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This is a survey of the author’s results on Besov spaces on non-archimedean
local fields and their applications to Haar bases in usual Besov spaces.
Proofs will appear in [3].

The main theorem of this paper, which establishes an isomorphism
between Besov spaces on F,[[t]] and on R, was proved by the author
during a stay at the Banach Center from March to May 1986. I use this
opportunity to thank the Banach Center for its great hospitality. Furthermore,
I thank Dr. W. Sickel, who directed my attention to the problem of
comparing usual and Walsh-Besov spaces.

1. Notation

Let K be a locally compact non-discrete field (ie., a field equipped with a
locally compact non-discrete topology such that the field operations are
continuous). We denote the Haar measure on the additive group of K by my.
The modular function ux on K is defined by the property

(1) my (kM) = pg (k) mg (M)
for every Borel-measurable subset M — K and every k €K. It is clear that

pi (ky ko) = pg (ky) pg (k7).

K satisfies exactly one of the following two properties:

(i) K is archimedean, ie., px(nx) 2o if xeK* =K —{0} and if the
natural number n tends to infinity.

(i) K is non-archimedean:

(2) pr(x+y) < pug(x) if pg(y) < px(x).

[131]
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An archimedean field K is isomorphic either to the field R of real
numbers or to the field of complex numbers. In the sequel we consider only
non-archimedean fields. Since confusion is impossible, we put for the sake of
brevity p(x) = x.

By € = x| x| < 1! we denote the maximal compact subring of K. It is
a local ring with maximal ideal p = {x| Ix| < 1}. The residue field t = O/p is
linite, we denote by Q the number of its elements. For every integer n we put

A3) pr= x| Ix|<Q™"].
We have
(4) p0 = D, pl =p, pk ,pl = pk+l.

We normalize the Haar measure by my (L) = 1. Then
&) mg (p") = Q™"

Let ¥ be a unitary character of K* (the additive group of K) such that
¥|. is trivial and P|,-1 is non-trivial. We denote the Fourier transform on K

by Ff =f:
(6) (Ff)(x) = [ P(xy) f(»)dy.

K

It extends to a unitary operator F: L,(K) = L,(K). Let S be the space of all
locally constant functions with compact support on K. F maps S onto itself
and can therefore be extended to a mapping on the space S’ of all
distributions on K. ~

Let E, be the o-field generated by p” and its translates. It is easy to see
that the elements of S’ can be identified with martingales for the sequence
E, .

The Fourier transform has the property

(7) f is Ej-measurable if and only if suppFf cp~’.
Let w; be the characteristic function on p’. We have
Finally, we mention the well-known property

9) F(f =g) =(Ff)-(Fg),

where * denotes convolution on K.
The main references for the above facts are [6] and [9].
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2. Besov spaces on K

Let 0 <p< x and 0 <¢g < x. We introduce the sequence spaces

(100 L,() = {{ihZ o] AL, (Il = (J( X /) dmy (x))'/P < oc ],

K k=0
(11) (L) = Hfd o] WAL EZ 0 €1y}
(with an obvious modification in (10) if max(p, q) = oc).

Let 0<p<x,0<g<x, and —o0 <5 < +oc. We deline

(12) By (K) = [feS'(K)| If1Bll = 1NQ* F~  wi Ff [ olly (L)l < x|
where
(13) Wy =Wy, Wj=w_;—w;_; ifj>0.

F,,(K) with p < oo is defined by replacing ,(L,) in (12) by L,(/,), but this
definition does not work for p = 0o. In this case we put for 1 < g < =

(14) F%,, = 'f| f admits a representation f = ) F~'wjFf;Q™"
j=0
with {fj}2o€Lo(l)].
The spaces B}, (K) and F},(K) are quasi-Banach spaces of distributions
(or martingales). We have
(15) S(K) < B;:min(p,q) (K) o= F;,aq (K) = Bsp:max(p,q)(K) = S’(K)

Bounded E;-measurable functions are pointwise multipliers for B;, and F;,.
We mention the following relations to classical function spaces on K,
they are consequences of [1] and [4]:
(i) F° »2 =L, for 1 <p <oc, and there exists a constant ¢, with

(16) [IfIL, (K < ¢, ILfIFS% (KNI < c2IIfIL, (K)I|  for every local field K.
(i) F9,(K) with 0 <p < oc is a martingale Hardy space:
(17) IAIFR2 (KN ~ 11'Q7 wj* f 172 ol Ly (LI,

the constants in (17) are independent of K if p > 1 and depend only on Q if
p<l
(iii) F%, is a martingale BMO space:

(18) I IF %Il ~ IIfILmIl+SUPQ’£|f(X+y)— [ Q' f(x+2)dz|dy,
e

the constant is independent of K.
(iv) If s >0, then
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S)-fO)
e~ yI*

The Jackson norm for Fj, has the following form:
(19) IAIL +inf[1{Q7 (f = £} 72 ol Ly (I

where the infimum is taken over all sequences {f;} where f; is an E;-
measurable function. We can prove that B, (K) with s > max(1/p—1, 0) and
F3,(K) with s > max(1/p—1, 1/q—1, 0) satisfy the Jackson theorem (i.e., the
Jackson norm is an equivalent quasi-norm). If N: C — C satisfies the Lip-
schitz condition, then f = N(f) is a continuous mapping on all B- or F-
spaces on K that satisfy the Jackson theorem.

