Extensions of two theorems on the neutrix convolution product of distributions

by Brian Fisher (Leicester)

Abstract. The neutrix convolution product $f \oplus g$ of two distributions f and g is defined as the neutrix limit of the sequence $\{f_n * g\}$, where $\{f_n\}$ is a certain sequence converging to f. Extending earlier results, the neutrix convolution product $x_-^1 \oplus x_+^{s-\lambda}$ is evaluated for $\lambda < -1$, $\lambda \ne -2$, -3, ... and $s = 0, \pm 1, \pm 2, ...$

In the following we let \mathcal{D} be the space of infinitely differentiable functions with compact support and let \mathcal{D}' be the space of distributions defined on \mathcal{D} . The convolution product f*g of two distributions f and g in \mathcal{D}' is then usually defined as follows:

DEFINITION 1. Let f and g be distributions in \mathcal{D}' satisfying either of the following conditions:

- (a) either f or g has bounded support,
- (b) the supports of f and g are bounded on the same side.

Then the convolution product f*g is defined by

$$\langle (f*g)(x), \phi \rangle = \langle f(y), \langle g(x), \phi(x+y) \rangle \rangle$$

for arbitrary ϕ in \mathcal{D} .

It follows that if the convolution product f * g exists by this definition then

$$f*g = g*f,$$

(2)
$$(f*g)' = f*g' = f'*g.$$

This definition of the convolution product is rather restrictive and in order to extend the convolution product to a larger class of distributions the neutrix convolution product was introduced in [1]. In order to define the neutrix convolution product we first of all let τ be a function in \mathcal{D} satisfying the following properties:

(i)
$$\tau(x) = \tau(-x),$$

(ii)
$$0 \le \tau(x) \le 1$$
,

(iii)
$$\tau(x) = 1$$
 for $|x| \leqslant \frac{1}{2}$,

(iv)
$$\tau(x) = 0$$
 for $|x| \ge 1$.

The function τ_n is now defined by

$$\tau_{n}(x) = \begin{cases} 1, & |x| \leq n, \\ \tau(n^{n}x - n^{n+1}), & x > n, \\ \tau(n^{n}x + n^{n+1}), & x < -n, \end{cases}$$

for n = 1, 2, ...

DEFINITION 2. Let f and g be distributions in \mathscr{D}' and let $f_n = f\tau_n$ for n = 1, 2, ... Then the neutrix convolution product $f \circledast g$ is defined as the neutrix limit of the sequence $\{f_n * g\}$, provided that the limit h exists in the sense that

$$N-\lim_{n\to\infty}\langle f_n*g,\,\phi\rangle=\langle h,\,\phi\rangle,$$

for all ϕ in \mathcal{D} , where N is the neutrix, see van der Corput [4], having domain $N' = \{1, 2, ..., n, ...\}$ and range N'' the real numbers, with negligible functions finite linear sums of the functions

$$n^{\lambda} \ln^{r-1} n, \ln^r n \quad (\lambda > 0, r = 1, 2, ...)$$

and all functions which converge to zero in the usual sense as n tends to infinity.

Note that in this definition the convolution product $f_n * g$ is in the sense of Definition 1, the distribution f_n having bounded support since the support of τ_n is contained in the interval $[-n-n^{-n}, n+n^{-n}]$.

The following theorem was proved in [1] and shows that Definition 2 is an extension of Definition 1.

THEOREM 1. Let f and g be distributions in \mathscr{D}' satisfying either condition (a) or condition (b) of Definition 1. Then the neutrix convolution product $f \circledast g$ exists and $f \circledast g = f * g$.

The next theorem was also proved in [1].

THEOREM 2. Let f and g be distributions in \mathscr{D}' and suppose that the neutrix convolution product $f \circledast g$ exists. Then the neutrix convolution product $f \circledast g'$ exists and $(f \circledast g)' = f \circledast g'$.

Note however that equation (1) does not necessarily hold for the neutrix convolution product and that $(f \circledast g)'$ is not necessarily equal to $f' \circledast g$. The next two theorems were proved in [2].

