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DOMAIN OF PARTIAL ATTRACTION FOR INFINITELY
DIVISIBLE DISTRIBUTIONS IN A HILBERT SPACE

BY

J. BARANSKA (L0ODZ)

The paper contains a generalization to a Hilbert space of a theorem
of Khintchine [4] which asserts that every one-dimensional infinitely
divisible distribution has a domain of partial attraction.

Let p be a probability distribution defined in a separable real Hilbert
space H. A sequence p,, of distributions in H is said to be weakly convergent
to a distribution p (p,—p) if for any continuous function f bounded in
H we have

lim [f(2)py(do) = [ f(z)p(da).

A sequence of distributions p, is called shift-compact (convergent)
if there exists a sequence {x,} of elements of H such that the sequence
Pn* 0, is compact (convergent) and a distribution p is called infinitely

divisible if for any natural n there exists a distribution p,, such that p = p}",
where * denotes the convolution of distributions, p™* denotes the n-th
convolution power of p, and ¢, denotes the distribution concentrated at
‘a point xeH.

A distribution p is said to belong to the domain of partial attraction
of a distribution u defined in H, if there exists a subsequence of natural
numbers 7, <Ny, < ...<n,<... and a sequence of positive numbers
a,—0 such that the sequence of measures (T, p)"r* is shift-convergent
to u, where (T.p)(Z) = p{weH: cxeZ} for Z being a Borel subset of H
and ¢ a real number.

If the subsequence {n,} coincides with the sequence of all natural
. numbers, then the distribution p is said to belong to the domain of attraction
of the distribution.

It is known [3] that only infinitely divisible distributions may have
domain of partial attraction. 4

THEOREM. Every infinitely divisib_l_e distribution in a separable real
Hilbert space has a non-emiplty domain of partial atiraction.
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Proof. In the sequel u stands for the characteristic functional of
the measure y, i.e. p(y) = [¢@ u(dz), and °p = p* ~p with ~p = T_,p.

Let 4 be an infinitely divisible distribution defined in H. Varadhan
([8], Theorem 5.10) has given the general form of the characteristic func-
tional of such a distribution,

R 1 .  (x,
(1) u(y) =exp {7' (@0, ¥) — 3 (Dy,y) + f[ez(z,y) —1- 17,(_.;_1; ||Z|)|2] M(dw)}y

where x,¢ H, D is an S-operator, i.e. a non-negative self-adjoint operator
with finite trace, and M is a o-finite measure in H, which is finite outside
every neighbourhood of zero in H, and for which

(2) [ N2l M (d) < + 0.

llzll<1

Every infinitely divisible distribution defined in H is uniquely deter-
mined by three elements: z,¢H, an S-operator and a measure M. In
this connection we shall write y = [x,, D, M].

We observe that every infinitely divisible distribution can be written
in the form

(3) B = Hp* iy,

where up = [0, D, 0], upy = [%o, 0, M].
Let a distribution ¢, for which

(4) Izl g(d) = + oo,

belong to the domain of attraction of the distribution up, i.e. there
exists a sequence of positive numbers a,,—0 such that distribution (TanQ)"‘
are shift-convergent to up. Such a distribution does exist (see [1], Chapter
VIII, § 4). Hence it follows (see [5], Corollary 3.2) that

limn f (z, y)2Tan°q(dx) = (Dy,y) for every e> 0 and yeH.

0 lxli<e

If (Dy, y) # 0, there exists an element y,¢ H for which:

J(@, 9o °g(dz) = + o0
(see [6], Corollary 3.4) and, consequently,

(5) lim(na?)™! = +oo.

n—>o0
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We introduce the following notation:

1
Qk={w€H:%<”$”<k}’ k=1,2,..,
(6) M, = restriction of the measure M to @, (M, M),
Vi = M, (H).

Let a sequence of natural numbers N <Ny <...<n,<... increase
so fast that

(7) 2

r—1 .
1
®) bl Y b, [ ol Myld) < —, 7 =1,2,...,
k=1

with n, = 1 and b, = (2" -a%z2)~".
Hence it follows that there exists a strictly increasing subsequence
{m,} of natural numbers which satisfies the following conditions:

(1) limm, Y mg'V, =0,
r—o0 k=r+1
r—1 1
' \! —
@) mad, D mat)” [ ol Myde) <, v =1,2, ...
k=1

ﬂ2
It suffices to put m, =2".
Now we are going to define a distribution which belongs to the domain
of partial attraction of the distribution u,,.
Put '

(9) z‘»(y)—exp{Sm e " Y11}, yeH.

