FASC. 1

EQUATIONALLY COMPACT SEMILATTICES

BY

G. GRÄTZER AND H. LAKSER (WINNIPEG)

1. The concept of equationally compact universal algebras was introduced by Mycielski [2]. In this note we will determine equationally compact semilattices (for the basic concepts see section 2). The main result is the following theorem (1):

THEOREM. A semilattice $\mathfrak S$ is equationally compact if and only if the following three conditions are satisfied:

- (i) S is join-complete;
- (ii) any chain C in S has a meet;
- (iii) if $a \in S$, and C is a chain in \mathfrak{S} , then

$$a \lor \land (x \mid x \in C) = \land (a \lor x \mid x \in C).$$

COROLLARY. A 1-equationally compact semilattice is equationally compact.

2. A semilattice $\mathfrak{S} = \langle S; \vee \rangle$ is a set S with a binary operation \vee , which is idempotent, commutative, and associative. A partial ordering \leq is defined on S by

$$x \leqslant y \text{ iff } x \lor y = y.$$

 \mathfrak{S} is join-complete if any set $H \subseteq S$ has a least upper bound, denoted by $\forall (x | x \in H)$. If H has a greatest lower bound, it will be denoted by $\land (x | x \in H)$. A chain C in \mathfrak{S} is a subset C of S such that for any $a, b \in C$ we have $a \leq b$ or $b \leq a$.

Let $X = \{x_i | i \in I\}$ (the set of "unknowns"). An equation in X over $\mathfrak S$ is an expression of the form

$$p=q,$$

⁽¹⁾ Result announced in Notices of the American Mathematical Society 15 (1968), p. 196.

where p and q are expressions of one of the following three types:

(2)
$$a, x_{i_0} \vee ... \vee x_{i_{n-1}}, a \vee x_{i_0} \vee ... \vee x_{i_{n-1}},$$

where n is an arbitrary integer, $a \in S$, and $i_0, \ldots, i_{n-1} \in I$.

A solution of (1) is a map $\varphi: I \to S$ such that if x_i is substituted by $i\varphi$, then the two sides of (1) yield the same element of S.

Let Σ be an arbitrary set of equations in X over \mathfrak{S} . Σ is solvable if a single map $I \to S$ is a solution for all equations in Σ ; and Σ is locally solvable if every finite subset of Σ is solvable.

A semilattice \mathfrak{S} is equationally compact if for any set X, any locally solvable set Σ of equations in X over \mathfrak{S} is solvable. If this holds for sets X of cardinality 1, \mathfrak{S} is 1-equationally compact.

All these concepts are specialized from the concepts of [2], utilizing the special properties of semilattices.

3. Let S be equationally compact. We prove that (i)-(iii) hold in S.

Consider the set Σ_0 of equations

$$a \vee x = x$$

for all $a \in S$. If Σ_0^+ is a finite subset of Σ_0 , $\Sigma_0^+ \neq \emptyset$, then it has a solution (x = the join of the a's that occur in Σ_0^+), hence Σ_0 is locally solvable, and hence solvable. A solution x = 1 is the largest element of \mathfrak{S} . Thus \mathfrak{S} has a 1.

Now let $H \subseteq S$ and

$$U = \{u \mid u \in S, u \geqslant h \text{ for all } h \in H\}.$$

Then $U \neq \emptyset$, since $1 \in U$. Consider the set Σ_1 of equations

$$a \lor x = x, x \lor u = u$$

for all $a \in H$, $u \in U$. Again Σ_1 is locally solvable. Thus Σ_1 is solvable and the solution will be $\vee (x | x \in H)$. This verifies (i).

To verify (ii) let C be a chain and Σ_2 be the set of equations

$$x \lor c = c$$

for all $c \in C$. Again Σ_2 is locally solvable (if Σ_2^+ is a finite subset of Σ_2 , then a solution is the *smallest* c that occurs in some equation in Σ_2^+) and a solution will be a lower bound t for C. Thus the set D of all lower bounds of C is non-void, and we can consider Σ_3 , the set

$$d \lor x = x, \ x \lor c = c$$

for all $d \in D$, $c \in C$, and the solution of this is $\wedge (x | x \in C)$.

Finally, let $a \in S$, and C a chain and put $c = \wedge (x | x \in C)$ (this exists by (ii)). Since $C_1 = \{a \lor x | x \in C\}$ is again a chain, by (ii) $\wedge (y | y \in C_1) = d$ exists. We have to prove that $a \lor c = d$. Of course, $a \lor c \le d$. Now take the set Σ_4 of equations

$$a \lor x = d \lor x, \ x \lor b = b$$

for all $b \in C$. If Σ_4^+ is a finite subset of Σ_4 , then again the smallest of the b is a solution; hence Σ_4 has a solution c_1 . Then $a \vee c_1 = d \vee c_1$, hence $a \vee c_1 \geqslant d$. But $c_1 \vee b = b$ for all $b \in C$, and so $c_1 \leqslant c$. Thus $a \vee c \geqslant a \vee c_1 \geqslant d$, completing the proof of (iii).

4. To prepare the proof of sufficiency we state four lemmas. A subset D of S is downward directed if for x, $y \in D$ there exists $z \in D$ with $z \leq x$ and $z \leq y$.

LEMMA 1. Condition (ii) implies that $\wedge(x | x \in D)$ exists for any downward directed set D.

