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1. INTRODUCTION

This‘pa,per* discusses certain ‘“thinness’’ properties of commutative
convolution measure algebras. Most of the paper is devoted to the ‘thin-

ness” of the set B of Gelfand transforms of the commutative convolution
measure algebra B in the set of all continuous functions on the maximal

ideal space 8 of B. Obviously, if F: C — C is continuous and f € B then
Fof ¢ C(S). However, if one demands that Fo f € B then (m general)
restrictions must be placed on F. We say that ¥ opemtes in Bif Uc C,

F: U —~C and Fofe B whenever fe B and f(8) € U. Throughout the
paper the reader is expected to be familiar with the elementary theory
of convolution measure algebras as developed in [13] or the first four
chapters of [9]; in particular, the reader should be aware that B may
be assumed to be an L-subalgebra of the regular Borel measure algebra
M (8) on a commutative bicontinuous compact semigroup S and that S
is the set of continuous semicharacters on § (so § is a semigroup).

A group @ in S is a subset @ which is a group under the (pointwise)
multiplication of 8; a chain of idempotents C in § is a non-empty subset
C < 8 such that z, ye C implies ? = x and is totally ordered under z <y
if xzy = y; a bar in 8 is a non-empty set D < S with a distinguished element
de D such that z, ye D, v =y imply 2y = d and 22 = z.

THEOREM 1. Let B be a commutative convolution measure algebra with

maximal ideal space 8. Suppose F': C — C operates in B and that S contains
groups of arbitrarily large finite cardimality or an infinite group. Then F
is real-analytic in a meighborhood of 0.

* Partially supported by NSF grant GP 32116. Some of these results were
presented at the Conference in Harmonic Analysis held in Jablonna, Poland, in 1972.
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THEOREM 2. Let B be a commutative convolution measure algebra with

maximal ideal space 8. Suppose F: C — C operates in B. Then, for some
constants C > 0 and 6 > 0,

(1.1) |[F(2)| < Clel if l2| < 6

THEOREM 3. Suppose 8 contains an infinite chain of idempotents
and B contains an identity. If F: C — C operates in B, then, for each R > 0,
there exists C > 0 such that

|[F(2) —F(w)| < Cle—w| if ISR, w <R

Remark. Katznelson (see [5], Theorem 2) has proved a similar
theorem.

THEOREM 4. Let B be a semisimple commulative convolution measure
algebra whose maximal ideal space 8 is a chain. Suppose F: R — C is abso-
lutely continuous and that, on each compact interval, F' is essentwlly bounded

and of bounded variation. Then Fopue B for all real pu in B.

In combination with Theorem 3, we see that, if B obeys the hypo-
theses of Theorem 3 and has an identity, then exactly the absolutely

continuous functions with bounded derivatives operate in B.

The preceding three results describe the sparseness of B as a subset
of C(8). The next result describes the sparseness of the image of B (by
the natural injection u > ug, see [13]) in M (8).

THEOREM 5. Leét B be a commutative convolution measure algebra with
structure semigroup S. Suppose that S contains a perfect (non-empty) subset.
Then the natural embedding of B into M (8) does not cover the set M 4z(8)
of discrete measures on S.

Examples are given in Section 6 which show that each of the preceding
results is sharp. Theorem 1 is proved in Section 2, Theorems 2 and 3,
which generalize a result of Ross [7], are proved in Section 3; Theorems 4
and 5 are proved in Sections 4 and 5, respectively, and Section 7 contains
some questions.

Notation otherwise unexplained is that of Rudin’s monograph [8],
or of [13].

2. PROOF OF THEOREM 1

The proof is somewhat involved. We first give some preliminary
lemmas and results (Section 2.1), and then prove the theorem when S
contains an infinite group (Section 2.2). This result is used to extend the
theorem to the case of finite groups G; = S of increasing cardinality
whose identities y; obey ;1% = % (X341 => 2;) (Section 2.3). We then
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prove the theorem when S is discrete (Section 2.4). When 8 is not discrete,
F is shown to be continuous, and this assumption is combined with the
remainder of Section 2.5 to prove the theorem in that case. Thus Theorem 1
is proved for § discrete and S non-discrete, and so it is proved in general.

2.1. Some preliminaries.

LemmA 1. Let f: 8 — C. Then there ewists a ve M (S) with f(y) = [ydy
for all y € 8 iff there is a constant C = 0 such that ¢;, ..., c,e Cand y,, ..., y, 8

imply
(2.1) | o ftr| < 0sup| 3oy (a),
j ze J

and the total variation of v is the infimum of such constants C.
This is the Riesz representation theorem (for the proof see [8], 1.9).
LEMMA 2. Let G < 8 be a group ¢y, ..., ¢,eC, and y,, ..., v, G. Then

(2.2) sup| ,Z o;s()| = sup | jZ 0573(®)|-

Proof. Since the elements of § separate @, if z¢ S and y(x) 7 0 for
some (and hence all) ye G, then y — y(z) is a character on G4, G with the
discrete topology. It is easy to see that there is a continuous multiplicative
map from {ze8: y(z) # 0, all ye G} = 8 to (G;)". Of course, the image
of 8’ is a compact separating subsemigroup of (G;)", and hence equals
(G,)". Since @ is dense in (G;)", the lemma is proved.

