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Non-negative solutions of some non-linear integral equations

by WoiciecH OkRAsiNsk1 (Wroclaw)

Abstract. We consider non-negative solutions u of the non-linear convolution equation
Wou=Ksu,

where the kernel K is a locally bounded non-negative measurable function vanishing on
(—a, 0) and W is a convex function (W (0) = 0) satisfying certain additional conditions.

We give theorems concerning the existence and uniqueness of locally bounded measurable
solutions vanishing on (— 0, 0] and positive on (0, + o).

1. Introduction. In papers [2], [3] and [4] are considered non-negative
solutions u of the equation

(1.1) u*(x) = ]E K(x—=tu(t)dt (a>1),
o

where K is a non-negative function sdtisfying certain additional conditions.
The solvability of (1.1) is inspected in the function class M, defined as the set
of all locally bounded measurable functions vanishing on the non-positive
half-line and positive on the positive half-line. The existence and uniqueness
of solutions u in M, is showed in [2], [3] and [4]. The proofs are based on
the Banach fixed point theorem.

Here we consider the more general equation

(1.2) W(u(x)) = } K(x—1)u(t)dr,
0

where W is a convex function satisfying certain additional conditions. The
kernel K may be of a more general form than in (1.1). Proofs of the existence
and uniqueness of solutions in M, will be given without use of the Banach
fixed point theorem.

We impose the following assumptions on the kernel K:

(K,) K: R—R, is a locally bounded non-negative measurable function
(R, = {xeR: x> 0)}),
(K,) K(x) =0 for x <0,
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(K3) there exist numbers & >0, C, >0 and «; >0 such that k(x)
> C, x"" for xe[0, ¢].

As regards W, we assume:

(W,) W: R, — R, 1s differentiable on R,

(W) W(0)=W'(0) =0,

(W3) W' is a strictly increasing continuous function,

(W,) lim W'(x) =+,

x=+
(Ws) there exist numbers ¢, >0, C;>0 and a,>1 such that
W(x) < C,x"2 for xe[0, &,].
Under these assumptions we will state our results.

2. Some auxiliary lemmas. We introduce certain auxiliary functions and
examine their properties.

LemMma 2.1. Let
W(x)x~! for x>0,

.(2'1) Hy(x) = {0 for x =0.

Then H, is a strictly increasing continuous function from R, onto R,.
Prool. We have

lim W(x)x"!'= lim W(x)=0

x—0+ x—0+

and
lim W(x)x™!= lim W/(x)= + 0.
x—++ 2 xX—=+ x

By (W,) we get that W(x)x~! is strictly increasing. Hence our lemma is true.

CoroOLLARY 2.1. There exists the strictly increasing function F: R, - R,
inverse to H,. The function F is continuous.

Remark 2.1. By (W,) we have
F(x) = [x/C,1"%2™ " for xe[0, C,e3].
LEMMA 2.2. Let

(2.2) H,(x)= } Wi(t)t 'dr.
0

Then H, is a strictly increasing continuous function from R, onto R, .
The proof of this lemma results from Lemma 2.1.

CoROLLARY 2.2. There exists the strictly increasing continuous function
G: R, - R, inverse to H,.

Now we give an a priori estimate of the solution u of (1.2).
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LemMma 23. If ue M, is a solution of (1.2), then
(2.3) u(x) < F(f K(v)dr),
0

where F denotes the function defined in Corollary 2.1.
Proof. Let x > 0. Since

W (u(s)) < [sup u s)]fK(t)dt for sel,,

sely

where I, = [0, x], then

W (sup u(s)) < sup u(s) I K (7)dr.
sel sel
From the last inequality, by Lemma 2.1, we get
sup u(s) < F(| K (1)dr).
0

sel

Hence (2.3) is true.
Remark 2.2. Let

0 for x <0
(24) ¢(x) = { F(j K(t)dq) for x > 0.

0

Then ¢ is a strictly increasing continuous function belonging to M,.
Remark 23. By (K;) and Remark 2.1

C 1/@y—-1) 1 1/(@z—1) . _
(2.5) o(x) > {_1] [ :l @t Diag=1)

C, o +1

for xeJ, where

1/@@y+1)
(2.6) J=[ (CZ (o + 1) €5 ) ]

3. Existence of solutions. We define the following operator:
(3.1 T(f)=W Y (K=f) for feM,,
where W~! is inverse to W.

Remark 3.1. For f; <f, we have T(f;) < T(f,)-
Remark 3.2. If fe M, is a non-decreasing function, then T(f) is a
non-decreasing function belonging to M,.

