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ON INVARIANT FUNCTIONS FOR POSITIVE OPERATORS"
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1. Introduction. Let (X, &/, u) be a probability space and let T be
a positive linear operator on L,(X, </, u) for some fixed p,1 < p < oo.
For p =1, the ratio ergodic theorem of Chacon-Ornstein [2] assumes
that T is sub-Markovian; i.e., |T|; < 1. Assuming a weaker boundedness
condition (b,) on T, Sucheston [15] has shown that the space ‘X decom-
poses into sets Y* and Z" such that the ratio ergodic theorem holds on
Y"*; Z" is the largest set which “disappears” under T'; moreover, on Y"
there is a positive bounded function ¢* which is invariant under T*, the
adjoint of 7. We remark that this result can be extended to an operator
T on L,(X, &/, u), 1 <p< oo (Theorem 1).

For a sub-Markovian operator T on L,, Dean and Sucheston [3],
and independently Neveu [14], extending results of Mrs. Dowker [5]
and Ito [10], have given necessary and sufficient conditions for the
existence of positive T-invariant functions in L,; Krengel [11] has shown
that the space X decomposes into a positive part P and a null part N such
that P is the largest set which supports a T-invariant function. We obtain
similar results (Proposition 1, Theorems 2 and 3) for an operator T
satisfying condition

(by): Sup | T, < oo.

Finally, it has been shown that the ratio ergodic theorem in general
does not hold on the disappearing part Z' (cf. [9] and [16]). We give
an example to show that Hopf’s decomposition, which is a consequence
of the ratio ergodic theorem, also ceases to be valid on Z'.

Most results are obtained by the method of Banach limits. It is
recalled that Banach limits, or Banach-Mazur limits, are positive linear
functionals on the space of bounded sequences of real numbers (z,),
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satisfying the following axioms:
(i) L(1) =13
(ii) L(z,) > 0if x, >0, n =0,1,2,...;
(iii) L(®,) = L(x,,,) (shift-invariance).
The maximal value of Banach limits on a sequence (z,) is (see, e.g.,

[18])

n—1

(1.1) M (2,) Z lim (supn Y @),
nooa i=0

hence the minimal value is — M (—ux,), equal to
n—1

(1.2) m(z,) < lim (inf n Y @iy).
noa i=0

2. A decomposition of X for L -operators. All sets and functions
introduced below are assumed measurable; all relations are assumed to
hold modulo sets of u-measure zero. Integrals, unless otherwise indicated,
are with respect to the measure u. The dual space of L,,1<p < oo,
is L,: we assume 1/p4-1/q = 1. The L,-norm of f is |f|,; the L,-norm
of an operator T is denoted by |T|,. L} is the class of non-negative, non-
vanishing functions in L,. We write supp f for the set of points at which
the function f is different from zero. L,(A) is the class of functions f in
L, with supp f « A. The potential operator associated with a positive
operator T is denoted by T,: for each non-negative function g, T..g¢ is
the function g+ Tg+ T?g+- ... The indicator function of a set A is written
1,; the function f-1, is sometimes written f,. The adjoint of an operator
T is denoted by T*.

A set A is said to be closed (under T) if feL,(A) implies TfeL,(A).
A positive operator on L, is said to be conservative if for each non-negative
function ¢, Tg = oo or 0.

THEOREM 1. Let T be a positive linecr operator on L,(X, o/, u) such
that sup |T"|, < co. Then X = Y+ Z and
n

(1) Z 18 closed;

(ii) there is a functioi he L} such that if fe Lt (Y), then M[[T"f-h] > 0;

(iii) if feL,(Z), then M|[T™|f|-h] = O for every heL;.

If X + Z, then there is a function ¢ eL} withsuppe = Y and T e = e.
If f-eeL,, g-ecL;, then '

n—1 n—1
D,(1,f,9% 3 1 / 3 1
1=0 1=0

converges to a finite limit on the set Y N suppT.g. If there is a function

geL} (Z) such that the set C(g) = {T.g= oo} is non-null, then the ratio

theorem fails on every non-null subset of C(g).
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Proof. For the case p = 1, when the sets Y, Z are denoted by Y',
Z', the first part of Theorem 1 is due to Sucheston [15], and the last
assertion is due to Ionescu Tulcea and Moritz [9]. Since the proof in
[15] extends to the case 1 < p << oo, we prove here only the last asser-
tion of the theorem. Our argument is mainly that of [9]. Assume that
on a non-null subset 4 of C(g), D,(T,f, g) converges to a finite limit
a.e. for every feL,. Let S be the operator from L, into .#, the space
of real-valued measurable functions on (X, &), defined by

