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product of distributions
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Abstract. The neutrix convolution product f®@g of two distributions f and g is defined as
the neutrix limit of the sequence {f,*g}, where {f,} is a certain sequence converging to f.
Extending earlier results, the neutrix convolution product x* @x'"* is evaluated for
A< —1,4%#-2 -3,...and s=0,1+1,12,...

In the following we let 2 be the space of infinitely differentiable functions
with compact support and let 2’ be the space of distributions defined on 2.
The convolution product f*g of two distributions f and g in 2’ is then usually
defined as follows:

DEerFINITION 1. Let f and g be distributions in 2’ satisfying either of the
following conditions:

(a) either f or g has bounded support,
(b) the supports of f and g are bounded on the same side.

Then the convolution product fg is defined by

(f*9)(x), &> = {f), <g(x), d(x+1)))
for arbitrary ¢ in 9.
It follows that if the convolution product fg exists by this definition then

(1) frg =g+,
2 (feg) = fxg' =[f'»g.

This definition of the convolution product is rather restrictive and in order
to extend the convolution product to a larger class of distributions the neutrix
convolution product was introduced in [1]. In order to define the neutrix
convolution product we first of all let = be a function in 2 satisfying the
following properties:

@) t(x) = 7(—x),
(i) 0 < 7(x) < 1,
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(iii) t(x) =1 for [x] <4,
(iv) 7(x) = 0 for |x| = 1.

The function 7, is now defined by

1, Ix| € n
7,(x) = < t(n"x—n"*1), x>n,
t(n"x+n"*l), x< —n,
forn=1,2,...

DEerFINITION 2. Let f and g be distributions in 2’ and let f, = fz, for
n=1,2,... Then the neutrix convolution product f®g is defined as the
neutrix limit of the sequence {f,*g}, provided that the limit h exists in the
sense that

N-lim (f,*g, ¢> = <{h, ¢),

n— oo

for all ¢ in 2, where N is the neutrix, see van der Corput [4], having domain
N' ={1,2,...,n,...} and range N"” the real numbers, with negligible functions
finite linear sums of the functions

“ip,In'n (A>0,r=1,2,..)

and all functions which converge to zero in the usual sense as n tends to infinity.

n*1n

Note that in this dcﬁmtlon the convolution product f,*g is in the sense of
Definition 1, the distribution £, having bounded support since the support of ,
is contained in the interval [—n—n"", n+n7"].

The following theorem was proved in {1] and shows that Definition 2 is
an extension of Definition 1.

THEOREM 1. Let f and g be distributions in 9’ satisfying either condition (a)
or condition (b) of Definition 1. Then the neutrix convolution product f® g exists

and f®g = f*g.
The next theorem was also proved in [1].

THEOREM 2. Let f and g be distributions in 2’ and suppose that the neutrix
convolution product f® g exists. Then the neutrix convolution product [® g’
exists and (f®g) =f®g'.

Note however that equation (1) does not necessarily hold for the neutrix
convolution product and that (f®g) is not necessarily equal to f'®g.
The next two theorems were proved in [2].

THEOREM 3. The neutrix convolution product x* ® x7* exists and
3) X @ = (— ) B(—s—1, s+1—A)x*!

(_ 1)s+1(/1)s+
L T

[reot(mA)x3T !t —x*1In|x|(],
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for A>—1,A#0,1,2,...and s=—1,0,1, 2,..., where

1, s=0,
(), = {’ﬁ (A—i), s=1.
i=0

In this theorem, B denotes the Beta function but is defined as in [3] by

. 1—1/n
B(A, ) = N-lim | A71(1—tp 1 de,

n-*co 1i/n

This definition is in agreement with the usual definition of B(A, ) when
A, p#0, -1, —2,.., but defines B(4, y) when A or u take the values
0, -1, -2,...

THEOREM 4. The neutrix convolution product x ® x7°* exists and

(=D
(~1=2 "

ncot(nd)
(=1—-4),_,

for A>—-1,A#0,1,2,...and s5=2,3, ...

We now prove the following generalizations of Theorems 3 and 4.

