MEAN WITH RESPECT TO A MAP

BY

G. J. MICHAELIDES (TAMPA, FLORIDA)

An \(n \)-mean on a space \(X \) is a continuous function (map) \(m: X^n \to X \), where \(X^n = X \times X \times \cdots \times X \) (the \(n \)-fold Cartesian product of \(X \)), satisfying the following two conditions:

1. \(m(x, x, \ldots, x) = x \) for every \(x \in X \);
2. \(m(x_1, x_2, \ldots, x_n) = m(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}) \) for each \(n \)-tuple \((x_1, x_2, \ldots, x_n) \in X^n \), \(\sigma \) being an element of the symmetric group \(S_n \) of \(n \) elements, i.e., \(\sigma \) is a permutation of the set \(\{1, 2, \ldots, n\} \).

A space with a mean (admitting a mean) is called an \(m \)-space (for \(m \)-spaces see [1]-[8]). We now introduce a new idea, i.e. a mean with respect to a map.

Definition 1. Let \(X \) and \(Y \) be topological spaces and let \(f: X \to Y \) be a map. We say that \(m: X^n \to Y \) is an \(n \)-mean with respect to \(f \) if \(m \) is continuous and satisfies the following two conditions:

1. \(m(x, x, \ldots, x) = f(x) \) for every \(x \in X \);
2. \(m(x_1, x_2, \ldots, x_n) = m(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}) \) for every \((x_1, x_2, \ldots, x_n) \) in \(X^n \) and for every \(\sigma \in S_n \).

If \(X = Y \) and \(f = id_X \) (identity map on \(X \)), then Definition 1 coincides with the usual definition of a mean on \(X \). For a constant map \(f \), \(m \) always exists, and this is the trivial case where \(m \) is constant. If \(X \) is homeomorphic to \(Y \) and \(f \) is a homeomorphism, then a mean with respect to \(f \) induces a mean on \(X \), namely \(f^{-1}m \), so that both \(X \) and \(Y \) are \(m \)-spaces. For further clarification we give the following two examples:

Example 1. Let \(X = I = [0, 1], \ Y = S^1 \) (the unit circle in the plane) and let \(f: I \to S^1 \) be the map \(f(t) = (\cos 2\pi t, \sin 2\pi t) \). Let \(\mu: I \to I \) be the arithmetic mean. If \(m = f\mu \), then \(m \) is an \(n \)-mean with respect to \(f \) as it can easily be verified.

Example 2. Let \(X \) and \(Y \) be finite polyhedra, \(Y \) convex, and let \(f: X \to Y \) be a piecewise linear map such that \(f(X) \) is not a convex subset of \(Y \). We define \(m(x_1, x_2, \ldots, x_n) \) to be the barycenter of \(f(x_1), f(x_2), \ldots, f(x_n) \). Then \(m \) is an \(n \)-mean with respect to \(f \).
It should be noted that in each of these two examples either X or Y is an m-space. In such cases the existence of a mean with respect to a map f is guaranteed by the following

Proposition 1. Let X and Y be topological spaces and let $f: X \to Y$ be continuous. If either X or Y admits a mean, then there exists a mean with respect to f.

Proof. Suppose that X admits a mean $\mu: X^n \to X$ and that $f: X \to Y$ is continuous. The map $m = f\mu$ is obviously a mean with respect to f.

If, on the other hand, Y admits a mean μ', then $m' = \mu'f^n$ is a mean with respect to f.

In view of Proposition 1 a question arises as to whether a mean with respect to f exists if neither X nor Y is an m-space. The affirmative answer to this question is provided by the following example:

Let $X = Y = S^1$, where $S^1 = \{z \in C : |z| = 1\}$. Let $f: S^1 \to S^1$ be defined by $f(z) = z^2$. Since S^1 is an Abelian topological group, the multiplication $m(z_1, z_2) = z_1z_2$ is continuous and $m(z_1, z_2) = m(z_2, z_1)$. Moreover, $m(z, z) = f(z)$ so that m is a mean with respect to f.

The converse of Proposition 1 is not true as the above-given example shows, since S^1 is not an m-space [1]. However, in Proposition 2 we give necessary conditions on f in order that Y is an m-space; and in Proposition 3 we examine conditions under which a covering space X is an m-space if there is a mean with respect to the projection map $p: X \to Y$.

