FASC. 2

WIENER'S TEST FOR THE BROWNIAN MOTION ON THE HEISENBERG GROUP

 \mathbf{BY}

JACEK CYGAN (WROCŁAW)

We prove here Wiener's test formulated in the complete analogy with the one for standard Brownian motion on R^d ($d \ge 3$) (see [6], p. 257). Some other analogies with the group R^d are also indicated.

1. Let H_d be the *Heisenberg group* (of degree d), i.e. the nilpotent Lie group whose underlying manifold is $C^d \times R$ with coordinates (z_1, \ldots, z_d, t) = (z, t) and whose group law is

$$(z, t)(z', t') = (z+z', t+t'+2\operatorname{Im} z\cdot z'), \quad \text{where } z\cdot z' = \sum_{1}^{d} z_{j}\bar{z}'_{j}.$$

We introduce the group $\{\delta_r \colon 0 < r < \infty\}$ of dilations on H_d defined by $\delta_r(z, t) = (rz, r^2t)$ which satisfy the distributive law

$$\delta_r((z,t)(z',t')) = (\delta_r(z,t))(\delta_r(z',t')),$$

and we define the norm function ρ by

$$\varrho(z, t) = (|z|^4 + t^2)^{1/4}, \quad \text{where } |z|^2 = z \cdot z.$$

This function satisfies $\varrho(\delta_r(z,t)) = r\varrho(z,t)$ (see [2] and [3]).

Let z = x + iy. Then, $x_1, ..., x_d, y_1, ..., y_d, t$ are real coordinates on H_d . We set

$$X_j = \frac{\partial}{\partial x_i} + 2y_j \frac{\partial}{\partial t}$$
 and $Y_j = \frac{\partial}{\partial y_j} - 2x_j \frac{\partial}{\partial t}$,

where $X_1, \ldots, X_d, Y_1, \ldots, Y_d$ generate the Lie algebra of H_d . We put

$$L = \sum_{i=1}^{d} (X_j^2 + Y_j^2),$$

L being a left-invariant second-order differential operator on H_d . According to the result of Folland [2], L is subclliptic (hence hypoelliptic) and $c_d \varrho^{-2d}$ is the fundamental solution for L with source at 0 (c_d is a suitable constant depending only on d).

We shall denote by $p_s(u)$ the fundamental solution for

$$\frac{\partial}{\partial s} = \frac{1}{2} L \quad (s \in (0, \infty), u \in H_d).$$

It is a non-negative function of class $C^{\infty}((0, \infty) \times H_d)$, tending to zero (for every fixed $s \in (0, \infty)$) as u tends to infinity, and

$$\int\limits_{H_d} p_s(u) du = 1$$

(du stands for the ordinary Lebesgue measure on $H_d \approx R^{2d+1}$). Since $\delta_{s^*}L = s^2L$, we have

$$p_s(u) = s^{-(d+1)}p_1(\delta_{s^{-1/2}}(u))$$

(for facts concerning functions p_s see [4] and the references therein).

PROPOSITION 1. We have

$$\int_{0}^{\infty} p_s(u) ds = 2c_d \varrho^{-2d}(u), \quad u \in H_d.$$

Proof. (i) The function

$$g(u) \equiv \int_{0}^{\infty} p_{s}(u) ds$$

is locally integrable on H_d . For, let $K \subset H_d$ be compact; then for $0 < t < \infty$ we have

$$\int_{K} \int_{0}^{\infty} p_{s}(u) ds du = \int_{K} \int_{0}^{t} p_{s}(u) ds du + \int_{K} \int_{t}^{\infty} p_{s}(u) ds du$$

$$= \int_{0}^{t} \int_{K} p_{s}(u) du ds + \int_{K} \int_{t}^{\infty} s^{-(d+1)} p_{1}(\delta_{s-1/2}(u)) ds du$$

$$\leq \int_{0}^{t} \int_{H_{d}} p_{s}(u) du ds + \int_{K} \int_{t}^{\infty} s^{-(d+1)} ||p_{1}||_{\infty} ds du = t + |K| d^{-1} t^{-d} ||p_{1}||_{\infty} < \infty.$$