LEMMA 2. Conditions (ii) and (iii) imply $a \lor \land (x | x \in D) = \land (a \lor x | x \in D)$ for any downward directed set D.

The proofs of Lemmas 1 and 2 follow the well-known pattern (see e.g. [1], Appendix 2) and will therefore be omitted.

A solution is an element of S^I . Thus we have a natural partial ordering for them: the pointwise ordering. The following lemma is crucial:

LEMMA 3. Let $\mathfrak S$ satisfy (i)-(iii), p=q be an equation, and $K\subseteq S^I$ be a downward directed set of solutions for p=q. Then $t=\wedge (k\,|\, k\, \epsilon K)$ exists and it is a solution for p=q.

Proof. By Lemma 1 (ii) holds for directed sets in \mathfrak{S} , hence in \mathfrak{S}^I . Thus k exists.

Let $K = \{c_{\lambda} | \lambda \in \Lambda\}$; $c_{\lambda}(i)$ will denote the *i*-th component of c_{λ} . Then $t(i) = \bigwedge (c_{\lambda}(i) | \lambda \in \Lambda)$.

Let $p = a \vee x_{i_0} \vee \ldots \vee x_{i_{n-1}}$. Then $p(t) = a \vee t(i_0) \vee \ldots \vee t(i_{n-1}) = a \vee \vee \wedge (c_{\lambda}(i_0)|\lambda \in \Lambda) \vee \ldots \vee \wedge (c_{\lambda}(i_{n-1})|\lambda \in \Lambda) = \wedge (a \vee c_{\lambda_0}(i_0) \vee \ldots \vee c_{\lambda_{n-1}}(i_{n-1})|\lambda_0, \ldots, \lambda_{n-1} \in \Lambda) = \wedge (a \vee c_{\lambda}(i_0) \vee \ldots \vee c_{\lambda}(i_{n-1})|\lambda \in \Lambda) = \wedge (p(c_{\lambda})|\lambda \in \Lambda)$ where the third and the fourth equalities hold, since K is downward directed and Lemma 2 can be repeatedly applied.

Similarly, $q(t) = \wedge (q(c_{\lambda}) | \lambda \in A)$ and so p(t) = q(t), which was to be proved.

If p or q are of the form a or $x_{i_0} \vee \ldots \vee x_{i_{n-1}}$, the computation proceeds similarly.

LEMMA 4. Let $\mathfrak S$ satisfy (i) and let K be a set of solutions for p=q. Then $t=\bigvee(k\,|\,k\,\epsilon K)$ is a solution for p=q. Proof. Again, we take $p = a \vee x_{i_0} \vee \ldots \vee x_{i_{n-1}}, q = b \vee x_{j_0} \vee \ldots \vee x_{j_{m-1}}$. Then for any $k \in K$, we get

$$p(t) = a \lor t(i_0) \lor ... \lor t(i_{n-1}) \geqslant a \lor k(i_0) \lor ... \lor k(i_{n-1})$$

= $b \lor k(j_0) \lor ... \lor k(j_{m-1}) = q(k)$,

hence $p(t) \geqslant \bigvee (q(k) | k \in K) = q(t)$. Similarly, $q(t) \geqslant p(t)$, hence p(t) = q(t).

5. Now we are ready to prove the sufficiency. Let us assume that (i)-(iii) hold for \mathfrak{S} , and let Σ be a locally solvable set of equations. Let K_{Σ^+} be the set of solutions for a finite subset Σ^+ of Σ . By assumption $\Sigma^+ \neq \emptyset$. Set $t_{\Sigma^+} = \bigvee (k \mid k \in \Sigma^+)$. Then, by Lemma 4, $t_{\Sigma^+} \in K_{\Sigma^+}$.

Set $K = \{t_{\Sigma^+} | \emptyset \neq \Sigma^+ \subseteq \Sigma, \Sigma^+ \text{ is finite} \}$. Then K is downward directed, since $\Sigma^+ \supseteq \Sigma^{++}$ implies $t_{\Sigma^+} \leqslant t_{\Sigma^{++}}$.

Set $t = \wedge (k | k \in K)$. By Lemma 3, t is a solution for Σ , completing the proof of the Theorem.

- 6. In section 3 all sets of equations we considered contained only one "unknown", hence the Corollary is true.
 - 7. The following statement follows easily from the Theorem:

An equationally complete semilattice \mathfrak{S} is either a lattice (as a partially ordered set) or there are elements $a, b \in S$ such that a and b have no lower bound. In the latter case \mathfrak{S} can be made a lattice by adjoining a 0. In both cases the lattice is a complete lattice satisfying (iii).

Conversely, if $\mathfrak L$ is a complete lattice satisfying (iii) in which each element contains an atom, then $\mathfrak L-\{0\}$ is an equationally compact semilattice.

8. A trivial application of the Theorem yields the following statement:

Let $\mathfrak L$ be an equationally compact lattice. Then $\mathfrak L$ is complete, furthermore (iii) and its dual hold for $\mathfrak L$.

The converse is not, however, true, see [3].

REFERENCES

- [1] F. Maeda, Kontinuierliche Geometrien, Berlin-Göttingen-Heidelberg 1958.
- [2] J. Mycielski, Some compactifications of general algebras, Colloquium Mathematicum 13 (1964), p. 1-9.
- [3] B. Weglorz, Completeness and compactness in lattices, ibidem 16 (1967), p. 243-248.

UNIVERSITY OF MANITOBA

Reçu par la Rédaction le 7.12.1967