(4) XA ®x75r= 562 (x)—

THEOREM 5. The neutrix convolution product x* ® x5 * exists and satisfies
equation (3) for A#0, +1, +2,...and s=—-1,0,1,2,...

Proof. We first of all assume that equation (3) holds for
—k<A< —k+1and s=—1,0,1, 2,..., where k is some positive integer.
This is certainly true when k=1 by Theorem 3. Put

(x%), = xt 7, (x).

The convolution product (x%), » x%"* exists by Definition 1 and so equations
(2) hold. Then

(5) [(R),# X574 = — AR, * x5+ [xh 1 (0] * x5
If —k <A< —k+1, we have by our assumption
(6)  N-lim ([(x%), *x57*7, @(x)) = —N-lim ((x2), % x4’ (x))

=~ @xA ¢ = (xt @ XYY, ¢(x)
for arbitrary ¢ in 9.
Further, if ¢ has its support contained in the interval [a, b] and n > —a, it
follows that

-n

b
(N DXl x? o) =[éx) | (—=)'m0)x—y) *dydx,

-p=n=-n
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since the support of (— y)*7,(y) is contained in the interval [—n~n"", —n]. On
the domain of integration (—y)* and (x—y)*~* are locally summable functions.
Integrating by parts, it follows that

[ (= e0)x—yr~*dy = n*(x+ny

—-p—pg—n

0 D=9 ey A (5= D=y =y AT, () dy.

~n—n-"

Now with s > 0,

n*(x+nf*=n° ii“o (Sl_-n'})‘x'-i- O(1/n)
and so
(8) N:}gn n*(x+n)y~* = (—S—s-—'l&x’.
Further "
ILA(=y/* " =y A+ (5= A=y e~y 47,00 = 0(n* ™)
and so

| f A= =y A+ = D= x—pF ™4 17,00 dy|

e — 0(n—n+s-—1)_,0
as n tends to infinity.
It now follows from equation (7) that

) N-lim ([x2 7,(x)] * x5 %, @(x)) = ( )

n—*a

—— X, p(x)

and it then follows from equations (5), (6) and (9) that

Nelim ACGEA™), w22, B> = —((xt @ Y, () + =7

n“w

BRARL

This proves that the neutrix convolution product x*~!® x5 * exists and

(10) Axt 1 ® xﬂ__’l = "‘(X)'_ ® xi—l)r+(sz'i)sx,

for —k<A< —k+1and s=0,1, 2,.
From equation (3) we have
(11) —(xA ®@x¥ Y =(=1)B(—s—1, s+ 1=A(s+1)x*
+(-?—1)—s(,l)—*‘f—1[ncot(m{)xs+ —x*In|x|]
(= DPess
(s+ 1! '

—_—
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It was proved in [4] that

oy =yr@f, o TR=s)] (=4, I(i—s)
Bl=s, ’1)‘s!ru-s)[w(s) ’ F(ﬂ.—s)]_ 5! ["’(S)_”"r(z-s)]’

where y denotes Euler’s constant and

0, s=0,
"’(S)={i i, s=1.
i=1

Thus B
e T ) . =)
B(—s—1,s+1 l)—(s+1)![¢(s+l) y I‘(—l)]
and so
\ (=1 Dy | (5—A)
(12) (—=1yB(—s—1,s+1—=A)(s+1)— 6T D) 1y 5
(=1 (W)ses [ TN C) e (A1),
R LSRRty 1o e P (YR
=@ [, L (=]
= YOI
=(—1AB(—s,s+1—2),
since
(s—4),=(=1F@A-1),
and
1A= (=) (=2 = =1 =2/ (1-2).
Further
(13) %[ncot(nx)xi—xﬂmxu

s!

= gl)s’z)“__l)s {rcot[r(1—1)]x% —x°In|x|}

and it follows from equations (10){13) that
AT @ xE VA — (—1FB(—s, s+ 1 -A)x°

J:Jl’;(f‘_l)s {rcot[r(A— 1] —xlnxl}.