A third technical lemma we shall need is the following. A proof can
be extracted from [8], 6.3.

LeMMA 3. If F: C — C is not real-analytic in a neighborhood of zero,
then, for each ¢ > 0 and C > 0, there exisis an integer N = N (¢, C) such
that if E is any abelian group of cardinality at least N, or an arithmetic
progression (containing 0) of length at least N in an abelian group, then there
exists an fe A(E) such that f(0) =0, |If|l < e and |[Fof| = C.

Finally, we make some simplezobserva,tions about finite groups in §.
Each finite group G < § partitions 8 into 1 4 card @ maximal open-closed
sets Xg,..., X,, (m = card@) on each of which every ye(@ is constant.
Let X, be the common zero set. Thus, if 4 is any measure on S, the numbers

(2.3) a, = pu(Xy)y, ooy Gy = pu(Xy,)

completely determine u,.

Let X, = {ze 8: y(x) =1, all ye@}. Then ve M(X;) for 1<j<m
implies »™e M(X,), and ve M(X,) and we M(X,) imply w*ve M(X;).
(These follow from consideration of elements of the supports of the meas-
ures concerned, and from the particular choice of the exponent m = cardG.)
We shall use this notation in Sections 2.3 and 2.5.
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2.2. 8 contains an infinite group. Suppose S contains an infinite
group G'. Then Lemmas 1 and 2 show immediately that fBlG 18 a trans-
lation invariant subalgebra of the algebra B(G;) of Fourier-Stieltjes
transforms on G;. If y is any multiplicative linear funectional on B(G,),
then u — ulg — x(y lg) 18 & multlpllcatlve linear functional on B. Thus,
if F operates in B then F operates in BIG (on its maxxmal ideal space).

We may assume that @ is discrete, even though B]G may not induce
the discrete topology on G. Then 1;"0 = filg, where A is a (necessarily)
weak*-dense L-subalgebra of M((G,;)"). A straightforward application
of the methods of [2] completes the proof; where Lemma 1.6 of [2] is
used, one should apply [3] instead.

2.3. 8 contains G; with increasing supports. We now assume S contains
no infinite group, but does contain finite maximal groups G,,G,,...
of increasing cardinality and with identities y,e Gy, x5¢ G5, ... such that
Xxj41 = x; for j =1,2,... Note that if k> j, then y,G, < G;, since ¢*
is maximal. Thus, for fixed j and ¥ > j, the kernels H,; of the maps G;, — G’
given by y — yx; have increasing cardinality.

We proceed by induction. Choose j(1) so large that (by Lemma,3)
there exists an feA(G,,) such that

||f||A(G,-(1)) < 3f(0) =0 and ”F°f“A(Gj(1)) = 1.

Now apply the remarks at the end of Section 2.1, the definition
of the norm on A4 (Gj;)) and the weak*-density of Bin M( S) to find u,¢ B
such that u, is concentrated on {r: y(x) -f_O for ye Gyl Nl < %,
fdu, =0, and flgy,, = f. Thus if ve M(8) and » = Foj, on Gy, then, by
Lemmas 1 and 2, ||| >

We now assume we have found measures yu,, ..., y,¢ B (n > 1) and
Jj1) < ... <j(n) such that, for 1< k< m<n,

m
(2'4) fdluk = 07 “,uk” < 2—k1 Zﬂilaj(k) = ﬂle]’(k) (1 < k < m),
1

(2'5) ”Foﬁk'Gj(k) ”-A(Gj(k)) 2 k’
(2.6)  u; is concentrated on {x: y(z) # 0, yeGyy).

It follows immediately from (2.4)-(2.6) and Lemmas 1 and 2 that
if ve M(8) has

n
Vg = Fo (Z ‘ulej(k))’

then |v||>k for 1 < k< m, and so |v]| >
Choose j(n +1) = j(n) so large that the kernel H of the map Gy —~
— Gy given by y — xymy has cardinality at least N = N(27"', n+1),
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where N is the integer produced by Lemma 3. Then there exists an fe A (H)
such that |fll4m<27""" f(0) =0, and |Fof| 4z >n+1. Note that
ye H implies y(x) =1 whenever yx;, # 0 Thus, those level sets (see
the end of Section 2.1) X,, ..., X; (k> card H) for Gy, which are not
contained in (the prime subsemigroup) 8, = {z: xju(®) # 0} separate H.
Of course, X, ¢ 8,. (If X, = 8, and zeX;\8§,, then 2™¢ §,, but 2™ X,
if m = card@Gyy.,.) Thus, as for n =1, we can find a measure u,.,c¢B
such that

len-4all < 2~n-1’ fd/‘n+1 =0, .&n+l|Gj(,‘+1) =f,

»
and u,,, is concentrated on {z: x;, () = 0, Yjm+y(®) # 0}. It is then
straightforward to check that (2.4)-(2.6) now hold forL< k< m <n+1.