Theorem 3. The neutrix convolution product $x_{-}^{\lambda} \circledast x_{+}^{s-\lambda}$ exists and

(3)
$$x_{-}^{\lambda} \circledast x_{+}^{s-\lambda} = (-1)^{s+1} B(-s-1, s+1-\lambda) x^{s+1} + \frac{(-1)^{s+1} (\lambda)_{s+1}}{(s+1)!} [\pi \cot(\pi \lambda) x_{+}^{s+1} - x^{s+1} \ln|x|],$$

for $\lambda > -1$, $\lambda \neq 0, 1, 2, ...$ and s = -1, 0, 1, 2, ..., where

$$(\lambda)_s = \begin{cases} 1, & s = 0, \\ \prod_{i=0}^{s-1} (\lambda - i), & s \geqslant 1. \end{cases}$$

In this theorem, B denotes the Beta function but is defined as in [3] by

$$B(\lambda, \mu) = \dot{N} - \lim_{n \to \infty} \int_{1/n}^{1-1/n} t^{\lambda-1} (1-t)^{\mu-1} dt.$$

This definition is in agreement with the usual definition of $B(\lambda, \mu)$ when $\lambda, \mu \neq 0, -1, -2, \ldots$ but defines $B(\lambda, \mu)$ when λ or μ take the values $0, -1, -2, \ldots$

THEOREM 4. The neutrix convolution product $x^{\lambda} \oplus x^{-s-\lambda}$ exists and

(4)
$$x_{-}^{\lambda} \circledast x_{+}^{-s-\lambda} = \frac{\pi \cot(\pi \lambda)}{(-1-\lambda)_{s-1}} \delta^{(s-2)}(x) - \frac{(-1)^{s}(s-2)!}{(-1-\lambda)_{s-1}} x^{-s+1},$$

for $\lambda > -1$, $\lambda \neq 0, 1, 2, ...$ and s = 2, 3, ...

We now prove the following generalizations of Theorems 3 and 4.

THEOREM 5. The neutrix convolution product $x_{-}^{\lambda} \circledast x_{+}^{s-\lambda}$ exists and satisfies equation (3) for $\lambda \neq 0, \pm 1, \pm 2, \ldots$ and $s = -1, 0, 1, 2, \ldots$

Proof. We first of all assume that equation (3) holds for $-k < \lambda < -k+1$ and s = -1, 0, 1, 2, ..., where k is some positive integer. This is certainly true when k = 1 by Theorem 3. Put

$$(x_{-}^{\lambda})_{n}=x_{-}^{\lambda}\tau_{n}(x).$$

The convolution product $(x_{-}^{\lambda})_n * x_{+}^{s_{-}^{\lambda}}$ exists by Definition 1 and so equations (2) hold. Then

(5)
$$[(x_{-}^{\lambda})_{n} * x_{+}^{s-\lambda}]' = -\lambda (x_{-}^{s-\lambda})_{n} * x_{+}^{s-\lambda} + [x_{-}^{\lambda} \tau'_{n}(x)] * x_{+}^{s-\lambda}.$$

If $-k < \lambda < -k+1$, we have by our assumption

(6)
$$\operatorname{N-lim}_{n \to \infty} \langle [(x_{-}^{\lambda})_{n} * x_{+}^{s-\lambda}]', \varphi(x) \rangle = -\operatorname{N-lim}_{n \to \infty} \langle (x_{-}^{\lambda})_{n} * x_{+}^{s-\lambda}, \varphi'(x) \rangle$$

$$= -\langle x_{-}^{\lambda} \circledast x_{+}^{s-\lambda}, \varphi'(x) \rangle = \langle (x_{-}^{\lambda} \circledast x_{+}^{s-\lambda})', \varphi(x) \rangle$$

for arbitrary ϕ in \mathcal{D} .