Equation (3) now follows by induction for A< —1, 4 # -2, -3, ... and
s=—1,0,1,2,... This completes the proof of the theorem.
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COROLLARY. The neutrix convolution product x% @ x*~* exists and
x4 ® x4 = B(—s—1,s+1-2)x**"!

(=1 (Vs
(s+1)!

for 2#0, £1, +2,...and s=-1,0,1,2,...

[reot(mAd)x=F 1 +(—1)"'x**In|x|]

Proof. The result of the corollary follows immediately on replacing x by
—x in equation (3).

THEOREM 6. The neutrix convolution product x* ® x7°~* exists and
satisfies equation (4) for A#0, +1, +£2,... and 5=2,3, ...

Proof We first of all assume that equation (4) holds for
—~k<A< —k+1and s=2,3,..., where k is some positive integer. This is
certainly true by Theorem 4 when k = 1. It follows as in the proof of Theorem
5 that

(14) [ch), * %3574 = =202 ), # x5 A4 [t 1, (0)] * X574,
and
(15) I\"I:}gn LR *x3°74, (%)) = <2 @ x3°7Y, (%))

for arbitrary ¢ in 9. Further, if ¢ has its support contained in the interval
[a, b] and n> —a,

-n

b
(16) (XL ()]*xX™4 ¢y =[o(x) [ (= () (x—y) "> *dydx.

-a—n""N

Integrating by parts we have

-n

[ (=Y 0l x—y) " dy = ni(x+n)~s3

+ :I ) A= =) T =+ A= x—y) 74 1, () dy.
Now with s> 2,

lim n*(x+n)"*"*=0

n=w

and it follows as in the proof of Theorem $5 that

-n

J O T =) T =+ A (=) x—y) 7 T, (0) dy >0

—-n—n-—n

as n tends to infinity.
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It now follows from equation (16) that

(17) lim ([x2 7(x)* x3°7%, $(x)> =0,

and it then follows from equations (14), (15) and (17) that
N-lim 2 {(x271), #x3°7%, @ (%)) = {x @ x3°7%, ¢(x)).

n=+m
This proves that the neutrix convolution product x*™!® x;* * exists and
(18) AT ® x5 = —(x2 @ X7

for —k<A< ~k+1 and s=3,4,...
From equation (4) we have

neot(nd) - ”(x)+(_ D=1 _,

A —-s—A\ __
R 1=

and it follows from equation (18) that

ncot[rn(A—1)] (=1 is=1!
(— ), (—4),

Equation (4) now follows by induction for A < —1, A# -2, —3,... and
s=3,4,...

To prove that equation (4) holds when s =2, we note that equations
(5+7) hold in the proof of Theorem 3 when s = —1, However when s = —1,
equation (8) must be replaced by

-S

xl_—i @ x(+—s—1)—(i.—1) — 5(S—1)(x)_

lim n*(x+n) " 1"*=0

and then equation (10) must be replaced by

AT T@®xI VP = —(xE ®xiTYY
for —k <1< —k+1. From equation (3)

(% ® x5 = moot(nA)d(x)~x*,

and it follows that

ncot[n(A—1)] 1 -1

S A T

Equation (4) now follows by inductionfor A < —1,1 % —2, —3,...and s = 2.
This completes the proof of the theorem.

XAt @®xy2T0D =

The corollary follows immediately on replacing x by — x in equation (4).
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COROLLARY. The neutrix convolution product x* ® xZ°~* exists and

- (s—2)!
P Y Gt LI
STy R e T

for A#0, +1, +2....and s=2,3, ..

~s=A _ (—1)yncot(nd)

xi ® x_ -s+1

The distributions |x|* and sgnx-|x|* are defined by
Ix|* = x4 +x%,  sgnx-|x|* = x4 —xt.

We finally note that since the convolution products x4 % x% and x* #x* exist
by Definition 1 and since the neutrix convolution product is clearly distributive
with respect to addition, it follows that further neutrix convolution products
such as

A @xPA XA @Ik, xl @ (sgnxxfTY),
exist for 1#0, +1, +2,... and s=—1,0,1,2,... and
(sgnx-[x) @ x4, P @7, xP@xI?

exist for A#0, +1, +2,... and s=2, 3, ...
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