We set
I =Z.“j€B
1

and see that if ve M(8) has »(y) = Fopu(y) for all ye Gy, then |p||>
Thus Fopie B would imply (by Lemma 1) |[Fopu| = oc. This completes
the proof in this case.

2.4. 8 is discrete. We assume again that S contains no infinite groups,
and that S is discrete. The discreteness of § implies (by a result of Baker
in [1]) that S is a union of compact groups H,, and B is contained in the
algebra generated by the radicals of the L'(H,) and contains the algebra
generated by the algebras L'(H,).

LeEMMA. Under these hypotheses, if H < S is a group with L'(H) < B,
then H 1is finite.

Proof. Let ve B be Haar measure on H restricted to a compact
subset of H with » # 0. Then § discrete implies » e Cy(8). Thus there
are only a finite number of ye S, say y,,...,¥,, such that »(y) = |l|.

Let y = |ysl ... lyal. It A = {ye 8: yy = y}, then A is a group, and
ve 8, #(ly]) # 0, implies yyeA. It is clear that 4 separates H. Thus, if
the support of » generates an infinite group (it must if » is not discrete),
then A is infinite which is a contradiction. Thus, if H is a group with
L'(H) < B, then H is discrete and of torsion.

Let x be the identity of H, and let » = é,¢ B. Then » ¢ Co(8), so
there are only a finite number of v S such that »(y) = »(y)2 = 1. Thus H
must be finite. This completes the proof of the Lemma.

Remark. Note that the proof of the Lemma implies that there
exists a group 4 < § having minimal supports such that A|g = H.

Let H; = S be a sequence of maximal finite groups of increasing
cardinality with L'(H;) < B. Let x; be the identity of H;. As in Section 2.2,
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we choose j(1) so large that there exists an feA(ﬁj(l)) such that

W lactyn < f(O ) =0 and |F°fl|4(ﬂ,(1,)>1-

Choose y,, . ) Vn€ 8 such that {Mla,: 1<i<n} = Hy,. We may
assume that the y’s form a finite group 4, hlch is separated by Hy,,
and so is (isomorphiec to) H,(,) Then there exists a u,e L' (Hyqy) € B
such that |ju,|| < % and g,|, = f. This starts the induction.

We now suppose we have found j(1) < ... <j(n)(n = 1), ptyy ..., ine B

and A,,...,4, < 8 such that, for 1 <k and m < n,
. ¢

(2.7) el <27%  [dw, =0,

(2.8) Zu,uk = (1<k<m)

and °

(2.9) ”F°!“k”A(Ak) =>k+1.
Since

(2"‘ lgl) "€ Co(B),
1

there exists a J so large that if j > J, if y¢ 8 and |x| =1 on H,;, then

x =0 a.e. d(z’:‘ |p,|),
1

tha.t is, y =0 on Hy,)U...UHy,,. (This is immediate from the fact that
Z‘l,ujl has a finite (dlscrete) support.)

Let /1, be the group of elements in § which have minimal supports
and are non-zero on H;. Then the set of non-zero restrictions of elements
of 4,U...uA, to H, generates a finite subgroup A, (taken to be the trivial
subgroup if all elements of all A, are zero on H;) of A; of order bounded
independently of j. Thus, there exists a j > J such that card 4 /4;> N,
where N = N (27"}, n+1) is provided by Lemma 3.

We now choose u,, ¢ L'(H;) < B, so that g,.,(y) =0 if yed;,
Ntngall < 27", @4, is constant on cosets of A;, and |LFo,&||A(A;') >n41.
(441 can be found by standard harmonic analysis arguments; cf. [8],
Chapter 2.) 8et j(n+1) = j, and 4,,, = 4;. It is straightforward to see
that (2.7)-(2.9) bold for 1 <k and m < n. The proof of Theorem 1 now
follows in this case exactly as at the end of Section 2.2.
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2.5. F is continuous. We assume as before that each group G < §
is finite and that 8 is not discrete. A simple but tedious topological argument
shows that 8 not discrete implies F' is continuous. (This requires showing
first that I = {ye 8: y > 0} is not discrete and then using the methods
of Section 3 below.)

We let G; = 8 be maximal groups of increasing cardinality with
identity x;, and let j(1) be so large that there is an fe A (G;,) with ||If|| < },
f(0) = 0,and ||Fof| > 1. As at the end of Section 2.1, we let X,, X,, ..., X,,
(m = cardGy,) be the maximal level sets of Gy,, where X, (X,) is the
common zero (one) set. '

Let »,, ..., 7,e¢ B be probability measures such that »,¢ M(X,),...
coey Ve M(X,,).

