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EQUATIONALLY COMPACT SEMILATTICES
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- 1. The concept of equationally compact universal algebras was
introduced by Mycielski [2]. In this note we will determine equationally
compact semilattices (for the basic concepts see section 2). The main
result is the following theorem (!):

THEOREM. A semilattice S is equationally compact if and only if the
following three conditions are satisfied:
(i) S 48 join-complete;
(ii) any chain C in S has a meet;
(iii) 2f ae8, and C is a chain in S, then

av N(x|xeC) = A(a v x|xeC).

COROLLARY. A 1-equationally compact semilaltice is equationally
compact.

2. A semilattice S = {(8; v) is a set § with a binary operation v,
which is idempotent, commutative, and associative. A partial ordering
< is defined on S by

r<yiffazvy=y.

S i8 join-complete if any set H < § has a least upper bound, denoted
by V(z|zeH). If H has a greatest lower bound, it will be denoted by
ANx|zeH). A chain C in S is a subset C of 8 such that for any a, beC
we have a < b or b <a.

Let X = {x;|i<I} (the set of “unknowns”). An equation in X over S
is an expression of the form

(1) P =4q,

() Result announced in Notices of the American Mathematical Socicty 15
(1968), p. 196.
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where p and g are expressions of one of the following three types:

(2) ay, Ty VeV T av & V..V &

0 1’ 1!

where n i8 an arbitrary integer, aeS, and g, ..., ¢s_jel.

A solution of (1) is a map ¢: I — S such that if »; is substituted by g,
then the two sides of (1) yield the same element of 8.

Let X be an arbitrary set of equations in X over &. X is solvable if
a single map I — § is a solution for all equations in X'; and X' is locally
solvable if every finite subset of X is solvable.

A semilattice S is equationally compact if for any set X, any locally
solvable set 2' of equationsin X over € is solvable. If this holds for sets X
of cardinality 1, S is 1-equationally compact.

All these concepts are specialized from the concepts of .[2], utilizing
the special properties of semilattices.

3. Let © be equationally compact. We prove that (i)-(iii) hold
in G.
Consider the set X, of equations

av ¥ ==2

for all @< S. If X is a finite subset of X, £y # @, then it has a solution
(x = the join of the a’s that occur in Z), hence X, is locally solvable,
and hence solvable. A solution # = 1 is the largest element of S. Thus S
has a 1.

Now let H < § and

U= {u|ueS,u>h for all heH}.
Then U # @, since 1le¢ U. Consider the set X, of equations
BV IT=x,2VU="1u

for all aeH, ueU. Again X, is locally solvable. Thus X, is solvable and
the solution will be V (x|zeH). This verifies (i).
To verify (ii) let C be a chain and 2, be the set of equations

rve=¢

for all ceC. Again X, is locally solvable (if X is a finite subset of X,,
then a solution is the smallest ¢ that occurs in some equation in X7) and
a solution will be a lower bound ¢ for C. Thus the set D of all lower bounds
of C is non-void, and we can consider X3, the set

dve =zx,xvec=c¢c

for all deD, ceC, and the solution of this is A(x|xeC).
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Finally, let ae8, and C a chain and put ¢ = A(x|zeC) (this exists
by (ii)). Since C, = {a v z|xeC} is again a chain, by (ii) A(y|yeC,) = d
exists. We have to prove that ave =d. Of course, av ¢c<d. Now
take the set X, of equations

ave=dve,xvb=>

for all beC. If X} is a finite subset of Z,, then again the smallest of the b
is a solution; hence 2, has a solution ¢,. Then av ¢; = d v ¢,, hence
ave, >d. But ¢;vb=>b for all beC, and so ¢, <c. Thus ave>
av ¢, = d, completing the proof of (iii).

4. To prepare the proof of sufficiency we state four lemmas. A sub-
set D of 8 is downward directed if for x, y e D there exists zeD with z < x
and 2 <y.

LeMMA 1. Condition (ii) implies that A(x|xeD) exists for any downward
directed set D.

LeMMA 2. Conditions (ii) and (iii) tmply av \(z|zeD) = A(avz|zxeD)
for any downward directed set D.

The proofs of I.emmas 1 and 2 follow the well-known pattern (see
e.g. [1], Appendix 2) and will therefore be omitted.

A solution is an element of 87. Thus we have a natural partial

ordering for them: the pointwise ordering. The following lemma is
crucial:

LEMMA 3. Let S satisfy (i)-(iii), p = q be an equation, and K = 8!
be a downward directed set of solutions for p = q. Then t = A(k|keK)
exists and it 18 a solution for p = q.

Proof. By Lemma 1 (ii) holds for directed sets in S, hence in &'.
Thus % exists.

Let K = {¢;|AeA}; ¢i(¢) will denote the i-th component of ¢;. Then
t(t) = Alea(d)|AeA).

Let p =avayv...va, . Then p(t) = a v i(i) v...v t(iny) = av
VA(e(io)|Aed)v...v Alea(in-n)|Aed) = Ala Vv e () V..oV er_ (En1) Aoy ...
ceuy Mm_r€d) = A(a v ei(do) V...V er(in_1)|Aed) = A(p(c;)|AeA) where the
third and the fourth equalities hold, since K is downward directed and
Lemma 2 can be repeatedly applied.

Similarly, q(t) = A(g(e1)|Aed) and so p(t) = q(¢), which was to
be proved.

If p or g are of the form @ or #; v...v @;,_, the computation proceeds
similarly.

LEMMA 4. Let S satisfy (i) and let K be a set of solutions for p = q.
Then t = \/(k|keK) i8 a solution for p =q.
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Proof. Again, we take p =ava, v...vw, ,q=bva v...va; .
Then for any keK, we get

P(t) = a v i) V...V t(in_1) = a v k() ve..V k(in_y)
=b v k(jo) VeouV E(Jm—1) = q(k),
hence p(t) = V (q(k)]kelf) = q(1). Simﬂarly, q(t) = p(t), hence p(t) = ¢(t).

3. Now we are ready to prove the sufficiency. Let us assume that
(i)-(iii) hold for &, and let 2’ be a locally solvable set of equations. Let K +
be the set of solutions for a finite subset 2~ of 2. By assumption Xt # @,
Set tz+ = V(k|keZ"). Then, by Lemma 4, ty+eKys+.

Set K = {t;+|0 # 2" < X, X" is finite}. Then K is downward
directed, since X" 2 X implies ty+ < tp++.

Set t = A(k|keK). By Lemma 3, ¢ is a solution for 2, completing
the proof of the Theorem.

6. In section 3 all sets of equations we considered contained only
one “unknown”, hence the Corollary is true.

7. The following statement follows easily from the Theorem:

An equationally complete semilattice S is either a lattice (as a par-
tially ordered set) or there are elements a, beS such that a and b have
no lower bound. In the latter case S can be made a lattice by adjoining a 0.
In both cases the lattice is a complete lattice satisfying (iii).

Conversely, if € is a complete lattice satisfying (iii) in which each
element contains an atom, then {— {0} is an equationally compact
semilattice.

8. A trivial application of the Theorem yields the following
statement:

Let € be .an equationally compact lattice. Then £ is complete,
furthermore (iii) and its dual hold for L.

The converse is not, however, true, see [3].
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