This formula describes a characteristic functional of a certain prob-
ability measure in H. In fact, the functional (9) is obviously positive-
definite. Its continuity in the S-topology of Sazonov [7] follows from (7’).

We shall prove that the sequence of distributions (T, p)"‘r is shift-
convergent to u;,.

By a similar arguments as in the proof the classical theorem of Khin-
tehine ([2], § 36), we obtain the equality

(10) [T, o)1) +iar, 9

= iteo, )+ [ ot —1— SO o (d0) +.4,(0) + B0,



320 J. BARANSKA

where

r—1
@3 9) = @0 9)+ [ T2 M, (d) — i, ) (M) [ (2, 9) M (),

2
+ [l v
1,5 a, *ar(2,9)
(11) 4,(9) = — 5 map, ) (mar)™ [(2,9)e M (o), 16]<1,

k=1
b - oy, - a, ll‘(:c, v)
B,(y) =m, D mi[[e ~1]M,(d2).

k=r+1

From properties (7’) and (8’) of the sequence {m,} it follows that

(12) lim 4}(y) = limB,(y) = 0,

the convergence being uniform for y belonging to an arbitrary sphere.
Next

(13) lim [e‘<z'">—1—i(‘”—’y)2] M, (dx) = f [ei‘””’—l— 1@ y)E]M(dw),
e 1 - [J] 1+ ||

the convergence being uniform for y belonging to an arbitrary sphere
(see [8], Theorem 5.7). These facts prove that

(14) lim [(T,,, )™ *8,1(y) = iinc(¥),

—>

the convergence being uniform for y belonging to an arbitrary sphere.

According to Theorem 5.5 and Corollary 2.3 in [8] it suffices to show

that the measures (T, 9%9)™* are compact. We shall prove this by veri-
r

fication of the conditions of Prokhorov theorem ([6], § 4). Estimate:

~

1 - [(Te,, )™ 1) = 1= |(Ta,, PV

=1—exp{—2m, >'m;" [ [1—cosa,, az’ (%, 9)] M,(dw)}
k=1
<2m, > mi* [ [1— Co8 by, by (2, )1 M, (d2)
k=1

<mat, 3 (mat,) [ (@, 9 My(d) +2 [ [1—cos(z, 4)]M, (do) +

k=1

+ 4m, 2.0 mg'V,.

k=r+1
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Since the measures M, increase to the measure M, we have
[ 11— cos (2, 312, (d0) < [ 11— cos(@, y)13 (do)

1
< 5 f (z, y)* M (dz) + f [1—cos(x, y) ] M (dx).
lIzii<1 llzll>1
The measure M on the set K = {xeH: |lz| > 1} is tight; thus for
every ¢ > 0 there exists a compact set K, < ¥ such that M(K,) > M(E)—

—¢/4.
We have
f [1—cos(z, )M (dz) < f (2, ¥)* M (dx) +
llali>1

Eventually for an arbitrary £ > 0 we have

(15) 11— [(Tq, p)"‘f](y < (879, 9) +0, +e,

where
r—1

(16)  (S:y,9) = m,at, D (mpal,)™" [ (2, y) My (do) +

k=1
+ [ (2 9*M(d2)+ [ (2, 9)M (dw)
llzll<1 K,
and
(17) C, = 4m, 2 m;' v,

k=r+1
Since limC, = 0, for an arbitrary ¢ > 0 and r sufﬁclently large we

r—>00

have
(18) 1~ [(Ta, D)™ 19)] < (Sty, ¥) +2e.

Let {e;} be an arbitrary orthogonal system defined in H. By standard
calculations, (8) and (16) yield the relationships:

oo

(19) supZ(S ¢y 6)< + oo, limsup D (Sie;,e) = 0.

i=1 N->o r (=N

Thus the family of S-operators defined by quadratic form (16) is
_ compact. The compactness of the measures (T, 9p)™* follows from (18)
and (19) by a theorem of Prokhorov [6]

We have shown that the measures (T p)’”r are shift-convergent
to uy. Obviously, the measures (Te,, q)'"r‘ are shift- -convergent to uj.
Thus the measures [T, (p*q)]™" are shift-convergent to u — Bp*
80 the proof is complete.r
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