Let ze 8 be an accumulation point of {y};>,. Then x>0, since
each y; > 0. Therefore, y = x? (otherwise {4**: ac R} is an infinite group).
It is easy to see (ef. [13], 5.1.5) that if x;, converges to y, then

flxj(a)—'xldﬂ —0 for each ue B.

Indeed, a straightforward computation (using y;q = 0,1,and y = 0,1)
shows that

| Zs@y— 2! = (X — 23) X + (L — %) 23 »
and so

A o — 2148 = fxdﬂ—ij(a)d(xﬂ)+fx,-(a)d(l—x)u'

converges.
Let

b= 22‘"m'“(71+... + )"
n=1
Then, by the above, we may assume y; converges a.e. du to an idem-
potent function ge L™ (u).
We have two cases: first ¢ = 0 a.e. d(vy*...%%,) and, second, ¢ =1
for a set of non-zero (v,*...%,)-measure, in which case

fgdvl...fgdvm = fgd(vlt...*vm) # 0.

(This follows from the a.e. convergence of the multiplicative functions
x;-) In this second case, set dv; = gd(v;xv,*...%v,) for 1 <j< m. In the
first case, set »; = v;*v,*...#y,. Note that no ; is zero.

There exist numbers a,, ..., a, such that if u(X,) = a,,..., u(X,)
= Gy, then ulg =f, and Y|a;| < 3.

Set J

m

ry—1 7

w= D a7ty
1
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Then ||F°ﬁxlall|4(al) > 1, llull < 3, #,(0) =0, and either y; >0 a.e.
du, or y; -1 a.e. du,. ,
Since F is continuous, there is a number ¢, > 0 such that »¢ B and
¥l < & imply that
IFo(py+2)llyey>1 and lu,+2< 3.

We claim that, by modifying the G; and u,, we may assume that
there exists an M, > 0 such that either

(2.10) cardx,(l)Gk < M1 < 00 (1 < k < OO)

or there exists a J such that j > J implies y; = 0 a.e. du,. We now carry
out such a modification.

Suppose lim y,, = 0 a.e. du,. Then choose a J so large that |u,(X,;)] # 0
implies '

[A—gdipl #0  (1<i<m).
X¢

Let dv; = (1 —x;)f:4|n,|, where f; is the characteristic function of X;
for 1 < i< m. We may renormalize the »; so that each has norm one.

Then set
m = Z a;v; .
i

It is clear that u; has the required properties: since y; —4. a.e. dy;,
the y; are converging monotonically to zero. Thus j > J implies y; < g 5
a.e. du,, and so y; =0 a.e. dy;.

Thus, we may assume limy, =1 a.e. du,. Let y< S be an accumula-
tBn point of the y;, so y =1 a.e. du,. We may replace Gjny bY 2Gy,
and may assume that card y;,,@, is still increasing. Thus, we may assume
that y;,Gx = G4 for all k =1,2,... Since the evaluation at points of
the set X,u...uX,, will separate points of G, we may assume that the
elements of @, for each k > j(1) restrict to distinct elements of L*(u,).
(Since we may perturb u, by small amounts, we may assume L'(u,)

separates U xjq)Gx-)
k=35(1) .
Since limy, = y;, 8.e. du,, and since yx, <y, and x, =0, 1,

Ziq) = 0,1, the sequence {y,} must be increasing a.e. du,. Thus, we
may replace y; by .
xe =limy,x ... xxx (limit in 8),

K-
and Gy, by x.G; = G;. Note that y, = y, a.e. du,, and so card@, is in-
creasing.
Now, we may assume

6. = U 1.6
i=k
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If some G, is infinite, then, by Section 2.1, the proof is complete.
If all @, are finite, we are in the situation of Section 2.3, and in that case
Theorem 1 is proved. Thus we see that we may assume card y;,, G, < M,
< oo for all k> 1. This completes the modification of u, and Gy,,.

Now suppose that groups Gy, ---; Gjm) S S, measures u,, ..., pa¢ B,
and numbers ¢, > g, > ... > ¢, > 0 and M,,..., My> 0 have beenfound
such that, for 1 <¢<m and 2 <k < n,

(2.11) &<27% and full <27l < &-1f2,  p(1) =0,
(2.12) either limy; =1 a.e. du; or limy; =0 a.e. dy,,
(2'13) ve B and ”’V“ < & imply "FO (ﬁi‘*‘;’)laj(,‘,lu(aj“)) > i’
(2.14) Sup ca:rdxj(‘)Gk < .M{.
I<k<oo
We now show how to find Fnt1s Gim+1)r Entr a0d M, .
Flrst choose a J so large that j > J implies that
card@G; > N cardGy,, ... card Gy, M,...M,,

where N = N (¢,2 "%, m--1), the integer provided by Lemma 3.