- (ii) Using a standard method (see, e.g., [10], p. 196) we infer that $2^{-1}g$ is a fundamental solution for L.
- (iii) g is a homogeneous function of degree -2d (see [3], p. 446), i.e. $g(\delta_r(u)) = r^{-2d}g(u)$ (the same is obviously true for $c_d \varrho^{-2d}$). Indeed, we have

$$g(\delta_r(u)) = \int\limits_0^\infty p_s(\delta_r(u))ds = \int\limits_0^\infty r^{-(2d+2)}p_{sr-2}(u)ds$$

$$= \int\limits_0^\infty r^{-(2d+2)}p_s(u)r^2ds = r^{-2d}g(u),$$

since

$$p_s(\delta_r(u)) = s^{-(2d+2)/2} p_1(\delta_{s^{-1/2}}(\delta_r(u)))$$

= $s^{-(d+1)} p_1(\delta_{(r^{-2}s)^{-1/2}}(u)) = r^{-(2d+2)} p_{r^{-2}s}(u).$

(iv) If we put $T \equiv 2^{-1}g - c_d \varrho^{-2d}$, then T is a (distribution) solution of LT = 0. Since L is hypoelliptic, we have $T \in C^{\infty}(H_d)$. Because of (iii),

$$T(u) = r^{2d}T(\delta_r(u)), \quad u \in H_d, \ r > 0.$$

Thus T(u) = 0 for $u \in H_d$.

2. Let γ be a left-invariant Brownian motion on H_d associated with $X_1, \ldots, X_d, Y_1, \ldots, Y_d$, i.e. the diffusion process on H_d with differential generator $\frac{1}{2}L$ (see [9]). Its transition probability density p(s, u, v) (relative to the Haar measure on H_d which is the ordinary Lebesgue measure in our case) is equal to $p_s(u^{-1}v)$ for $u, v' \in H_d$.

PROPOSITION 2. γ is a transient diffusion, i.e. for every compact B in H_a we have

(2)
$$\lim_{t\to\infty} P_u[\gamma(s) \in B \text{ for some } s>t] = 0.$$

Note that the proof of Port and Stone ([8], p. 162, Proposition 5.1, and p. 145 and 146) works for this case as well as for the case of Brownian motion in \mathbb{R}^d $(d \geq 3)$, so we shall restrict ourselves only to proving the following

LEMMA 1 (cf. [8], (5.12), p. 162). For every compact set B there are a compact set K of positive measure and a constant $\eta > 0$ such that

$$\inf_{0 \le s \le 1} \inf_{b \in B} \mathbf{P}_b[\gamma(s) \in K] = \eta > 0.$$

Proof. (i) $p_1 \ge 0$ and (1) imply that there is a ball M (i.e. $M = \{u \in H_d: \varrho(u) \le r\}$ for some r > 0) in H_d such that

$$\int\limits_{M} p_1(u) du = \eta > 0.$$

- (ii) For given compact subsets B and M of H_d there is a compact K such that, for every $b \in B$, $M \subset b^{-1}K$ (take K such that $B \cdot M \subset K$).
 - (iii) We have

$$\begin{split} \mathbf{P}_{b}[\gamma(s) \in K] &= \int\limits_{K} p_{s}(b^{-1}u) du = \int\limits_{K} s^{-(d+1)} p_{1}(\delta_{s^{-1/2}}(b^{-1}u)) du \\ &= \int\limits_{K} s^{-(d+1)} p_{1}(\delta_{s^{-1/2}}(b^{-1}) \delta_{s^{-1/2}}(u)) du \\ &= \int\limits_{K} s^{-(d+1)} p_{1}(v) s^{d+1} dv \geqslant \int\limits_{M} p_{1}(v) dv = \eta, \end{split}$$

where

$$A = \delta_{s^{-1/2}}(b^{-1})\delta_{s^{-1/2}}(K) = \delta_{s^{-1/2}}(b^{-1}K).$$

Thus, since M is δ -convex, we obtain

$$A \supset \bigcap_{r\geqslant 1} \delta_r(b^{-1}K) \supset \bigcap_{r\geqslant 1} \delta_r(M) \supset M, \quad r = s^{-1/2}, \ 0 < s \leqslant 1.$$

For s = 0 we have $P_b[\gamma(s) \in K] = 1$, since $B \subset K$.

3. Now, by *potential* of a measure μ ($\mu \ge 0$) we mean a function $G\mu$ on H_d constructed as follows:

$$(G\mu)(u) = \int\limits_{H_d} g(u, v) \mu(dv) \quad ext{ with } g(u, v) = 2c_d \, \varrho^{-2d}(u^{-1}v), \ u, v \in H_d.$$

Let $K \subset H_d$ be a compact set, and M(K) all non-negative measures with supports in K whose potentials are bounded from above by 1. We call the *capacity* of K the number

$$C(K) = \sup \{\mu(K) \colon \mu \in M(K)\}.$$

The following properties of the capacity function $C(\cdot)$ are immediate consequences of the properties of the function g.