Proposition 2. Let μ be an n-mean with respect to a map $f: X \to Y$, where f is open and onto. If for any two n-tuples (x_1, x_2, \ldots, x_n) and $(x'_1, x'_2, \ldots, x'_n)$ in X^n such that $f(x_i) = f(x'_i)$ for some permutation $\sigma \in S_n$ we have $\mu(x_1, x_2, \ldots, x_n) = \mu(x'_1, x'_2, \ldots, x'_n)$, then Y admits an n-mean.

Proof. Since f is onto, for each $y \in Y$ there is an $x \in X$ such that $f(x) = y$. Let $(y_1, y_2, \ldots, y_n) \in Y^n$ and define $m: Y^n \to Y$ by

$$m(y_1, y_2, \ldots, y_n) = \mu(x_1, x_2, \ldots, x_n), \quad \text{where} \quad y_i = f(x_i).$$

We shall show that m is an n-mean on Y.

First we show m is well defined. Let (x_1, x_2, \ldots, x_n) and $(x'_1, x'_2, \ldots, x'_n)$ be two n-tuples in X^n such that $f(x_i) = f(x'_i)$. Then $\mu(x_1, x_2, \ldots, x_n) = \mu(x'_1, x'_2, \ldots, x'_n)$ since $f(x_i) = f(x'_i)$. Here we take σ to be the identity permutation in S_n. Hence $m(y_1, y_2, \ldots, y_n) = \mu(x_1, x_2, \ldots, x_n)$ is a unique point in Y and m is well defined.

To show continuity we observe that, by the definition of m, we have $\mu = mf^n$. If U is an open subset of Y, then $\mu^{-1}(U) = (f^n)^{-1}m^{-1}(U)$ is open in X^n by the continuity of μ. Since f is open, f^n is also open, and since f is onto, $(f^n)^{-1}m^{-1}(U) = m^{-1}(U)$ is open. Therefore, f is continuous.

We now show that m satisfies the conditions for a mean.
1. If \(y \in Y \) and \(x \in X \) are such that \(f(x) = y \), then

\[
m(y, y, \ldots, y) = \mu(x, x, \ldots, x) = f(x) = y.\]

2. Let \((y_1, y_2, \ldots, y_n) \in Y^n\) and let \((y_{\sigma(1)}, y_{\sigma(2)}, \ldots, y_{\sigma(n)})\) be a permutation of \((y_1, y_2, \ldots, y_n)\). Let \((x_1, x_2, \ldots, x_n)\) and \((x'_1, x'_2, \ldots, x'_n)\) be two \(n\)-tuples in \(X^n\) such that \(f(x_i) = y_i\) and \(f(x'_i) = y_{\sigma(i)}\). From the latter equality we obtain \(f(x'_i) = y_i\), where \(\tau = \sigma^{-1}\), and therefore \(f(x_i) = f(x'_i)\). By hypothesis, \(\mu(x_1, x_2, \ldots, x_n) = \mu(x'_1, x'_2, \ldots, x'_n)\). Thus

\[
m(y_{\sigma(1)}, y_{\sigma(2)}, \ldots, y_{\sigma(n)}) = \mu(x_1, x_2, \ldots, x_n) = m(y_1, y_2, \ldots, y_n).\]

Since this is true for every permutation \(\sigma\), \(m\) satisfies the symmetric property of a mean, therefore \(m\) is an \(n\)-mean on \(Y\).

Definition 2. Let \(X\) and \(Y\) be pathwise connected and locally arcwise connected spaces and let \(p: X \to Y\) be continuous. The pair \((X, p)\) is called a covering space of \(Y\) if

1. \(p\) is onto,
2. for each \(x \in X\), there exists an open set \(U\) in \(X\) containing \(x\) such that \(p^{-1}(U)\) is a disjoint union of open sets, each of which maps homeomorphically onto \(U\) by \(p\).

Proposition 3. Let \(X\) be a covering space of \(Y\) and let \(p: X \to Y\) be the projection map. If \(\mu\) is a mean with respect to \(p\) and \(\mu_\pi(X^n) \subset p_\pi(X)\), then \(X\) admits a mean \((\mu_\pi \text{ and } p_\pi \text{ are the homomorphisms induced by } \mu \text{ and } p, \text{ respectively})\).