For j > J, let L; denote the intersection of the kernels of the maps
G; — 1jw@; given by y — y;qy for 1<i < n. (If y;,G; = {0}, the kernel
is defined to be G;.)

There are two possibilities: either there is a constant M > 1 such
that y e L; for all j > J implies order y << M or there is no such constant.
In the first case, it is easy to see that L, contains an increasing sequence
of subgroups

{4} =H, S H, S ... Hy =L; with cardH,/H; ,< M.
We choose
(2.15) § = [3-2"** MNn]™
Now choose a j > J so large that

(2.16) [lxj—li,fnxklle(,,i) <0 (I<<i<mn).

In the second case, where no such M exists, set M = 1 and define ¢
by (2.15), choosing j > J so large that L; contains an arithmetic pro-
gression of length N and so that (2.16) holds. Of course, in either case,
we may assume (passing to a subset L; of L;) that L; < L, is & subgroup
or progression of cardinality at least N and at most MN which contains
the identity of the group L,

8 — Colloquium Mathematicum XXXTIT.2
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We claim ye L, implies |#,(y)| < 6, for

s (¥)] = If xj(i)yd,uil = | f X X5 B
< lfli;nlkdl"t‘ + 'f (%j—likmxk)dﬂil

< (D)1 46 = 9.
We now construct u,,,. First, there exists an feA(G;) such that
Ifla@y <min(27"7% &,/3) and [Fofyll>mn+1.

Since F is continuous, there exists an ¢, > ¢,,, > 0 such that geA(Gy)
and |igll < 2¢,,, imply : ‘

1Fo(f+9)rllagy > n+1 and \“f-l- gl <27 "2,

Let X, X;,..., X,, be the m+41 = cardG;4+1 level sets for G
with X, (X,) the common zero (one) set. Let .

ve BAM(X,), ..., vmeBNM(X,)

be positive measures of norm one. Set

[- -]
u = Zz_km"‘(vl—}—.. RPN L
k=1
We may apply the arguments we used in the case n = 1 to conclude
that there exists
limy, =g a.e. du
k

and that
fgdvk*vl*...*vm = fgdkagdvl...fgdvm A<k m).

(We pass to a subsequence of {y;}.)

If [gdvi*...%dv,, =0, set » = v;*v;%...%v,. Otherwise, set d
= gd(v;*v *...%v,). As before, no »; = 0.

There exist numbers a,, ..., a,such that if u'e B, and ¢’ (X,) = a,, ...
eooy ' (X,) = @y, then

Wlg,=f and D lel <min(@™"7 e,/3).
k

Also, there exist numbers b,,..., b, such that if »(X,) =b,,...
e.oy ¥(X,,) = b, then

n s X
;’IL;=Z!A4¢IL; and ;lbk|<“2ﬁi

Gf“A(L})'
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The fact that |u;(y)] < 8 on L, for 1 < i< n implies that the re-
striction of Zy, to L; has norm at most
1
(card L) 6 = MN S < min(s,/3, 27"7%).

Thus we can find by, ..., b, With Dbl < min(e, /3, 27""%) 50 that
v(X,) = b, implies k
n
’; IL} = 2,21' L
1

Set fi,,, = %‘(ak—bk)llv;ll'lv,. Then

n+1
D iie|zy =11z,
1

and so

050l Ly = 7 5415) g =25

while ||, || < min(e,/2, 27"'). Thus, settlng Gym+1y = Lj, we see that
we can find ¢,,, so that (2.11)-(2.13) hold for 1 <i<n+1and 2<¥k
<n+1.

The proof that we may assume (formula (2.14)) that card yyp,+1)Gr
< M,,, for some M, , < oo is exactly the same as that given for
eard xj(l)Gk < M 1e

The induction is now complete, and the proof runs along the same
lines as at the end of Section 2.2.

3. PROOF OF THEOREMS 2 AND 3

‘The proof of Theorem 2 appears in Section 3.1; two lemmas used
for this proof appear in 3.2 and 3.3. The proof of Theorem 3 is a combi-
nation of the methods in 3.1 and 3.2, and appears in 3.4.

3.1. Proof of Theorem 2. By applying Theorem 1 we may assume
that there is an integer » > 1 such that if G = 8 is any group, then
card@ < n. Let % be the map n: § — § given by =(y) = x™. Then =(S)
is the set of idempotents in §, which must be infinite if § is infinite, since

() has cardinality at most n! for all ye =(8).

We prove in Section 3.3 that any infinite idempotent semigroup
contains either an infinite chain or an infinite bar.

Suppose C < 8 is an infinite chain of idempotents. We may assume C
is countable, say C = {y;};2,.