We will need certain auxiliary theorems in the proof of the existence of
non-negative solutions.
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THeoREM 3.1. The function ¢ defined by (2.4) satisfies

3.2 Te)< o
Proof. For x > 0 inequality (3.2) is equivalent to the following one
(33) | (K *9)(x) < W(0(0).

We shall prove inequality (3.3). By Remark 2.2 we have
(3.4) (K x9)(x) < | K(t)dt F(f K(r)dr).
0 0

From (3.4) we get

x

35 (K *9)(x) < H, (F(E K (1)dv)) F ( g K (1)dz).
By Definition 2.1 we obtain
(3.6) H, (F(} K(z)dz))r(f K(t)dt) = w(F(f K (v)dr)).

From (3.5) and (3.6) we get (3.2).
We first examine equation (1.2) in a particular form. We denote by X%
the following function:
x* >
- __{ for x>0

3.7 =
0 for x <0

(a > 0).
This function is in M,.
THEOREM 3.2. The equation

(3.8) uw?(x) = (% Xyl * u)(x)

2
has a solution in M,.
Proof. The following formula is known:

H uytugtl
1 x“17H2

X4 x+ +
39 s 2 > 0),
39) T +) TGt D)  Tm+a+y Hrk

where I' is the Euler function (see [1]). Let us note that

' C, Tl(aq,+a,+2) Je2-» B
3.10 ==t (ag + 1)@z — 1)
(3.10) to (x) [c, T, + )T (a,+1) X+

is a solution of (3.7). The theorem is proved.
We denote by ¢, the function

C, Wz~ 1) (g +1 -
— a1 +1)/(ag—1)
Po(x) [_—CZ(al +1)] b .
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Then inequality (2.5) may be written as
(3.11) @(x) 2 @o(x) for xel.

We now prove the following theorem:
THEOREM 3.3. The sequence (f,) of functions from M, defined by

(312) fO = @o, fn+l = Tl (fn.) (n = 0’ l’ 2’ "')$
where
C 1/ay
(3.13) T,(f) = (C—‘ xyef ) (f eMy),
2
is convergent to u,, where uy is given by formula (3.10).
Proof. Let
(o, +ay+2)
3.14 = .
(3.19) o, +1)I'a;+1)

By (3.9) we may write

C, 1/ay—1) 1 1/ay - 1)a§ killlaﬁ @y + D@z —1)
_1& Ax= x .
(3.15)  f,(») [C,] g +1 '

Since a, > 1, we have

| C, 177" wviyag-n
(3.16) lim f,,(x)=[—‘ A] Xt e

n—aw Cz

The theorem is proved.

Now we give the theorem about the existence of non-trivial non-
negative solutions of (1.2).

THEOREM 3.4. Equation (1.2) has a solution in the class M,.
Proof. We define the sequence (g,) of functions from M,:

(3.17) go=9, Gur1=T(g) (=0,1,2,..).

Since @(x) = ¢@o(x) for xeJ, then, by (K;) and (W) we have

(3.18) T@g)(x)=2 T, (f)(x) for xeJ and n=0,1, 2, ...,

where T; is defined by (3.13) and f, by (3.12). By Theorem 3.1 we obtain
(3.19) T"*'Y(@)<T(9p) for n=0,1,2,...

Then

(3.20) Gu+1 <9, forn=0,12 ...

Hence there exists lim g,(x). We denote this function by u(x). Since (g,) is a

AT ®
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sequence of non-decreasing functions, u(x) is a non-decreasing function. B‘y
(3.18) we obtain

(3.21) u(x) = ug(x) for xeld.

Since u is non-decreasing, then, by (3.21), we see that ue M. The existence of
the solution is proved.

Remark 3.1. Every solution ue M, of (1.2) is a continuous function.

4. Uniqueness of non-negative solutions. We prepare the following
lemma:

LemMa 4.1. If M > 0 is a number such that @(x) < M for xel;, where
I;=1[0,68] and 6 > 0, then

4.1) TMy(x) <M for xelj.

Proof. From our assumptions we obtain
(4.2 } K(tydt < WMM™' for xel,.
0
By the definition of T we get
4.3) TM)(x)=W (M E K (1) dr).

Since W™! is an increasing function, then, by (4.2) and (4.3), we have
(4.4) T(M)(x) < W H{(W(M)).

From the last inequality we see that the lemma is true.
Now we state the following theorem:

THeoreMm 4.1. If ¢(x) < M for xel,, then the sequence (h,) of functions
defined by

(45) hO = Ms hn+l = T(h,,),

is convergent to a solution v of (1.2) on I; such that v(x) > 0 for xe(0, 8].
Proof. Since, by assumptions,

u(x)<M on I,

where ue M, is the solution of (1.2) as in Theorem 3.4, we have

(4.6) u(x) < hy(x) on I;.
From (4.5) and (4.6) we get
4.7) u(x)< h,(x) for xelyand n=0,1, 2, ...