Sf(z) =14(x)-YimD, (T, f, g)(»)-
Let

Since T.,g = oo on A, we have

(2.1) 8y, (x) = li:nn [n‘lzl Sl T”"g(m)]/[;ngl Tig(w)] >1

on A. It follows from (iii) that lim f g,"h =0 for every heL;}; ie., g,

n
converges weakly to zero. A mean érgodic theorem for Banach spaces
([6], p. 661) implies that lim |g, |, = 0. Thus we can choose a subsequence
n

(9n;) With f = 3 g, eL,. Then
i=1

0< Z Sg'ni < 8f< oo pae.;

i=1

hence lim 8g, =0 u-a.e., but this contradicts (2.1).
i

3. T-Invariant functions in I,. For 1< p < oo, L, is a reflexive
Banach space, and hence the problem of existence of T-invariant functions
in L, is reduced to one of existence of T*-invariant functions in L,.
Henceforth, we shall assume that T is a positive linear operator on L,
satisfying condition (b,), which is equivalent with '

(by) sup |T"|, < oo.

Such an operator has been called semi-Markovian [15]. T admits
an adjoint operator 7™ which acts on L; the adjoint T** of T* operates
on the space ¥ of signed finite finitely additive set functions vanishing
on y-null sets (cf. [6], p. 296). Under the natural embedding of the
Banach space L, in its second conjugate ¥, L, is mapped on @, the
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space of finite signed u-continuous measures. If ve®, then T"*ve¢ P and
. dvy
(3.1) T** 5 (A) =fTE—du, Aesd.
u
4

We shall often write T for T**v if ve®. If v = u, then dv/du = 1,
and we have for each n > 0

(3.2) T"u(4) = [ T"1dyu = [T*™1,dp, Aess.
A

ProposITION 1. Let T be a semi-Markovian operator on L,. Then
X 18 the disjoint union of two uniquely determined sets P and N with the
following properties:

(a) AcP,u(Ad)> 0 implies M[T"u(A)] > 0;

(b) N s the disjoint union of countably many sets X,; with M [T" u(X;)]
= 0 for each i;

(c) P s closed under T.

In the sub-Markovian case, Proposition 1 has been proved by Krengel
[11]; Dean and Sucheston previously showed that X = N in the particular
case where T is assumed conservative, ergodic, and has no positive fixed-
point ([3], Theorem 2).

Proof. Let H(A) = M[T"u(A)], Ae «.

It is clear that H(@) = 0 and that if A < B, then H(A) < H(B).
Let X;,7=1,2,..., be a disjoint sequence of sets such that H(X;) = 0
for each ¢ and

limu((J X) = sup u(4).

1=1 H(4)=0

Set N = (J X; and P = X—N. It is then easy to verify that P and
1=1

N satisfy (a) and (b). We now prove (¢); our argument is simpler than
Krengel’s in [11]. Since P is T-closed if and only if its complement N is
T*-closed, we need only to show that T*1y = 0 on P. By the monotone
continuity property of 7" (cf. Neveu [13], p. 187), we have

T*1, = 11;111’*(5 1x,-);

thus, it is sufficient to show that T 1x, = 0 on P for each . Assume
™ 1x,# 0 on P for some 4. Then there is an ¢ > 0 and a set A ¢ P with
#(4) > 0 such that T"1x. > ¢ on A. It follows that Ty, > e T™1,
for every n. This yields the contradiction M [T"u(X,)]1> ¢ M [T" u(4)] >o.
Thus, P is T-closed.
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We now assume X = Y!; for the definition of Y! see Section 2.
Thus, there is a bounded function e, 0 < e <1, such that T%¢ = ¢; in
the sequel, e will be assumed chosen and fixed. We introduce an auxiliary
operator V on L, by the relation
(3.3) Vf =e-T(flo). feLi,

and define Vf by linearity for feL,. V is then a positive linear contraction
on L, and for each n, V"f = ¢-T"(f/e) (see [15], p. 4). Proposition 1 applied
to T and V gives the decompositions X = Pp+ N, and X = Py+ Ny
LEMMA 1. Assume X = Y! and let V be defined by (3.3). Then the
decompositions X = Pp+ Ny and X = Pp,+ N, coincide.
Proof. For each ¢ > 0, let B, = {¢ < ¢}. Let A < P, with u(4) > 0.
Since |V|; <1 and 0<e<1, we have