We have two possibilities: y;x;,, = x5, for all j or xixi = %
for all j.
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Suppose first that y;,,x; = ;4. for all j. Choose measures u;e B
such that u; is positive, of norm one and supported on {z: x;.,(x) =0,
x;(z) =1}. If ¢,, ¢y, ... are numbers with }'|¢;| < oo, then

i

oo

(3.1) Fo Z” ) (1) =F( D o).
k=1

Then =
ro( Sl (S )2 5 ol
k=1 §=1 k=3 k=j+1

since C a chain and we M(8S) imply

loll > ) 1o () — & (3401
J

(This follows from the location of mass on the pairwise disjoint sets T

= {@: (@) =1, gi.(®) = 0}; ef. [7].)
Suppose

;E:Idk|<: 0o, dkE(j.
1

Set Ck_H _;'dk—dk{-l? 1<k< o0, Then

j’ le;] < oo and Zm:c,—dk
Thus ! i
(3.2) Fo D oity(u)) = F (@),
SO ]
(3.3) 7o ( ;'0,-#,-)“ > 3 1F(d) = F (dy ).

Since we may assume F(0) = 0 without loss of generality, the Lemma
in Section 3.2 below completes the proof.

We now suppose the chain C = {y;} obeys x;., =% (Gai = %)
for all j =1, 2,... Choose measures u;¢ B such that each u; is positive,
of norm one, and concentrated on {x: y;.,(2) =1, x;(z) = 0}. If ¢;, ¢y, ...

are numbers with Y'l¢;| < oo, then (3.1) is replaced by
i

) J
(3.4) Fo( > i) =F( ) o)
=1 k=1
Then ’

o fre( il > Sle(3a)-#( 3 o
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Let J}'ldil < oo. Let dy =0 and set ¢, =dp—dy_,, 1<k < oo.
Then  *=!

)
) ch=d,-.

Thus
(3.6) |

Fo 2” ot > f P (d;) — F (dy,)].

Again, the Lemma in Section 3.2 completes the proof, since we may
assume F'(0) = 0.

We now suppose S contains an infinite bar B = {2j}7%1 With x;2; = %o
if 0<% #j< oo and, without loss of generality, that F(0) = 0. Let
4 (1 < k < oo) be positive measures in B of norm one concentrated on
{z: xx(®) =1, xo(x) = 0}. Then ¢, ¢;,...¢C and %ch,,l < oo imply

‘1) [Fo( 3 )] > Do ( 3 ouintrd)~Fo ( 3wt

= D' |F(c)—F(0)l.
j

Again the Lemma in Section 3.2 completes the proof.

3.2. LEMMA. Let F: C — C be any function with F(0) = 0. Then the
ollowing are equivalent:
llowing quival

(i) there exist C > 0 and & > O such that |z] < 0 implies |F(2)| < Clz|;

(ii) €1 €4y ... C and Zlcjl < oo imply 2|F )| < oo.

Proof. That (i) 1mp11es (i1) is 0bv10us. So suppose that (i) failed.
Then there would exist ze C such that |2,] < 27 and |F(z;)| > 2% |zl
Assume (without loss of generality) that 2, % 0 and choose a map n > 2,
from the integers to {2;}p., such that

27% < g lcard {n: 2, = 2} <27

Then
2 |2l = Z 2, card {n: 2z, = 2} < ' 27F < oo
n=1 k=1
while

D 1F@) = D 1F(z)l card {n: 2, =2} =

n=1 k=1
Thus, if (i) fails, then (ii) fails, so (i) and (ii) are equivalent.

3.3. LEMMA. Let 8 be an infinite idempotent commutative semigroup
with 0. Then 8 contains either an infinite chain or an infinite bar.



278 C. C. GRAHAM

COROLLARY. If S i8 the structure semigroup of the convolution measure
algebra B, then at least one of the following holds:

(3.8) sup{card@: G < 8 is a group} = oo,
(3.9) S conta,iw an infinite chain,
(3.10) 8§ ’conta,ins an infinite bar.
Proof of the Corollary. Suppose that (3.8) fails; then
sup {cardG: G < 8, G a group} #* oo.

Indeed, if S contained an infinite compact group, then the fact that
8l = Gu{0} implies (3.8). Thus every group in § is finite. If G < 8 is
a finite group, pick y,,..., x, such that {ylqe} = G. Then

{(ﬁ 1) 26t 1< < )

is a group in 8§, so
sup{cardG: @ < §; @ a group} = sup{eard@: ¢ = §, @ a group}.

Thus, for some integer n > 1, n: * — 2™ maps S onto the set 8’ of
idempotents in 8 (continuously). Since 8 is compact for each ye 8’ and
7~ '(y) has finite cardinality, the Lemma implies that 8’ = § contains
an infinite bar or an infinite chain. (Since S’ is compact, 0¢ 8'.)

Proof of the Lemma. We argue by contradiction. Without loss
of generality, we may assume that 8 has an identity 1. We shall say that
a chain C < 8§ begins at x and ends at y if ze C implies 2z = 2, yz2 =2
and z, yeC.