Further, if ϕ has its support contained in the interval [a, b] and n > -a, it follows that

(7)
$$\langle [x_{-}^{\lambda} \tau'_{n}(x)] * x_{+}^{s-\lambda}, \phi(x) \rangle = \int_{a}^{b} \phi(x) \int_{-n-n-n}^{-n} (-y)^{\lambda} \tau'_{n}(y) (x-y)^{s-\lambda} dy dx,$$

since the support of $(-y)^{\lambda} \tau'_n(y)$ is contained in the interval $[-n-n^{-n}, -n]$. On the domain of integration $(-y)^{\lambda}$ and $(x-y)^{s-\lambda}$ are locally summable functions. Integrating by parts, it follows that

$$\int_{-n-n^{-n}}^{-n} (-y)^{\lambda} \tau'_{n}(y)(x-y)^{s-\lambda} dy = n^{\lambda} (x+n)^{s-\lambda} + \int_{-n-n^{-n}}^{-n} \left[\lambda (-y)^{\lambda-1} (x-y)^{s-\lambda} + (s-\lambda)(-y)^{\lambda} (x-y)^{s-\lambda-1} \right] \tau_{n}(y) dy.$$

Now with $s \ge 0$,

$$n^{\lambda}(x+n)^{s-\lambda} = n^{s} \sum_{i=0}^{s} \frac{(s-\lambda)_{i}}{i! \, n^{i}} x^{i} + O(1/n)$$

and so

(8)
$$N-\lim_{n\to\infty} n^{\lambda} (x+n)^{s-\lambda} = \frac{(s-\lambda)_s}{s!} x^s.$$

Further

$$|[\lambda(-y)^{\lambda-1}(x-y)^{s-\lambda}+(s-\lambda)(-y)^{\lambda}(x-y)^{s-\lambda-1}]\tau_n(y)|=O(n^{s-1})$$

and so

$$\Big| \int_{-n-n-n}^{-n} [\lambda(-y)^{\lambda-1}(x-y)^{s-\lambda} + (s-\lambda)(-y)^{\lambda}(x-y)^{s-\lambda-1}] \tau_n(y) \, dy \Big|$$

$$= O(n^{-n+s-1}) \to 0$$

as n tends to infinity.

It now follows from equation (7) that

(9)
$$\operatorname{N-lim}_{n\to\infty} \langle [x_{-}^{\lambda}\tau'_{n}(x)] * x_{+}^{s-\lambda}, \ \phi(x) \rangle = \frac{(s-\lambda)_{s}}{s!} \langle x^{s}, \ \phi(x) \rangle$$

and it then follows from equations (5), (6) and (9) that

$$\operatorname{N-\lim}_{n\to\infty}\lambda\langle(x_{-}^{\lambda-1})_{n}*x_{+}^{s-\lambda},\;\phi(x)\rangle=-\langle(x_{-}^{\lambda}\circledast x_{+}^{s-\lambda})',\;\phi(x)\rangle+\frac{(s-\lambda)_{s}}{s!}\langle x^{s},\;\phi(x)\rangle.$$

This proves that the neutrix convolution product $x_{-}^{\lambda-1} \circledast x_{+}^{s-\lambda}$ exists and

(10)
$$\lambda x_{-}^{\lambda-1} \circledast x_{+}^{s-\lambda} = -(x_{-}^{\lambda} \circledast x_{+}^{s-\lambda})' + \frac{(s-\lambda)_{s}}{s!} x^{s}$$

for $-k < \lambda < -k+1$ and s = 0, 1, 2, ...

From equation (3) we have

(11)
$$-(x_{+}^{\lambda} \circledast x_{+}^{s-\lambda})' = (-1)^{s} B(-s-1, s+1-\lambda)(s+1) x^{s}$$

$$+ \frac{(-1)^{s} (\lambda)_{s+1}}{s!} [\pi \cot(\pi \lambda) x_{+}^{s} - x^{s} \ln|x|]$$

$$- \frac{(-1)^{s} (\lambda)_{s+1}}{(s+1)!} x^{s}.$$

It was proved in [4] that

$$B(-s, -\lambda) = \frac{(-1)^{s} \Gamma(\lambda)}{s! \Gamma(\lambda - s)} \left[\psi(s) - \gamma - \frac{\Gamma'(\lambda - s)}{\Gamma(\lambda - s)} \right] = \frac{(s - \lambda)_{s}}{s!} \left[\psi(s) - \gamma - \frac{\Gamma'(\lambda - s)}{\Gamma(\lambda - s)} \right],$$

where y denotes Euler's constant and

$$\psi(s) = \begin{cases} 0, & s = 0, \\ \sum_{i=1}^{s} 1/i, & s \geqslant 1. \end{cases}$$

