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Abstract. The paper contains the following main result.

THEOREM 2. Let E° = {{eC: |{| > 1). Suppose that g({)={+bo+bh ("' and h()=
14¢;8" 2+ ... are regular in E°\{o0) and E°, respectively, with g'({)# O for {€E°. Let for
some numbers s =a+iff, x>0, fe R, + <a < a the inequality
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holds in E°. If the inequality
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holds for € E® and » = a/a, then g is univalent in E°.

The paper contains also some corollaries about sufficient conditions of univalence.

a

1. Introduction. The purpose of the paper is to establish a theorem
representing a univalence criterion of a meromorphic function g (Theorem 2).
In Section 2 we will give a proof of this theorem. It is an application of a
result of Pommerenke (Theorem 1) to a parametrized family of functions
generated by g. Section 3 contains two corollaries which extend an earlier
result of Ruscheweyh.

We begin with some notation: C is the complex plane; C = CuU {o0};
A is the closure of the set A = C; R=(— 0, ); K(S, R) is an open disc of
centre S and radius R; E, = {z: |z| <r}, re(0, 1], E, = E; EX ={{: [{| >r
> 1}, EY = E®; 2° is the class of functions g that are regular in E°\{o0} and
such that g({) = +bo+b, {1+ ... for (e E®; G° is the class of functions h
that are regular in E® and such that h(co) =1 and h({) # 0 for {eE°.

We will now cite the above-mentioned
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THEOREM 1. Let O <ro <1 and let f(z,t) =a,(t)z+ ..., a; () # 0, be
regular in E, for each fixed te[0, o) and locally absolutely continuous in
{0, o), local umformly with respect to E, .

For almost all te[0, o) suppose that

%f(z, n=zf"(z,)p(z,1), zek,,

where p(z, t) is regular in E and satisfies the condition Rep(z,t) >0, zeE. If
la, (1)) = o as t — oo and if {f(z, t)/a, (t)} forms a normal family in E,,, then,
for each te[0, w), f(z, t) has a regular and univalent extension to the whole
disc E.

This result of Pommerenke was formulated in his paper as Corollary

3, [1].

2. Before the formulation of our main result we will make a simple but
useful remark:

Remark 1. Let D = C be a convex domain whose boundary does not
contain any rectilinear segment. Suppose that AeD and w(dy) =44+
+(1—-Ay,)BeD, where A, B, A, are fixed points with i,>1 and 4 # B.
Then, for each Ae(1, 4iy), w(d)eD.

We will now give the proof of

THEOREM 2. Suppose that g({) ={+bo+b, (" '+ ...€Z% g'({)# 0 for
LeE® h())=14c,{ %+ ...€G° For some fixed numbers s = a+if, a >0,
BeR } <a<a let the following inequality hold:
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holds for [ E® and » = afa, then g is univalent in E°.
Proof. For te[O, ao) let us put formally

3) f(z,y= 2z _l)[l —(1—e " 2h(e*z"1)]"%, :zeE, te[0, o).
Then we have

¢ .~ 1 e ~st -1 2 ,— 2
4) gz )=-z—+bo+b,ze +..., hEz )y=14cz%e ™+ ...

Putting
A(z; a,s,)=1—(1—e h(e"z ) =e 2" ~(1—e ) (cyz%e 2+ ..),
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we infer that there exists a fixed number r, (0, 1] such that A(z; a,s, 1) # 0
for ze E, and for each te[0, o). From the hypotheses of the theorem and
by (1), we have g({) # 0 for { e E°. Hence, for each fixed te |0, o), each fixed
single-valued branch of f(z, 1) is regular in E, . Further, from (3) we obtain
a, (t) = [e”'e**T". In what follows we choose that fixed branch of power in
a, (¢) for which |a, ()| = [[e"'e*"]| = e"* €. Thus |a, ()] = ¢2*~ ™ 5 o as
t - oo because a > 4 and a > 0. By the definition of A(z; a, s, t) and (4) we
obtain

Sz, z
a,(t)  (e*+boz+b,z2e "+ ..)A(z; a, s, t)e~ " &2

and ultimately

f@z ) z
a;(t)  (I+boz+b,z2e "+ .. )[1~(2*=1)(c,z2e >+ ..)]*

(5)

If we now apply our previous considerations to (5), we infer that
{f(z, 9/a, (1)} forms a normal family in E,  for each 0 <ro <ry, ro =14ry,
say, if e*®|e” 2| = 2220 ( |, ie, if a < a. From the definition of f(z, t)
and its regularity in E, it follows that &f (z, t)/¢t is uniformly bounded with
respect to E,o for te[0, T]), where T >0 is an arbitrarily chosen fixed
number. Thus f(z, t) is absolutely continuous in [0, T], uniformly with
respect to E, .
Now, by some computations we obtain from (3)

£ (z, 1)
zf/(z, t)

=p(z, )= —s+

+ 2ase” > g ({e*) h((e")
(e g () [1~(1—e™ > h((e")] —s[(1 e~ **) (e g (") W' ()]

where { =z~ !. Thus

2as

© PN = =S (- B

where

A(le") = (e g'({e")/[g((e*) h((e)]

and

B({e”) = [(e”g' ((e")/g ([e*)] +sLe” W ((")/h((e”).