We first show that if #, ye 8 and ¢ = xy +# vy, then

(3.11) any maximal chain beginning at z and ending at y is finite;
(3.12) there are only a finite number of such maximal chains.

Taking # = 0 and y = 1, one sees that each z¢ 8 belongs to at least
one maximal chain beginning at 0 and ending at 1, so 8 is finite, thus
contradicting the hypotheses.

To prove (3.11) suppose {z,y} is not maximal among chains be-
ginning at # and ending at y. Then there exists a ze 8\ {z, y} such that
Zr = and 2y ==z2. So {z,y,2} = C, is a longer chain. If C; were not
maximal, there would exist a ve 8\C; such that {z, y, 2, w} was a chain
with 2w = 2 and yw = y. Since S contains no infinite chains, this process
stops after a finite number of steps. This proves (3.11).

To prove (3.12), let {C;} be any infinite set of distinct maximal chains
beginning at x and ending at y. Let x; be the least element of C;\{x}.
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Since the C; are maximal, ¢ # x;x; # &; cannot hold, so {z;}U{z} is a
(finite) bar.

Let {C;(1)} be an infinite subset of distinct O’,’s such that the least
elements of C;(1)\{z} are the same. Then C;(1)\{x} are chains between
z; = minC;(1)\{z} and y, so the same argument shows there exists an
infinite subset {C;(2)};2, of {C;(1)};2, such that the lowest two elements
of C;(2) are the same. Proceeding in this ‘‘diagonal” way, we obtain -
an infinite chain. This contradicts the hypotheses, and so (3.12) is proved.

3.4. Proof of Theorem 3. We argue by contradiction, and suppose 8
contains an infinite chain ¢ = {y;};2, and that, for some R > 0,

(3.13) sup (1P (2) — F(w)|[lz—w]) = oo.
lﬂslekﬂi

Since F' is continuous, there exists a 2, with |2o| <R and 2 # 2
such that |2 < R, |?j| < R, limz; = limz; = 2z and
s;lp(lF(z;)—F(z})lllz,-—z;l) = oo.
By replacing F(z) by G(2) = F(2—z2,) —F(z,) (this uses the identity

of B), we see that we may assume 2, = 0 = F(z,).
By induction, we may assume that

(3.14) |F(2;) — F(z) =2Y%2—2], 1<j< oo,
and that
(3.15) 2l <27%, gl < 2-“, 1<j< oo.

Set n, = 0 and choose integers n,>1, m,>1,... such that
(3.16) 27 ol —2 <27% 1<k < oo.

Suppose the chain {y;} obeys x;,,x; = x;- Choose positive measures
By P2y ---€ B of norm one with u; concentrated on {w: y;4,(2) =1,
2j(x) = 0}. Then ¢,, ¢;,...¢ C and Y || < oo imply (cf. (3.4))
i

) k
(3.17) Do) = D o
j=1 ji=1

Define ¢,, ¢y ... by

Ry m = 2(ng+...+n_,+k—1)+1,
Ze— 2y M = 2(Ng+...+my_,+Ek—1)+25, 1<j<nk,
Ze—2py M =2(met...+m_+k—1)+2j4+1, 1

—2, M =2(ngF...+ny_+k—1)+20,+1,

o, m = 2(ng+...+n,+ k).

(3.18) e,
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It is a straightforward verification that, for 1 < k < oo,
(319)  D'{em: 2(Ro+. A mp+h—1) <m<2(no+...+m+k)} =0
and that .
(3.20)  D'{om: m<2(Mot- My Fh—1)+2+1} =2, 0<j<m,
" while
(3.21) Z{cm: m<2(Mo+eee+0y,_ +hk—1)4+25} =2, 1<j<my.
Also

D) leml < D (2l + (2] + 2mg 2 — 2) < oo

me=1 k=1

Applying (3.17), (3.19) and (3.20) we see that
|F (Z"fﬁ;(xm))—l" ( Zojﬁf(xm“))l = |F(2) — F (%)

if 2(ng+.e.4+n_1+k—1)+1<mM<2(Ng+...+0,+k—1).
Therefore, since ¢ = {y;} is a chain (cf. [4]),

| 7o (2 om) || > 2 |7 (Z 03ty (tm)) — F (2 4ty (itms))|

anm(z,,)— (@1 > 3 m2* le — ]

> 22k2—k—1= 00
2

which is absurd. Thus Theorem 3 is proved in the case y;,,x; = x; for all j.
Suppose the chain {y;} obeys x;.,x; = 41 for all j. Choose positive
measures p,, i, ... B of norm one with u, concentrated on {&: x;,(x) = 0,
%;(w) = 1}. Then ¢,, ¢, ...« C and D'|¢;| < oo imply
i