Proposition 3 (cf. [8], Theorem 6.4, p. 169).

$$C(uA) = C(A), \quad u \in H_d,$$
 $C(\delta_r(A)) = r^{2d}C(A), \quad r > 0,$ $C(A^{-1}) = C(A).$

From the probabilistic potential theory of Hunt (see [1]) it follows, in view of Propositions 1 and 2, that there is a measure $\mu_K \in M(K)$ such that $C(K) = \mu_K(H_d)$ and we have

(3)
$$P_u[m_K < +\infty] = \int_{H_d} g(u,v) \mu_K(dv) \ (\equiv p_K(u)),$$

where m_K is a hitting time of K (compact), $u \in H_d$.

We have the following version of

WIENER'S TEST (cf. [5], p. 128, [6], p. 257, and [7]). For Brownian motion on H_d , $P_e(Z) = 0$ or 1 according as $\sum_{n \ge 1} 2^{-n \cdot 2d} C(B_n)$ converges or diverges, where B is a closed set clustering to ∞ , B_n is the intersection of B with the spherical shell $2^{n-1} \le \varrho(u) \le 2^n$, Z is the event that $(t: \gamma(t) \in B)$ clusters to $+\infty$, and e is the unit element in H_d .

A proof that the convergence of the series implies $P_e(Z) = 0$ in view of (2) and (3) follows exactly the lines indicated in [5] and [6].

In order to adapt the proof of the converse, the following elementary lemma and the corollary to it are useful.

LEMMA 2 (cf. [3], Lemma 8.9, p. 449). The norm function ϱ is subadditive, that is

$$\varrho(uv) \leqslant \varrho(u) + \varrho(v)$$
 for all $u, v \in H_d$.

Proof. We have

$$(4) \qquad [\varrho((z,t)(z',t'))]^{4} = \Big| \sum_{j=1}^{d} (z_{j} + z'_{j})(\bar{z}_{j} + \bar{z}'_{j}) \Big|^{2} + (t+t'+2\operatorname{Im} \sum_{j=1}^{d} z_{j}\bar{z}'_{j})^{2}$$

$$= (|z|^{2} + 2\sum_{j=1}^{d} \operatorname{Re} z_{j}\bar{z}'_{j} + |z'|^{2})^{2} + (t+t'+2\operatorname{Im} \sum_{j=1}^{d} z_{j}\bar{z}'_{j})^{2}$$

$$= |z|^{4} + t^{2} + |z''|^{4} + t'^{2} + 2|z|^{2}|z'|^{2} + 2tt' +$$

$$+ 4\left(\operatorname{Re} \sum_{j=1}^{d} z_{j}\bar{z}'_{j}\right)^{2} + 4\left(\operatorname{Im} \sum_{j=1}^{d} z_{j}\bar{z}'_{j}\right)^{2} + 4\left(\operatorname{Re} \sum_{j=1}^{d} z_{j}\bar{z}'_{j}\right)|z|^{2} +$$

$$+ 4\left(\operatorname{Im} \sum_{j=1}^{d} z_{j}\bar{z}'_{j}\right)t + 4\left(\operatorname{Re} \sum_{j=1}^{d} z_{j}\bar{z}'_{j}\right)|z'|^{2} + 4\left(\operatorname{Im} \sum_{j=1}^{d} z_{j}\bar{z}'_{j}\right)t'.$$

Using the inequalities

$$(ab+cd) \leqslant (a^2+c^2)(b^2+d^2)^{1/2}, \quad a, b, c, d \in R,$$
 $|z\cdot z'| \leqslant |z|\,|z'| \leqslant \varrho(z,t)\,\varrho(z',t'),$

we get

$$|z|^2 |z'|^2 + tt' \leqslant \varrho(z,t)^2 \varrho(z',t')^2,$$
 $\left(\operatorname{Re} \sum_{j=1}^d z_j \bar{z}_j'\right)^2 + \left(\operatorname{Im} \sum_{j=1}^d z_j \bar{z}_j'\right)^2 \leqslant \varrho(z,t)^2 \varrho(z',t')^2,$
 $\left(\operatorname{Re} \sum_{j=1}^d z_j \bar{z}_j'\right) |z|^2 + \left(\operatorname{Im} \sum_{j=1}^d z_j \bar{z}_j'\right) t \leqslant \varrho(z,t)^3 \varrho(z',t'),$
 $\left(\operatorname{Re} \sum_{j=1}^d z_j \bar{z}_j'\right) |z'|^2 + \left(\operatorname{Im} \sum_{j=1}^d z_j \bar{z}_j'\right) t' \leqslant \varrho(z,t) \varrho(z',t')^3.$

