required
critical point.

Let ¢’ # c,. Then J, = [cl, c,]€I. If t, <s then f™(c,) = v,+A(f"(J.))
> b~ —a+u > b~ +a which contradicts the assumption. Hence t, = s. Then

f'*(J,) = f"(L,), where L, €A, I, =t,—s(J,) <n. The homterval f"(L,) lies to
the right of f"(K,), to the left of b (since f "(c,) <b~ +a <b, and does not

intersect [b~, b] (Property 1 of the family 4). Hence f "'(L,,) is nearer to b~
than f"(K,). This is a contradiction.

(2 f"(c) = b~ +a for all neS, n> N. Then A(M; (K,)) > a. Besides
A(HZE (K,)) =0, A(f"(K,)) =0 and minA(K,) > 0. So

AM; (K)A(f"(KD) > A(H (K))A(K,)

for large n. It follows from the First Distortion Lemma that
3) A(M; (K)VA(S"(K) < A(Hy (K)YAK,) =0 ~ (n—o0).
Hence
uy— f ™(a) = A(M; (K,)) <a <
for large n. Besides u, > b~ —a. Hence
b™ > f"a)>b" —2x>b" —p.
These properties imply (as in the case 1) that
aew(a,) =w(x) for some y.
If a} = a, for some n, then a, is the required critical point.
Suppose that a) # a, for all neS, n> N. Then I, = [a,, a}] el'. The set
of homtervals I, is finite and f™(I,) = M, (K,). Hence
A(f"U) S ralK) >0
and we have 1, = 0.
Let U,=f s (I,), V,€4 be the maximal homterval containing U,, m,

= 1,—s(l,). Intervals -U,, ¥, have a common endpoint f’u"’ (a}) since this
point belongs to w(x). Hence V,<U,uH, (U,). We have M, (U,
> M, (K,) and therefore A(M,, (U,) > a. Besides, 4(H,, (U,)) =0 since m,
=1,—5 2. So

A(M5 (UYA(S™ U = A(Ho (U))AU,).
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The First Distortion Lemma implies
AMe, (UVA(f™U) < A(Hn, (UJYA(U,) < D.
Since f™(V,) M;:"('U,,)u U,, we obtain
A(™V)) < (D+1)-A(F™UY) < (D+1)-A(M; (K))).
The last inequality and (3) imply

) AT VIVA(SM(KD) 20 (n— o).
Let | be the element of the set S preceding n. Let us show that
5) A(fHKD) <A(fM(KD).

Indeed, if ] =m, and K, = V, then (4) implies (5). Otherwise the homterval

fY(K,) is placed between the homtervals f "(V,) and f"(K,). Hence,
fYK) = M, (K,) and (3) implies (5). :

Thus, the sequence {A(f"(K,))}.s increases, which is impossible. The
Lemma is proved.

§ 4. Ergodicity

The main technical tool in this Section is the Second Distortion Lemma.
Now we prove it.

LeMMA 9. Consider two mass systems m, and M, concentrated in points y,
and Y, correspondingly (k =1, 2, ..., n). Let ¢ be the centre of gravity of the
first system, C, be the centre of gravity of the first | masses of the second
system. Assume that Y, =y, and M,.,/M, = m,/m,. Then there exists |
such that C, = c.

Proof. Suppose that the sequence {y,}r-, is decreasing. Then y, > ¢ and
we may set [ = 1. If this is not the case, there exists k such that y,,.; = y..
Replace the pair of masses m,, m, ., by the mass m = m,+m,,, concentrated
in the centre of gravity y = (my y, +my 4 1 Y+ 1)/(me +my 4 ;). Similarly proceed
with M,, M,,,. We obtain two systems of (n—1) masses satisfying the
conditions of the lemma. Induction completes the proof.

Proof of the Second Distortion Lemma. From the well-known properties
of functions with negative Schwarzian derivative it follows that the function
(¢~ )| is monotone on some interval J'. Observe now that inequality (1) is
invariant under affine transformations of I, J. Therefore we may assume that
y=0 J'=¢ '(JY=[0,1] and E is contained in [0, 1]. Let g = A(E), ¥
= ¢ 1: [0, 1] «>. Then (1) takes the form

MY (ENK)

© Ay (K) =
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Divide [0, 1] into intervals Ji, ..., J, such that [y’ (x)l/ly'(y) = n for
x, yeJ,. Let E, = EnJ,. There exists & €J, for which

AW (IY) =W (&€l
Let [y (&) = My, A(J,) = 4. Then we have

l
(7) A-('/’(kgl Jk)) = Z Mk}*k-

But A(y(E)) = fl*/l (2)ldz 2> nM, A(Ey). Putting A(E,) = pA(E) = g we

obtain

1
(®) '1('/’("(__) Ek)) 2 nq Z M, p.