(1) implies that A({e*)e K(as/a, als|/a) for each fixed {eE® and
te[0, c0). Moreover, A({) # 0, because f'({) # 0 for {eE°. From (2) it
follows that the quantity [(e™** A({e®)+(1—|(e®|**)B((e*) lies in
K (as/a, a|s|/x), and in addition |{e*|** = |{|>*/*e*® > ¢?*. Hence. by Remark
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I with 1o = |(e"|* and 4 = e*”, we see that the denominator d on the right-
hand side of (6) lies in K(as/az alsf/x) for each (e E® and te(0, oc). Thus
p(z, 1) is regular in E° for each te[0, oc). The inequality Rep(z, t) > 0 and
the relation de K (as/a, a|s|/x) are equivalent by (6). Then Rep(z, t) > O for
ze E® and te(0, o). Moreover, Re p(z, 0) > O for ze E. Thus we see from the
above considerations that all assumptions of Theorem 1 are fulfilled. Hence
f(z, 1) is univalent in E for each te[0, o), and so is g because f(z, 0)
= 1/g(z™'). The proof of Theorem 2 has been completed.

3. We will now give some corollaries. Theorem 2 implies the following

CoRrOLLARY 1. Suppose that ge X° by, = 0 and let a, s be fixed numbers
such that s =a+ip, Be R, 5 <a <a. If the inequality

(|f:|’“/"—1)a[(1—s)(1—;"(—é‘;)) sc;; (g)] [a—1)a+api]| <

holds for (e E®, then g is univalent in E°.

Proof. Taking h({) = {g'({)/g({) in (1) and (2), we see that (1) is fulfilled
automatically. Moreover, {g'({)g({) # 0 by the hypotheses of the corollary
and (7), and thus he G® and h(x) = 1. In this case relation (2) is equivalent
to the following one:

2aja 2a/a Cg (Q) ( Cg" (C) )] _ &S_
2o 4+ (1 —1g) )[(1 9l ts( 1) - <

Multiplying both sides of (8) by a, and performing grouping with respect to
the factor (|{|>**—1), we obtain (7). The univalence of g follows from
Theorem 2. The proof of Corollary 1 has been completed.

In what follows we need the following

Remark 2. Let ¢(x;1) =(x2—1)/x*—1) be defined for xe[l, o),
where 1 =(0, 1] and ¢(1)= lnm @(x;t)=1/1. It is easy to verify that

x=171
@(x; 1) increases in [1, oo) from 1/t to infinity provided 7 # 1. It is evident
in the case of T =1 that ¢(x)=1.

From Corollary 1 we deduce the following

CoroLLARY 2. Under the assumptions of Corollary 1 with a=1 and
a > 1 the inequality

N _cg'(a) Cg"(z:)] |
&) ‘(ICI l)a[(l 8)(1 20 70 api
for { = E° implies the univalence of g in E°.

Proof. From (7) we obtain for a =1

(10) lﬂCl’—l)a[(l—s)(l—Cj(g)) C;’ (g)] o (L), 1/2) Bi

(7)
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< Ist@(IEl, 1/a).
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Put S(I{) = ¢(ll; 1/2)Bi and R(I{]) = Isi ¢(I{|; 1/a). From the property of
¢(|{|; 1/x) stated in Remark 1 and from the inequality |f| <|s| we obtain
IS —api| <(R(L)—Isla) and R(]) > |sle with equality for « =1 only.
Thus K (afi, |s|e) = K(S(/¢]), R(I{])) for each (e E°. Hence each function ¢
satisfying the hypotheses of Corollary 1 satisfies (10). Thus, by Corollary 1, g
is univalent in E°. This proves Corollary 2.

Earlier, Ruscheweyh [2] obtained the following

THEOREM 3. Let s =a+if, a>1 and let g({) ={+b, "'+ ...e 2"

If the inequality

2 B _Cg'(C))_ Cg"(C)]_. ’ 1Bl —1
(11) ’(ICI l)a[(l S)(l 00 7540 ip| < lsla—|Bl(a—1)

holds for { e E®, then g is univalent in E°.

It is easy to see that K (if, a|s| —|B| (@ —1)} = K(api, Is| a). It follows that
each function g satisfying the hypotheses of Theorem 3 also satisfies all the
assumptions of Corollary 2. Thus g is univalent in E° by Corollary 2. Hence
Corollary 2 and consequently Corollary 1 also extend Theorem 3 in an
essential way.
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