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WIENER'S TEST FOR THE BROWNIAN MOTION
ON THE HEISENBERG GROUP
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. JACEK CYGAN (WROCLAW)

We prove here Wiener’s test formulated in the complete' analogy
with the one for standard Brownian motion on R? (d > 3) (see [6], p. 257).
Some other analogies with the group R? are also indicated.

1. Let H; be the Heisenberg group (of degree d), i.e. the nilpotent
Lie group whose underlying manifold is 0% x R with coordinates (z,, ..., 2g, t)
= (2, t) and whose group law is

d
(2,8)(2'y¥') = (¢ +2',t+¥4+2Imz-2'), where 22’ =2z,§;.
1

.

We introduce the group {4,: 0 < r < oo} of dilations on H, defined
by é,(z2,t) = (rz, r%t) which satisfy the distributive law

8, (2, 8)(2'y ¥)) = (8,(2, ¥))(,(', ),
and we define the norm fumction ¢ by
o(z, 1) = (J2|*+#)", where |2|2 = 2-2.

This function satisfies ¢(d,(2, ¥)) = ro(z, #) (see [2] and [3]).
Let 2 = x+4y. Then, ®y,...,%4,Yy,..., Yz, ¢ are Teal coordinates
on H;. We set

0 0 0 0
Xj = -a_m:"'l‘2yj-a—t and Yj =-a?j —250]-5‘—,

where X,,..., X4, ¥,,..., ¥; generate the Lie algebra of H;. We put

d
L =) (Xj+T)),
i=1 -
L being a left-invariant second-order differential operator on H,;. Accord-
ing to the result of Folland [2], L is subelliptic (hence hypoelliptic)
and ¢;0 2% is the fundamental solution for L with source at 0 (¢; is & suit-
able constant depending only on d). '
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We shall denote bj P, (u) the fundamental solution for

0 1
'a—s —2—L (86(0, oo),ueHd).

It is a non-negative function of class C*((0, oo) x H,), tending to
zero (for every fixed s € (0, o0)) as u tends to infinity, and

(1) Jps(wydu =1
Hg

(dw stands for the ordinary Lebesgue measure on H,; ~ R***'). Since
d,eL = 2L, we have

Ps(u) = 3—(d+l).p1 (6,—112 ('“))

(for facts concerning functions p, see [4] and the references therein).
PropoOSITION 1. We have

fp,(u)ds = 20,0 %%(u), weH,.
0
Proof. (i) The function
g(u) = [ p,(u)ds
: X

is locally integrable on H,;. For, let K < H;be compact; then for 0 < << oo
we hgve

oo i o
ffp,(u)dsdu = ffp,(u)dsdu-}— ffps(“)d-?d’w
0 K 0 K

f D (u)duds + f f §@p, (8 _y15(u)) dsdu
K K ¢

<

I
o T — L N

[ (w)duds+ [ [ =@ V|p | dsdu = t+|K|d" 1% |[pyllo, < oo
Hg K t

(ii) Using a standard method (see, e.g., [10], p. 196) we infer that 2~'g
is & fundamental solution for L.

(iii) g is & homogeneous function of degree —2d (see [3], p. 446), i.e.
g(8,(w)) = r~2%g(u) (the same is obviously true for oz07%). Indeed, wo
have

t

9(8(w) = [ py(8(w))ds = [ rCHIp__,(u)de

= [ r e p, (u)rrds = r~*g(u),
0
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since
D, (8,(w)) = s~CFIp, (5 ., (8, (w)))
= 87 py (8,1 (w)) = r~CTp _, (u).

(iv) If we put T =2"'g—c 0% then T is a (distribution) solution
of LT = 0. Since L is hypoelliptic, we have T € 0*(H,;). Because of (iii),

T(u) = r°T(8,(u)), wueHz; r>0.
Thus T(u) = 0 for u € H;.

2. Let y be a left-invariant Brownian motion on H; associated with
Xy ooy Xgy ¥y, ..., X4, 1.e. the diffusion process on H,; with differential
generator 3 L (see [9]). Its transition probability density p(s, u, v) (rela-
tive to the Haar measure on H,; which is the ordinary Lebesgue measure
in our case) is equal to p,(u'v) for u, v'c H;.

PROPOSITION 2. y 8 a transient diffusion, i.e. for every compact B in H,
we have ‘

(2) limP,[y(s) € B for some 8 >t] = 0.

t—o00

Note that the proof of Port and Stone ([8], p. 162, Proposition 5.1,
and p. 145 and 146) works for this case as well as for the case of Brownian
motion in R? (d > 3), so we shall restrict ourselves only to proving the
following . *

LemMmA 1 (cf. [8], (5.12), p. 162). For every compact set B there are
a compact sét K of positive measure and a constant n > 0 such that

inf infP,[y(8) e K] =95> 0.
0<e<1 beB

Proof. (i) p, > 0and (1) imply that there is a ball M (i.e. M = {u e H;:
o(u) < r} for some r > 0) in H; such that
[ pr(w)du = 5> 0.
M

(ii) For given compact subsets B and M of H, there is a compact K
such that, for every'be B, M — b~'K (take K such that B-M c K).