Thus

$$B(-s-1, s+1-\lambda) = \frac{(\lambda)_{s+1}}{(s+1)!} \left[\psi(s+1) - \gamma - \frac{\Gamma'(-\lambda)}{\Gamma(-\lambda)} \right]$$

and so

(12)
$$(-1)^{s}B(-s-1, s+1-\lambda)(s+1) - \frac{(-1)^{s}(\lambda)_{s+1}}{(s+1)!} + \frac{(s-\lambda)_{s}}{s!}$$

$$= \frac{(-1)^{s}(\lambda)_{s+1}}{s!} \left[\psi(s+1) - \gamma - \frac{\Gamma'(-\lambda)}{\Gamma(-\lambda)} \right] + \frac{(-1)^{s}(\lambda)_{s+1}}{(s+1)!} + \frac{(-1)^{s}(\lambda-1)_{s}}{s!}$$

$$= \frac{(-1)^{s}(\lambda)_{s+1}}{s!} \left[\psi(s) - \gamma + \frac{1}{\lambda} - \frac{\Gamma'(-\lambda)}{\Gamma(-\lambda)} \right]$$

$$= (-1)^{s}\lambda B(-s, s+1-\lambda),$$

since

$$(s-\lambda)_s = (-1)^s(\lambda-1)_s$$

and

$$1/\lambda - \Gamma'(-\lambda)/\Gamma(-\lambda) = -\Gamma'(1-\lambda)/\Gamma(1-\lambda).$$

Further

(13)
$$\frac{(-1)^{s}(\lambda)_{s+1}}{s!} \left[\pi \cot(\pi \lambda) x_{+}^{s} - x^{s} \ln|x| \right] = \frac{(-1)^{s} \lambda(\lambda - 1)_{s}}{s!} \left\{ \pi \cot\left[\pi(\lambda - 1)\right] x_{+}^{s} - x^{s} \ln|x| \right\}$$

and it follows from equations (10)-(13) that

$$x_{-}^{\lambda-1} \circledast x_{+}^{(s-1)-(\lambda-1)} = (-1)^{s} B(-s, s+1-\lambda) x^{s} + \frac{(-1)^{s} (\lambda-1)_{s}}{s!} \{ \pi \cot [\pi(\lambda-1)] x_{+}^{s} - x^{s} \ln |x| \}.$$

Equation (3) now follows by induction for $\lambda < -1$, $\lambda \neq -2$, -3, ... and s = -1, 0, 1, 2, ... This completes the proof of the theorem.

COROLLARY. The neutrix convolution product $x_{+}^{\lambda} \circledast x_{-}^{s-\lambda}$ exists and

$$x_{+}^{\lambda} \circledast x_{-}^{s-\lambda} = B(-s-1, s+1-\lambda)x^{s+1} + \frac{(-1)^{s+1}(\lambda)_{s+1}}{(s+1)!} \left[\pi \cot(\pi \lambda)x_{-}^{s+1} + (-1)^{s}x^{s+1} \ln|x|\right]$$

for $\lambda \neq 0, \pm 1, \pm 2, \dots$ and $s = -1, 0, 1, 2, \dots$

Proof. The result of the corollary follows immediately on replacing x by -x in equation (3).