Viu(d) = [V"1 = [V 15+ [V,
4 A A &
< [ Vg4 [eTr(1, e
X A €

< u(B)+(1/e): [T < w(B)+(1/e)- [T
4 A

€

for each ¢ > 0 and each n. Since ¢ > 0, for each 4 > 0 there is an ¢ > 0
such that u(E,) < 6, and hence
(3.4) Viu(4)< 0+ (1/e)- T"u(4)

which implies M [T" u(4)] > 0. It easily follows that A = P, and Py < Py.
We next let A < P, with u(A) > 0. Since u(E,) -0 as ¢ — 0, there
exists an ¢ > 0 such that u(4 N EY) > 0, and

Viu(A) =V u(A nE) = [ eT"(1]e)
Ar\Eg
>e [ T"1 =T u(d 0 E)
Ar\E'i
for each n. It follows that M[V"u(A)]> e M[T"u(A N EJ)] >0 and
A c Py. Hence, Py < Py.
For a sub-Markovian operator T on L,, the following conditions

(0), (i), (i1) have been proved to be equivalent in [3] and [14]. Here we
replace |T|; <1 by (b,).

THEOREM 2. Let T be a semi- Markovian operator on L, and assume
X = Y. Then the following conditions are equivalent:

(0) There exists a function feL; with f >0 and Tf = f.
(i) u(A4) > 0 implies inf T"u(A) >0, Ae .

(i) u(4) >0 implies M[T"u(A4)] >0, Ae .



80 H. FONG

Proof. We introduce a third condition:

(iii) u(A4) > 0 tmplies m[T"u(A)] > 0, Ae .

Our proof follows the scheme (0) = (ii) = (i) = (iii) = (0). The
implication (i) = (iii) is obvious.

Part I. (0) = (ii). Assume that there is a function feL, such that
f>0 and Tf =f. Let g = f-e; then geL,,9g >0, and Vg = g¢. Since
V is sub-Markovian, by [3] or [14], X = Py; thus, by Lemma 1, X = P,.

Part II. (ii) = (i). Assume condition (ii); i.e., X = P,. By Lemma 1,
X = Py; since |V|, <1, the condition X = PV is equivalent ([3] or
[14]) to

(3.5) u(A)>0 implies infV u(4)>0, Aeo.

Relations (3.4i) and (3.5) together imply that condition (i) holds.
Part III. (iii)=(0). In [3], the authors showed that (iii) implies
that there exists a measure » equivalent with x4 with T** » <v; their
proof does not assume |7|, <1. Let f = dv/du; then feL,,f >0, and
Tf < f. The following standard argument shows that if 7' is conservative
on L,, then Tf = f. Indeed, let ¢ = f—Tf; we have geL,,g >0, and

[ 3 T = [5-[T< fr< oo

for every n. Thus, ¢ = 0. It remains only to show that 7' is conservative.
Since Hopf’s decomposition is valid on Y', hence on X (cf. [15], Theorem
2), it is sufficient to show that 7,1 = co on X. Since (iii) = (ii), for
each set E with u(E)> 0, we have

[UT*" 150> M[[ T 1] = M| [11] > 0.
‘ E

It follows that )Y T*™1; = co on a set of positive u-measure. If
n=0

{T,1 < oo} # @, then there is a constant a > 0 such that u{T,1<a} > 0.
Set £ = {T,1< a}; then

(3.6) fZT*’lE_J
E

which is a contradiction since the first term in (3.6) tends to infinity as
n — oo,

T'1<auEB)<oo, n=0,1,2,...,
i=0

(]

PROPOSITION 2. Let T be a semi- Markovian operator on Ly, satisfying
condition (b;). Assume X = Y'. Then there is a non-negative function
feL, with f>0 on P and Tf = f.
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Proof. Assume X = Y'; by Lemma 1, P, = P,, which we denote
simply by P. Define an operator 7’ on L,(P,P n &, u) by the relation

(3.7) T'f =Tf, feL.(P).

Clearly, T" satisfies condition (b,) on L,(P). The adjoint T™* of T"
is given by the relation

(3.8) T*h =1p-T*h, heL, (P).