Proof. Let \(Y_0\) be a point in \(Y\) and let \(* \in p^{-1}(Y_0)\) be a base point of \(X\). By the definition of a covering space, \(X\) is pathwise connected and locally arcwise connected, therefore \(X^n\) is pathwise connected and locally arcwise connected with \((*, *, \ldots, *)\) as a base point. Since \(\mu\) is a mean with respect to \(p\), we have \(\mu(*, *, \ldots, *) = p(*, \ldots, *)\) and because of the condition \(\mu_\pi(X^n) \subset p_\pi(X)\) there is a unique lifting \(m: X^n \to X\) of \(\mu\) such that \(m(*, *, \ldots, *) = *\) and the diagram

\[
\begin{array}{ccc}
X & \xrightarrow{m} & X^n \\
p \downarrow & & \downarrow \mu \\
Y & \xrightarrow{p} & Y
\end{array}
\]

commutes. The map \(m\) is a mean on \(X\). To show this we first prove that \(m(x, x, \ldots, x) = x\) for every \(x \in X\). Let \(x \in X\) and let \(w\) be a path from \(*\) to \(x\). We have \(w(0) = *\) and \(w(1) = x\). If \(i: I \to I^n\) is the imbedding \(i(t) = (t, t, \ldots, t)\), we let

\[
\varphi = mw^n i = m(w \times w \times \ldots \times w) i: [0, 1] \to X.
\]
We have
\[\varphi(0) = m(w \times w \times \ldots \times w) \text{i}(0) = m(w(0), w(0), \ldots, w(0)) = m(*, *, \ldots, *) = * \]
and
\[p\varphi(t) = pm(w(t), w(t), \ldots, w(t)) = \mu(w(t), w(t), \ldots, w(t)) = pw(t) \]
by the commutativity of the diagram above and the fact that \(\mu \) is a mean with respect to \(p \). Since \(p\varphi \) and \(pw \) agree at one point, namely 0, we have
\[\varphi = w \]
and
\[x = w(1) = \varphi(1) = m(w(1), w(1), \ldots, w(1)) = m(x, x, \ldots, x). \]

To show that
\[m(x_1, x_2, \ldots, x_n) = m(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}) \]
we let \((x_1, x_2, \ldots, x_n), (x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}) \in X^n \) and \(\sigma \in S_n \). Let us define \(m: X^n \to X \) by
\[\tilde{m}(x_1, x_2, \ldots, x_n) = m(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}). \]

We observe that
\[\tilde{m}(*, *, \ldots, *) = * \]
and
\[p\tilde{m}(x_1, x_2, \ldots, x_n) = pm(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}) = \mu(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}) \]
\[= \mu(x_1, x_2, \ldots, x_n). \]

But this means that \(\tilde{m} \) is a lifting of \(\mu \). Since
\[m(*, *, \ldots, *) = \tilde{m}(*, *, \ldots, *) \]
by the uniqueness of the lifting \(m = \tilde{m} \), we have
\[m(x_1, x_2, \ldots, x_n) = m(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}). \]

Thus \(m \) is a mean on \(X \).

Corollary 1. Let \(X \) and \(X \) be as in Proposition 3. Let \(\bar{X} \) be an \(m \)-space with a mean \(\bar{m} \) such that \((mp^n)_{*} x_1(X^n) \subseteq p_{*} x_1(X)\). Then \(X \) also admits a mean.

Proof. If we let \(mp^n = \mu \), then \(\mu \) is obviously continuous. Moreover,
\[\mu(x, x, \ldots, x) = m(p(x), p(x), \ldots, p(x)) = p(x) \]
and
\[\mu(x_1, x_2, \ldots, x_n) = m(p(x_1), p(x_2), \ldots, p(x_n)) = m(p(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)})) = \mu(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}) \quad \text{for all } \sigma \in S_n. \]

Thus \(\mu \) is a mean with respect to \(p \), and all assumptions of Proposition 3 are satisfied. Therefore, \(X \) admits a mean.
COROLLARY 2. If \(Y \) in Corollary 1 is an \(m \)-space and \(X \) is its universal covering space, then \(X \) admits a mean.

Proof. Since \(X \) is the universal covering of \(Y \), \(\pi_1(X) \) and \(\pi_1(X^n) \) are both zero. Also \(\mu = mp^\pi \) is easily shown to be a mean with respect to \(p \), and \(\mu \cdot \pi_1(X^n) < p \cdot \pi_1(X) \) since \(\pi_1(X) = \pi_1(X^n) = 0 \). By Proposition 3, \(X \) admits a mean.

REFERENCES

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF SOUTH FLORIDA
TAMPA, FLORIDA

Reçu par la Rédaction le 12. 6. 1978