Observe that

) Zlk=1=im-

Now make use of Lemma 9 for m, =1 and M, concentrated in y,
=Y, =m—4 (k=1,..., n). The conditions of Lemma 9 are valid since the
sequence {M,};-, increases. By (9) we have ¢ = 0. Hence there exists I for
which

I
(10) 1;1 M, (—%4) 20

It follows from (7), (8), (10) that

AW (U B> madv (U 5

3
The interval K, = (J J; is the required.
k=1

LeEMMA 10. Let L be the cycle of a transitive interval. Suppose that a map
f: L*> is not ergodic. Then r,(x) =0 (n = ©) for ae. xeL.

Proof. Let L =X, U X, be a partition of L into two invariant sets of
positive measure. Then A(X,; nJ) > 0 for any interval J. Indeed, otherwise
AMX;nf"(J))=0for neN and by Lemma 1 A(X,;) = 0. Consequently, 4, (¢)
=infA(X; nJ) > 0, where the infimum is taken over all intervals J < [0, 1]
of length e. '

Consider the set Y = {x: limr,(x) >0}. Let xeY. Then rn, > ¢ for

appropriate ¢ >0, n, »co. Apply to f'*: H, (x) > M, (x) the Second



438 ATTRACTORS OF MAPS OF THE INTERVAL

Distortion Lemma. We obtain that for some interval K; H,,j (x) for which x
is one of the endpoints, the following estimate holds:

AK;nX,) S 14, ()
MK) ~2 ¢ °
Since a transitive interval does not contain a homterval,

AK) < A(Hy(0) 20 (- o).

Hence, the upper density of X, at x

— (X —
(i.e. lim X, 7 [ng & x+8])> is positive.
e—0

Consequently, x is not a density point of X,. By the Lebesgue Theorem
AMYnX,)=0. ‘

Interchanging the roles of X; and X, we obtain A(Y n X,) = 0. Hence
A(Y) =0, and the lemma is proved.

Now the proof of Theorem 1 is completed and we pass to the proof of
Theorem 2.

From here on we assume that f €4 is a unimodal map with a maximum
point ¢, ™ (c) # 0 for some n > 0. Without loss of generality we may assume
that f: ¢ > 1 -0 (see [1]). Denote this class of maps by D.

There exists a point y € (¢, 1] such that f(y) = f(0). Define an involution
7: [0,y] «> as follows: t(x)=x', where f(x)= f(x). The property
f™(c) # 0 implies that t is smooth. For b€[0, y] put U, = (b, b).

LEMMA 11. Let f€©O be mixing. Suppose that the orbit of a point x
intersects a neighbourhood U,. Let n be the first moment for which f"(x) eU,.
Then M,(x) o U,.

Proof. Let x divide H,(x) into intervals H; and H,, ¢ divide U, into
Uy and U, . Then for every u= +1 and appropriate ye{+1}, I <n we
have

S{(HY) = [e, f1(9] > U}

If f"'c)eU,, then f"!([c,f'(x)])=U, and hence f" U, =
f""Y(U) < U,. But this is impossible for a mixing map.

A set will be called symmetric if it is t-invariant. Theorem 2 is the
immediate consequence of the following:

LeEmMMA 12. Let a map f: [0, 1] = be transitive. Let a set X < [0, 1] of
positive measure A be f-invariant and symmetric in a neighbourhood of the
critical point c¢. Then c is a density point of X. '
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Proof. By Lemma 1 we may assume that f is mixing. Using the results of
[6], or [7], or [8], or theorem 1 of the present paper we obtain that w(x) 3¢
for a.e. x€[0, 1]. Fix some density point x€X of X for which w(x)>c. Put
Y =[0, 1]\X and for an interval J = (a, b) denote by

e(a, b) = e(J) = A(Y nJ)/A(J)

the density of Y in J. Consider two cases.
(1) The lower density of Y at c is positive:

limg(c—b, c+b) > 0.

b —c

Since 7 is smooth and X is symmetric, we have g(U,) = ¢ > 0 for all b # c.
Let f"(x)€(0,7), m+,; be the first moment in which the orbit
S " (X)}a m +1 intersects the neighbourhood U, = Uf,,k( ); let x, be that one

of points f™(x), 7(f™(x)) which lies to the left of c.

Since U, = U (U;\U,4+,), the inequality Q(Ukj\Ukj+l) = ¢ > 0 holds for
i=k
some sequence k; = co. Since 7 is smooth and X is symmetric, we obtain
Q(xkj’ xkjﬂ) > L—IQ(Ukj\Uij) =& >0,
where L is the Lipschitz constant for t, ¢; = eL™!. Besides, the estimate

(Xk, Xi+1) = min(o(xi, ©), @(c, Xi+1)) =& >0
is valid for all k e N. Thus, in both intervals into which Xkj 4 q divides Ukj, the
density of Y is at least ¢;.