(iii) We have

0 €K = [ 07000 = [005,0_0" )
K K
= f 8-(d+l)p1(d,—1lz (6™ LI (u)) du
K

= [87@+p,(0)s* o> [py(v)dv =1,
A ' M
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where
4 = 6,—1/2(1’_1) 68—1/2(K) = 68-1/2 (b—lK)-

Thus, since M is d-convex, we obtain

A>N&O'E)> N6 (M)> M, r=s" 0<s<]1.
r>1 r=1

For 8 = 0 we have P,[y(s) e K] =1, since B c K.

3. Now, by potential of a measurc u (4 > 0) we mean a function Gu
on H; constructed as follows:

(Gp)(w) = [g(u,v)p(dv) with g(u,v) = 2c,07>(u""v), u,veH,.
Hg

Let K c H; be a compact set, and M (K) all non-negative measures
with supports in K whose potentials are bounded from above by 1. We
call the capacity of K the number

O(K) = sup{p(K): 4 M(K)}.

The following properties of the capacity function C(-) are immediate
consequences of the properties of the function g.

PRrOPOSITION 3 (cf. [8], Theorem 6.4, p. 169).
C(ud) =C(4), wueH,,
0(3,(4)) = 0(4), 7>,
€(4™Y) = 0(4).

From the probabilistic potential theory of Hunt (see [1]) it follows,
in view of Propositions 1 and 2, that there is a measure ux € M (K) such
that CO(K) = ux(H;) and we have

(3) P [mg < +o0] = [g(t, 0)ug(d) (=pg(w),
Hg

where mjg is a hitting time of K (compact), € H;.
We have the following version of
WIENER’S TEST (cf. [6], p. 128, [6], p. 257, and [7]). For Brownian

motion on Hz, P,(Z) =0 or 1 according as Y 2~™*2(C(B,) converges or
n>1
diverges, where B is a closed set clustering to oo, B, is the intersection of B

with the spherical shell 2! < o(u) < 2", Z is the event that (: y(i) € B)
olusters to + oo, and e 18 the unit element in H,.

A proof that the convergence of the series implies P,(Z) = 0 in view
of (2) and (3) follows exactly the lines indicated in [5] and [6].
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In order to adapt the proof of the converse, the following elementary
lemma and the corollary to it are useful.

LeMMA 2 (cf. [3], Lemma 8.9, p. 449). The norm funetion o4s subaddi-
tive, that is

o(uv) < o(u)+o(v) for all u,ve H,. ’
Proof. We‘ha.ve

a
@ feleae, ) = lg(zj+z})(2_j_‘,;§;)]é +{t4¢ +2Im jzjzj,)z

i=1

d
=([zl’+2§Bez,2}+ 1z'|2)’+(t+t'+21m2d'zﬂ})2

= o'+ 8+ Y1+ 14 2 )20 2 4 288 +-

4(R }d\ 512 : < =\2 z 5
+a{Re 255 +4(Im,§z’”’) +4(Re 357 o1t +

F=1
d d
+4(Im D 4%) t+4(Re Y57 [¢'1*+ 4 (Im Zd‘ AL
J=1 =1 J=1
Using the ineq jalities

(@b 1r0d) < (a®+¢*) (* + @2)2, @, b, 6, deR,

l2-2'| < [2]]2'] < o(zt)e(e, ¥),
we get '

[2]2[2"]2 48’ < [ (z,")’e(z’,.t')”,

a d
(Be 3'52) + (m 3'23)" < o(s, t%0(s, 7y,

J=1 =1
d d -
(Re 3 a7) et +(Im 3 5,%) 1 < (e, t90(e, ),
J=1 J=1
d d
(Rezzﬁ;) 12 + (Im 21 zjz}) V< oz, t)e(e, ¥)3.
=1 =1 .

Substituting these inequalities to equation (4). we obtain the lemma,
COROLLARY. For every u, v e H,; we have

lo(%)— o ()| < o(u'v).

Proof of the converse. If the series is divergent, then

22-(4n+n2d0(3m+j) = +o0  for some j = 0,1, 2, 3.
n>l
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Suppose that the series with j = 2 is divergent. Let
m, = min{t: g(y(t.)) = 2"‘}
be the crossing time (note that (2) implies m, < o0), and let 1, = y(m,)
be the crossing place (n > 1). Then we have (cf. [6], (3), p. 256, and [5],
p. 129)

P,[y(#) € Byy 4, for some ¢ e [m,,m,,,) | By ]
>20, [ [e(R*b) % —E, (e(t:}:0)*) us,, ,,(db)

Byn+2
> 20;0(B,y ,,) [(2* + 2%%+2)~20 _ (2¥n+D) _ gén-t2y-2d]
= 2050(Bypy2) 27 "2 [(4/5)* — (1/3)"] = @,
and, consequently,
dym = Pc[}’(t) ¢ Byjioyt € [My, My, ), n <J< m]
= E[P.[y(t) ¢ Bimyss t € [Mny Mpn 1) | B, ], 7(8) ¢ By
. te[m,,mj_,_l),ngjgm—l]

<1 —Qn)pms < (1—Qp) - (1= Q).

Since
ZQn = +°°!
n>1
we get
Pe[?’(t) ¢ Byjioyte[my,my,),j> '”'] =0,
whence

P,[y(¥)eB,t>=m,] =1 for every n>1

and m,} oo as ntoo because of transience of y. Finally, we notice that
nothing essential changes if the series with j = 0, 1 or 3, at the beginning
of the proof, is divergent.
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