Substituting these inequalities to equation (4) we obtain the lemma. COROLLARY. For every $u, v \in H_d$ we have

$$|\varrho(u)-\varrho(v)|\leqslant \varrho(u^{-1}v).$$

Proof of the converse. If the series is divergent, then

$$\sum_{n>1} 2^{-(4n+j)2d} C(B_{4n+j}) = +\infty \quad \text{for some } j = 0, 1, 2, 3.$$

Suppose that the series with j = 2 is divergent. Let

$$m_n = \min\{t: \varrho(\gamma(t)) = 2^{4n}\}$$

be the crossing time (note that (2) implies $m_n < \infty$), and let $l_n = \gamma(m_n)$ be the crossing place $(n \ge 1)$. Then we have (cf. [6], (3), p. 256, and [5], p. 129)

$$\begin{split} \mathbf{P}_e \big[\gamma(t) \in B_{4n+2} \ \text{for some} \ t \in [m_n, \, m_{n+1}) \mid B_{m_n} \big] \\ & \geqslant 2 c_d \int\limits_{B_{4n+2}} \big[\varrho (l_n^{-1} b)^{-2d} - \mathbf{E}_{l_n} \big(\varrho (l_{n+1}^{-1} b)^{-2d} \big) \big] \mu_{B_{4n+2}}(db) \\ & \geqslant 2 \, c_d \, C(B_{4n+2}) \big[(2^{4n} + 2^{4n+2})^{-2d} - (2^{4(n+1)} - 2^{4n+2})^{-2d} \big] \\ & = 2 \, c_d \, C(B_{4n+2}) 2^{-(4n+2)2d} \big[(4/5)^{2d} - (1/3)^{2d} \big] \equiv Q_n \end{split}$$

and, consequently,

$$\begin{split} d_{n,m} & \equiv \mathrm{P}_{e} \big[\gamma(t) \notin B_{4j+2}, \, t \in [m_{j}, \, m_{j+1}), \, n \leqslant j \leqslant m \big] \\ & = \mathrm{E}_{e} \big[\mathrm{P}_{e} \big[\gamma(t) \notin B_{4m+2}, \, t \in [m_{m}, \, m_{m+1}) \mid B_{m_{m}} \big], \, \gamma(t) \notin B_{4j+2}, \\ & \qquad \qquad \qquad \qquad \qquad t \in [m_{j}, \, m_{j+1}), \, n \leqslant j \leqslant m-1 \big] \\ & \leqslant (1-Q_{m}) d_{n,m-1} \leqslant (1-Q_{m}) \dots (1-Q_{n+1}). \end{split}$$

Since

$$\sum_{n\geqslant 1}Q_n=+\infty,$$

we get

$$P_e[\gamma(t) \notin B_{4j+2}, t \in [m_j, m_{j+1}), j \geqslant n] = 0,$$

whence

$$P_{e}[\gamma(t) \in B, t \geqslant m_{n}] = 1$$
 for every $n \geqslant 1$

and $m_n \uparrow \infty$ as $n \uparrow \infty$ because of transience of γ . Finally, we notice that nothing essential changes if the series with j = 0, 1 or 3, at the beginning of the proof, is divergent.

REFERENCES

- [1] R. Blumenthal and R. Getoor, Markov processes and potential theory, New York 1968.
- [2] G. B. Folland, A fundamental solution for a subelliptic operator, Bulletin of the American Mathematical Society 79 (1973), p. 373-376.
- [3] and E. M. Stein, Estimates for the $\overline{\partial}_b$ complex and analysis on the Heisenberg group, Communications on Pure and Applied Mathematics 27 (1974), p. 429-522.
- [4] A. Hulanicki, Commutative subalgebra of L¹(G) associated with a subelliptic operator on a Lie group G, Bulletin of the American Mathematical Society 81 (1975), p. 121-124.

- [5] K. Itô and H. P. McKean, Jr., Potentials and the random walk, Illinois Journal of Mathematics 4 (1960), p. 119-132.
- [6] Diffusion processes and their sample paths, Berlin Heidelberg New York 1974.
- [7] J. Lamperti, Wiener's test and Markov chains, Journal of Mathematical Analysis and Applications 6 (1963), p. 58-66.
- [8] S. Port and C. Stone, Classical potential theory and Brownian motion, Proceedings of the 6th Berkeley Symposium on Mathematical Statistics and Probability 3 (1970), p. 143-176.
- [9] B. Roynette, Croissance et mouvements browniens d'un groupe de Lie nilpotent et simplement connexe, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 32 (1975), p. 133-138.
- [10] В. С. Владимиров, Уравнения математической физики, Москва 1971.

MATHEMATICAL INSTITUTE
POLISH ACADEMY OF SCIENCES, WROCŁAW

Reçu par la Rédaction le 15. 10. 1976