By Lemma 4.1 we obtain
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(4.8) T"* 1 (ho)(x) < T"(ho)(x) for xel; and n=0,1, 2, ...
The last inequality is equivalent to the following one:
(4.9) hpi 1 (X) < hy(x).

From (4.7) and (4.9) we infer that lim h,(x) exists. We denote this function

n— x

by v(x). The function v satisfies (1.2) on I; and, by (4.6), v(x) > 0 for
xe(0, 8].
THEOREM 4.2. Let m < M and v(8,) = m, where 3,€(0, 8). Let

v(x) Jfor xel; ,

(4.10) ko(x) = {m for xe(8,, d].

Then the sequence (k,) of functions defined by k,,, = T(k,) (n=0,1,2,..)is
convergent to v on Ij.

Proof. Since T(kg)(x) = v(x) for xels and T(ko) is a non-decreasing
function, we have

T(ko)(x) = T(ko)(0,)=m lor xe(d,.d].

Hence

(4.11) T(ko)(x) = ko(x) for xel;.

From (4.11) we get

(4.12) ka(%) < kg 1 ().

But

(4.13) ko(x) <M for xel,.

We have by (4.13)

(4.14) ko(x) < h,(x) <M for xelyand n=0,1, 2, ...

By (4.12) and (4.14) the sequence (k,) converges to a function v satislying
equation (1.2) such that

(4.15) v(x) =v(x) for xel,
and .
(4.16) v(x) <v(x) for xe(d,. d].

Let xe(d,, 3]. Then by the mean value theorem
(4.17)  v(x)—rv(x)

= T()(0)— Tw)(x) < (K «@—o)(x) [ W (W (K +0)(x))] "
By (4.15) we have
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@.18) (Ks@—o)()[W' (W (Ksn)(0))]
< [ K= @ —o@1de [W (o(6,)] !
4

for xe(é,, 6]. Let M, =sup K(x) and

xelg

(4.19) d(v,v)= sup e #[v(1)—o(7)],

td" 1 'Jl

where § > 0. We obtain

(4.20) } K(x—1)[v(r)—o(r)]dr < d(v, ) ? K(x—1)ef dr.
& 1

From (4.20) we get

4.21) j K(x-1)[v(r)—v(r)]dr < d(v, v) :‘; K(x—1)efdr.
1
By the commutativity of convolution we have
4.22) E K(x—1)ef dr = &~ E K(t)e P dr.
From (4.20), (4.21) and (4.22) we get
(4.23) 5 K(x—t)[v(@)—v(t)]ldt < *M, B '(1—e #9d(v, v).
1
From (4.23) we obtain

(4.29) } K(x—1t)[v(r)—v(r)]dt < M, B #*d(v, 1)

4
for xe(d,, 4]. Now we assume that
(4.25) B=2M,[W'(v(s,))] "
From (4.1'i), by (4.18), (4.23) and (4.25), we obtain
(4.26) v(x)—o(x) <3ef*d(v,v) for xe(d,, 5].
"From the last inequality we infer that
d(v,v)=0.

Hence v(x) = v(x) for xe(d,, 6], too. The theorem is proved.
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Remark 4.1. If a sequence of functions I,(x) is convergent to a so-
lution I(x) of (1.2), then the sequence I[,(x—n) is convergent to the function
I(x—n), which is a solution of (1.2).

THeoREM 4.3. Equation (1.2) has the unique solution in M,.

- Proof. Let u,, u,e My be two solutions of (1.2). Let 4 >0 be any
number and M = ¢(5). Let n > 0 be any number such that 0 <5 < é and

4.27) m = min {min u,, min u,}.
{n.9 (.9}

Let

(4.28) ki(x) =v(x) for xel,

in the case where v(x) <m for xel,_,, and let

S R
when v(d; —n) = m. Then

(4.30) kli(x)<uy(x) <M (i=1,2).
Hence

(4.31) kl(x) y;(x) < h,(x) (i=1,2),

where k1., =T((k) (n=0,1,2,..).
Let n— oo. From (4.31), by Theorems 4.1, 42 and Remark 4.1, we
obtain

4.32) v(ix—n) <y(x)<v(x) fori=1,2 and xel,.
Let 7 - 0+. By the continuity of solutions (see Remark 3.1) we get
v(x) <y(x)<v(x) fori=1,2.

The uniqueness is proved.

5. Final remarks. For the proof of the uniqueness assumption (W) is
not needed. Assumption (K;) may be replaced by a more general one,
namely:

(K3) For each x > 0 the integral
{K(7)dr
1]

is a positive number.
Under this assumption the uniqueness may be showed.
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