Put ¥, = f "™(U)nH, (x). By Lemma 11, f™ monotonically maps V;
onto U,. Using the Second Distortion Lemma we obtain that in some semi-
neighbourhood of x which is contained in V,, the density of Y is at least &,/2.
Since f has no homtervals, 1(¥;) —0. Thus, the set Y = [0, 1]\ X has positive

upper density at x. We have a contradiction.
(2) The lower density of Y at c is equal to zero:

limg(c—b, c+b) = 0.

b —c
If the conclusion of lemma is not true then

limo(c—b, c+b) > 0.

b —c
Using the symmetry of X and smoothness of © we find sequences {a,}, {b,}
satisfying

(11) bk € (ak’ C), Q -,
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(12 Co(a,0)=e, o(a,c)=e>0,
(13) 0(by, €) <0y, 0(by, ©) <&, where 6, —0,
(14) e(Uy) <eo(U,) for deU,\U,,.

Let n = n, be the first moment in which f"(x) eU,,. Put x, = f™(x). Repla-
cing if necessary g, b, by a;, b, we may assume that x, €(a,, c). We have

A(Y n(e, a;))
Y =
Q(xk’ ak) ' Iak_ail 1+L

W) > 7 >0

To estimate the density of Y in (a,, x;) consider two cases.

@ x.€(a, by). By (14) o(U,) < o(U,,) and hence

é((xka ak) Ut(xk’ ak)) = Q(Uak_ ka) 2 Q(Uak) 2¢

Using the smoothness of 7 and symmetry of X once more, we obtain
Q(xks ak) ? L—ls

(b) x, €(by, ¢). Then

A(Y A\ (g, ©) = A(Y A (@y, b))+ A(Y O (by, ©)) < [be— @yl + 85 [c— by
Therefore
by — al

ESQ(aln c)S k

la, — |
and hence

I3
|by—ay| = ’2'|C—ak|

for sufficiently large k.
Finally, we obtain

58 A ((a,,, bk) N Y) 3 82
ha b) > —

(the last estimate follows from (14)).

Thus, in both cases (a), (b) densities g(ay, X;) and g(x;, a;) are separated
from zero. Now using the Second Distortion Lemma and Lemma 11 as in
the case 1, we obtain that upper density of Y at x is positive. We have a
contradiction again. The proof is now completed.

Proof of Corollary 3. Using results of [4], absence of homtervals [6] and
Theorem 1, we see that for the unique attractor 4 of f one of the following
statements holds:
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(a) A is a cycle,

(b) A is contained in a cycle of transitive intervals;

(c) A is a solenoid (in the sense of [4], i.e. a Cantor set on which f has a
specific dynamics and, as a corollary of it, is topologically conjugate to a
transitive shift on a group). ’

It is clear that the support of any absolutely continuous invariant
measure is contained in A. Hence, in case (a) such measure does not exist. If
it exists in case (c), then it coincides with the unique measure for f/A. Finally,
in case (b), the required follows from Theorem 2.

§ 5. Concluding remarks

It seems plausible that a complete description of attractors of f €A can be
achieved (cf. [3], [4]).

MaiN Consecture. Each attractor of f €A is either a periodic orbit, or a
cycle of transitive interval, or a solenoid.

To establish the Main Conjecture it is sufficient to solve the following
problems.

ProBLEM 1. f €4 has no homtervals.
ProBLEM 2. If f €A is topologically transitive, then it is conservative.
In conclusion we formulate one result concerning smooth maps.

THEOREM 3. Let f: [0, 1] «> be a piecewise monotone C*-map. Assume
that for any critical point ¢ there exists n > 0 such that f™(c) # 0. Then for
generic x€[0, 1] the limit set w(x) is either a periodic orbit, or a cycle of
transitive intervals, or w(c), where c is a recurrent critical point.

The proof is similar to that of Theorem 1, but one uses results of [4]
and estimates from [9] instead of the First Distortion Lemma.

Added in proof. (1) Problem 1 was solved by one of the authors for maps f€ A with non-
deggnerate critical points (M. Yu. Lyubich, 1987). Using the estimates from [9], the authors
extended this result onto the smooth case. The proof is to appear in “Ergodic Theory and
Dynamical Systems”.

(2) Theorem 2 can be extended onto the poly-modal case in the following form: for any
indecomposable attractor A the restriction f|{x: w(x) = 4} is ergodic. The proof is to appear in
“Algebra and Analysis”, 1989, NI1.

(3) We have proved also that 41(A) > O for every non-periodic and non-solenoidal attractor
A and there exists a unique o-finite invariant measure u on A absolutely continuous with respect
to the Lebesgue measure. Moreover, if u is finite then h,(f) > 0.

(4) Finally, if 4 =w(c) is not a cycle of intervals then w(x)=A4 for all xe A and
h(f14) = 0.
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