THEOREM 6. The neutrix convolution product $x_{-}^{\lambda} \otimes x_{+}^{-s-\lambda}$ exists and satisfies equation (4) for $\lambda \neq 0, \pm 1, \pm 2, \ldots$ and $s = 2, 3, \ldots$

Proof. We first of all assume that equation (4) holds for $-k < \lambda < -k+1$ and $s=2, 3, \ldots$, where k is some positive integer. This is certainly true by Theorem 4 when k=1. It follows as in the proof of Theorem 5 that

$$[(x_{-}^{\lambda})_{n} * x_{+}^{-s-\lambda}]' = -\lambda (x_{-}^{\lambda-1})_{n} * x_{+}^{s-\lambda} + [x_{-}^{\lambda} \tau'_{n}(x)] * x_{+}^{s-\lambda},$$

and

(15)
$$N-\lim_{n\to\infty} \langle [(x_-^{\lambda})_n * x_+^{-s-\lambda}]', \phi(x) \rangle = \langle (x_-^{\lambda} \circledast x_+^{-s-\lambda})', \phi(x) \rangle$$

for arbitrary ϕ in \mathcal{D} . Further, if ϕ has its support contained in the interval [a, b] and n > -a,

(16)
$$\langle [x_{-}^{\lambda}\tau'_{n}(x)] * x_{+}^{-s-\lambda}, \phi \rangle = \int_{a}^{b} \phi(x) \int_{-n-n-n}^{-n} (-y)^{\lambda} \tau'_{n}(y) (x-y)^{-s-\lambda} dy dx.$$

Integrating by parts we have

$$\int_{-n-n-n}^{-n} (-y)^{\lambda} \tau'_{n}(y)(x-y)^{-s-\lambda} dy = n^{\lambda} (x+n)^{-s-\lambda}$$

$$+ \int_{-n-n-n}^{-n} [\lambda (-y)^{\lambda-1} (x-y)^{-s-\lambda} - (s+\lambda)(-y)^{\lambda} (x-y)^{-s-\lambda-1}] \tau_{n}(y) dy.$$

Now with $s \ge 2$,

$$\lim_{n\to\infty}n^{\lambda}(x+n)^{-s-\lambda}=0$$

and it follows as in the proof of Theorem 5 that

$$\int_{-n-n-n}^{-n} \left[\lambda(-y)^{\lambda-1} (x-y)^{-s-\lambda} - (s+\lambda) (-y)^{\lambda} (x-y)^{-s-\lambda-1} \right] \tau_n(y) \, dy \to 0$$

as n tends to infinity.

It now follows from equation (16) that

(17)
$$\lim_{n\to\infty} \langle [x_-^{\lambda} \tau'_n(x) * x_+^{-s-\lambda}, \phi(x) \rangle = 0,$$

and it then follows from equations (14), (15) and (17) that

$$\operatorname{N-\lim}_{n\to\infty}\lambda\left\langle (x_{-}^{\lambda-1})_{n}*x_{+}^{-s-\lambda},\,\phi(x)\right\rangle = \left\langle (x_{-}^{\lambda}\circledast x_{+}^{-s-\lambda})',\,\phi(x)\right\rangle.$$

This proves that the neutrix convolution product $x_{-}^{\lambda-1} \circledast x_{+}^{-s-\lambda}$ exists and

(18)
$$\lambda x_{-}^{\lambda-1} \circledast x_{+}^{-s-\lambda} = -(x_{-}^{\lambda} \circledast x_{+}^{-s-\lambda})'$$

for $-k < \lambda < -k+1$ and s = 3, 4, ...

From equation (4) we have

$$(x_{-}^{\lambda} \circledast x_{+}^{-s-\lambda})' = \frac{\pi \cot(\pi \lambda)}{(-1-\lambda)_{s-1}} \delta^{(s-1)}(x) + \frac{(-1)^{s}(s-1)!}{(-1-\lambda)_{s-1}} x^{-s}$$

and it follows from equation (18) that

$$x_{-}^{\lambda-1} \circledast x_{+}^{(-s-1)-(\lambda-1)} = \frac{\pi \cot \left[\pi(\lambda-1)\right]}{(-\lambda)_{s}} \delta^{(s-1)}(x) - \frac{(-1)^{s+1}(s-1)!}{(-\lambda)_{s}} x^{-s}.$$

Equation (4) now follows by induction for $\lambda < -1$, $\lambda \neq -2$, -3, ... and s = 3, 4, ...