V' and V'* are defined similarly. Proposition 1 applied to T and
V' gives the decompositions P = Pp+ Ny and P = Pp.+ N,.. Since
|V]; <1 on L,, there is a non-negative function f,eL, with f, >0 on
P and Vf, = f, (cf. Krengel [11], Theorem 1); equivalently, f, is a positive
invariant function in L,(P) for the sub-Markovian operator V’. Hence
P = P,.. Recalling that T*¢ = T*(¢p+ey) = ¢p+6€y and that N is
T*-closed, we have T"*e¢p = 1pT"ep = ¢p. Thus the space P is seen to
be Y' for T'. Moreover, since

Vf=Vf=eT(fle)=epT(flep), feLf(P),

Lemma 1 shows that 7’ and V' give rise to identical decompositions:
P = Py, = Pp. Theorem 2 applied to 7' shows that there is a function
feL,(P) with f >0 and T'f = f. This proves the proposition.

The following theorem, due in the sub-Markovian case to Dean and
Sucheston [3], relates the existence of T-invariant functions to the unique-
ness of Banach limits on sequences T™u(A).

THEOREM 3. Let T be a semi-Markovian operator on L,. Assume
X = YL If T has a positive invariant function, then for each set A all Banach
limits of the sequence T™ u(A) coincide; if A(A) is their common value, then

n—1
(3.9) AMA) =limn™! ' T u(A)  wniformly in j,
n i=0

and dAldu is a positive inwariant function. Conversely, if for each set A,
all Banach limits on the sequence T" u(A) coincide and if T is conservative,
then T has a positive invariant function.

Proof. Assume that there is a positive invariant function f,. Hopf’s
decomposition holds on Y! (c¢f. [15], Theorem 2), and hence on X; thus

T is conservative since {7 f, = oo} = X. Let L be a Banach limit and
set

(3.10) A(h) = L[ [T*R], heLy.

It is clear that A defines a positive continuous linear functional on L, .

Collocuium Mathematicum XXII.1 8
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Writing A(A4) for A(1,), Ae o/, A is seen to be a u-continuous measure
(see [3], Theorem 3). Let f = dAi/du. Then feL,,

(3.11) Ak) = [fh, heLy,

and it follows from the shift-invariance of L that 7'f = f. Set F' = {f = 0};
then u(F) = 0, for otherwise it would follow from Theorem 2 that A(¥) > 0.
Hence f is a positive invariant function. If L’ is another Banach limit,
then the same argument shows that

(3.12) ¥y =L[[T"h] = [fh, helL,

where f'eL,, f >0, and Tf =f. Since X = Y' and T is conservative,
the ratio ergodic theorem shows that

(3.13) —hmn—lZz"f E(ff Z//?) f!

where € is the o-algebra of T-closed, and hence T*-closed, sets (cf. [15],
Theorem 2). Thus f = g¢g-f' ) where g is a #-measurable function. If 4 %,
then both A and A° are T™-closed; thus T*¢, = e, and

(3.14) fgf e = Aley) = M (ey) = ff e, Ae%.

Since ef' > 0 and ¢ is ¥-measurable, (3.14) shows that g =1 and
f = f'. This proves the first part of the theorem. To prove the second
part, we proceed as in [3] to obtain a u-continuous measure 4, where
A(4) is the Cesaro limit of the sequence T"u(4). Let f = di/du; it is
easy to see that Tf = f. Set F = {f = 0}; then both F and F° are T™-closed,
and thus TY¢;, = er. If u(F) > 0, then we arrive at the contradiction:

n—1
A(F) >lin}linfn“§ [T = [ ep>0.
¢
Thus, f is a positive invatriant function of 7.

4. An example. Let (X, o/, u) be a discrete measure space, where
X ={0,1,2,...} and y is the counting measure on . A function
f = (fo) f1syf2y ...) 18 in L, if and only if ) |f;| < co. Define an operator
T on L, by

qu j=0’

(Tf), = &

Jiv1s j=1.
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It follows that for each n > 0,

and that

(T*f);= =
f7+’n7 .72 17
T fli<2- DIfl <2 Ifl

Thus sup|T"|, < 2 and lim |T"f|, = 0 for every fe¢L,; hence, X = Z1.
n n

Consider the function g = (g;) with ¢, =1/i%4¢>1, and g, = 0. Then
geL, and (Tsg)y = co. On the other hand, for every non-negative,
non-vanishing function f which vanishes on all but a finite of points
we have 0 < (T'.f)e < oo. Hence Hopf’s decomposition does not hold
on the singleton set {0}.
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