Let p=0for p=1and p'=p/(p—1) if 1 <p < 0. The dual spaces of
B;, and F;, with 1 < p; ¢ < oo are given by

L. (K xK)“.

/1B wll ~ I 1Fouwll ~ ILf1Lall +

(20) (B3, (K)Y = B,3(K), (F5,(K)Y =F,%(K).
Let p >p and §—1/p =s—1/p. Then

21) B:,(K) < B%, (K),

(22) F5,(K) = B},(K),

(23) B;;(K) Ff,q (K).

3. Application to Besov spaces on R

We recall the definition of Besov spaces on R (cf. [7]). Let

P ¢l 1 <2} if j=0,
J g 27 <) <2t ifj=1,2,...

There exist sequences ;) 2, of C*-functions on R with the following
properties:
() suppy; < P;,
a0
i) Y ¥;(0 =1
Jj=0
(iii) [(d/dt)*y ) < ¢, 27
The spaces- B}, (R) and F},(R) are defined in a similar manner to the
corresponding spaces on non-archimedean local fields K: The Fourier trans-
form on K is to be replaced by the Fourier transform on R, and w; must be
replaced by ;. The relations to classical spaces mentioned in Section 2

remain valid if martingale Hardy and BMO spaces are replaced by the usual
ones. The only difference occurs in the case of difference quasi-norms: For
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the characterization of B, (R) and F;,(R) with s > 1 by means of difference
norms we must use higher differences. This is not necessary if spaces on non-
archimedean local fields are considered.

Let F, be the unique Galois field with 2 elements. We consider the
following local field K:

O = F,[[t]] is the ring of all formal power series with coefficients in
F,.

The quotient field K of Ois the field of all formal Laurent series Y a;t/

i»0

with coefficients in F,.

We consider the following continuous, surjective, and measure-preser-
ving map ¢: K = R:
(29) ®() a;t))y=3a;277 if a;€0, 1}.

j>0
Our main result is:

THEOREM 1. Let 0 < p< 0,0 <g< 0, and 1/p—1 <s <min(1/p, 1). In
the case of the F-spaces we suppose p < o0 or q > 1. Then the map ®* defined
for L, functions f on R by (®* f)(x) = f(P(x)) can be extended to an
isomorphism between B (R) and B}, (K) and between F3 (R) and F, (K).

Let us recall that & identifies the characters of © with the system of
Walsh functions on I = [0; 1]. If X is one of the spaces B}, and F},, then
X (I) consists of the restrictions of the elements of X (R) to I, equipped with

the quasi-norm
If1X (DIl = inf lig|X (R

gli=s
Let {y,'=, be the orthogonal system of Walsh functions (cf. [6]).
[ o

A formal Walsh series ) a;i; can be identified with a martingale for
j=0
acertain sequence of o-fields on I. We define F} v, as the space of all

formal Walsh series for which the quasi-norm

2j+1_

(25) . laol +[[2* X g} L, ()

k=2J

is finite. A similar definition is possible for Bj,. The mapping & identifies
Walsh-Besov spaces with Besov spaces on © = F,[[t]]. Theorem 1 implies

THEOREM 2. If s, p, and q satisfy the assumptions of Theorem 1, then
B;q.Walsh = B;q (I) and F:Jq,Walsh = F;q (I)

Let g, be the nth Haar function (we use the notation of [7], 2.12.3). It is
not hard to check that (25) does not change if we replace ¥, by x,+, and a,
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o

by the (n+ 1)-th Fourier coefficient of ) a;y; with respect to {x,]. But such

j=0
an exchange considerably simplifies the norm expression:

THEOREM 3. Let s, p, and q satisfy the assumptions of Theorem 1. Then
the orthogonal system of Haar functions is an unconditional Schauder basis in
Fy,(I), and

IS apxal Fog (D] ~ 1148 an xa} | L (Il

n=1
In a similar manner we can generalize the Bj,-part of the results of [8]
for Haar functions. Theorem 3 can be interpolated with the results of Oswald

[5]:

THEOREM 4. If 0 <p < o0, 0 <qg <0, and 1/p—1 <s < 1/p, then the
system of Haar functions is a Schauder basis in Fi,(I).
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