To prove that equation (4) holds when s = 2, we note that equations (5)-(7) hold in the proof of Theorem 3 when s = -1. However when s = -1, equation (8) must be replaced by

$$\lim_{n\to\infty} n^{\lambda} (x+n)^{-1-\lambda} = 0$$

and then equation (10) must be replaced by

$$\lambda x_{-}^{\lambda-1} \circledast x_{+}^{-1-\lambda} = -(x_{-}^{\lambda} \circledast x_{+}^{-1-\lambda})'$$

for $-k < \lambda < -k+1$. From equation (3)

$$(x^{\lambda} \circledast x_{+}^{-1-\lambda})' = \pi \cot(\pi \lambda) \delta(x) - x^{-1},$$

and it follows that

$$x_{-}^{\lambda-1} \circledast x_{+}^{-2-(\lambda-1)} = \frac{\pi \cot[\pi(\lambda-1)]}{(-\lambda)_{1}} \delta(x) - \frac{1}{(-\lambda)_{1}} x^{-1}.$$

Equation (4) now follows by induction for $\lambda < -1$, $\lambda \neq -2$, -3, ... and s = 2. This completes the proof of the theorem.

The corollary follows immediately on replacing x by -x in equation (4).

COROLLARY. The neutrix convolution product $x_{+}^{\lambda} \otimes x_{-}^{-s-\lambda}$ exists and

$$x_{+}^{\lambda} \circledast x_{-}^{s-\lambda} = \frac{(-1)^{s} \pi \cot(\pi \lambda)}{(-1-\lambda)_{s-1}} \delta^{(s-2)}(x) + \frac{(s-2)!}{(-1-\lambda)_{s-1}} x^{-s+1}$$

for $\lambda \neq 0, \pm 1, \pm 2, \ldots$ and $s = 2, 3, \ldots$

The distributions $|x|^{\lambda}$ and $\operatorname{sgn} x \cdot |x|^{\lambda}$ are defined by

$$|x|^{\lambda} = x_+^{\lambda} + x_-^{\lambda}$$
, $\operatorname{sgn} x \cdot |x|^{\lambda} = x_+^{\lambda} - x_-^{\lambda}$.

We finally note that since the convolution products $x_+^{\lambda} * x_+^{\mu}$ and $x_-^{\lambda} * x_-^{\mu}$ exist by Definition 1 and since the neutrix convolution product is clearly distributive with respect to addition, it follows that further neutrix convolution products such as

$$x_{-}^{\lambda} \circledast |x|^{s-\lambda}, \quad x_{+}^{\lambda} \circledast |x|^{s-\lambda}, \quad x_{-}^{\lambda} \circledast (\operatorname{sgn} x \cdot |x|^{s-\lambda}),$$

exist for $\lambda \neq 0, \pm 1, \pm 2, \dots$ and $s = -1, 0, 1, 2, \dots$ and

$$(\operatorname{sgn} x \cdot |x|^{\lambda}) \circledast x_{+}^{-s-\lambda}, \quad |x|^{\lambda} \circledast |x|^{-s-\lambda}, \quad |x|^{\lambda} \circledast x_{-}^{-s-\lambda}$$

exist for $\lambda \neq 0, \pm 1, \pm 2, \dots$ and $s = 2, 3, \dots$

References

- [1] B. Fisher, Neutrices and the convolution of distributions, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 17 (1987), 119-135.
- [2] -, On the neutrix convolution product of distributions, Wissensch. Beitr. 5.I (1988), 25-35.
- [3] B. Fisher and Y. Kuribayashi, Neutrices and the Beta function, Rostock. Math. Kolloq. 32 (1987), 56-66.
- [4] J. G. van der Corput, Introduction to the neutrix calculus, J. Analyse Math. 7 (1959-60), 291-398.

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY Leicester, LEI 7RH, England

Reçu par la Rédaction le 25.03.1990