(3.22) chit,-(xk) = Z"i'
i=k =k

" Define ¢,, ¢3, ... by
[ — 2, m = 2(ng+...+nu_,+k)—1,
Ze—2y M =2Met...+n,+k)—2f—1, 1< < ny,
(3.23) Cp={2—%%, M =2(Ne+...+n+k)—2], 1<j< ny,
2y, m = 2(nyg+...+n,+k)—1,
o0, m = 2(ne+...+n,+ k).
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(Formula (3.23) was constructed from the bottom line up, using (3.22)
as a guide.) It is a straightforward verification that, for 1 <k < o,
(3.24) Z{c,,,: 2(Mo+-eetnp+k—1) <M< 2(M+... +1,+k)} =0,
and that
(3.25) D'{om: m>2(mot...+m+h)—2f—1} =2, 0<j<m,
while
(3.26)  D'{em: m>2(no+...+m+E) -2} =4, 1<j<m,

Also

o

(12) + 12| + 21y |2, — 2]) < o0.
1

o0
D) loml <

m=1 k

Applying (3.22) and (3.24)-(3.26), we see that
|2 ( Y osfis (1) — F( X3ty (tms))| = 1B (2) — P (23]

if 2(ne+...+m_1+Ek)<m<2(ne+...+m+k)—1
Therefore

|7 (; )| > Z | (2 iy (tm)) —F( X sty (tms)

2 | B (z) — F(2)| = Z ;2% |2, — 2}

> Z 92kg—k-1 _

which is absurd, and so Theorem 3 is proved in the case x;,,%; = %j«1
for all j. This completes the proof of Theorem 3.

4. PROOF OF THEOREM 4

This is motivated by the example of B = L'(0, 1), where B is the
set of absolutely continuous functions of bounded wvariation on (0, 1)
(where (0, 1) is given the multiplication xy = max(z, y)). In that case
the proof of the theorem is easy: the measure associated with Fou is
(F'ou)p’. That is, Fou can be expressed by

Foj(y) = [xdv,
where » is absolutely continuous with respect to u.
We show that Foy is given by [ydv, where v« M(S), and, further-

more, that » is absolutely continuous with respect to u. Since Bg is an
L-subspace of M (8), this is enough to prove Theorem 4.
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4.1. LeMMA. Under the hypotheses of Theorem 4, for each peB there
erists a ve M (S) such that

[2dv = Foi(z) for all ze 8.

Proof. Since S is totally ordered (see [5]), a necessary and sufficient
condition for a function @ on 8 to be expressible in the form G(y) = [ xd»
for all ye 8 and (fixed) veM(S) is that

(4.1) sup 2 16 (x) — G (2;-1)| < o0,

i=1
where the supremum is taken over all finite sets xo,..., ¥, of elements
of S such that

XiXi—-1 = X3 fOI'j=1,...,’n

Note that
DI () — F (i (5-0)]| < Siﬁ’,,'F'(‘”“Z'”(%f)—”(%f ),
i=1 “ j=1

so the fact that (4.1) holds for @ = u implies that (4.1) holds for @ = Fo .
This completes the proof of the Lemma.

4.2. LEMMA. Let F and B satisfy the hypotheses of Theorem 4 and
let v be the measure given by Lemma 4.1 for (a fiwved) ue B. Then » is
absolutely continuous with respect to u.

Proof. Let E be any set (Borel) on which x has no mass. Let ¢ > 0.
Then there exist y, and ¢, in § (» =1, ..., N) such that z, < ¢, < Zns1
and such that u gives mass at most ¢ to

Ufz: en(@) =1, xa(2) =0} =

and U contains E. This is an application of the regularity of x4 and the
fact that the intervals {: x(x) =1, x'(#) = 0} (x'x = x') form a basis
for the topology of 8.

The mass » gives to U is given by

(4.2) sup 2 B (ns) = (Ang—1)|

where the supremum is taken over finite subsets {x,;} with xn Xn.i
< Xn,j—1 < o for all m, j. Of course, (4.2) is majorized by

(4.3) sup |F(2)|sup D | (%ng) — &(Xni-1)ls
|zl <[l st n,j

where the inner supremum is taken over the same sets of {y,;} as the
supremum in (4.2). Since x has mass at most ¢ on U, we infer that » has
mass at most esup|F’| on U, so » is absolutely continuous with respect
to u. This completes the proof of Theorem 4.
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5. PROOF OF THEOREM 5§
The proof will be carried out in several steps. But before beginning,
note that Theorem 5 implies the following: '

If 8 is an infinite compact semigroup such that the semicharacters on S
separate the points of S and S contains a perfect subset, then there exists
a discontinuous semicharacter on 8.

Indeed, let B = M 4(S). If every semicharacter on 8§ were contin-
uous, then 8 would be the structure semigroup of B, so Theorem 5 is
contradicted. '

Also note that if M(S) = By, then By = C(8)*. Of course, if this
happens, then, by Theorem 5, S contains no perfect subset, so Bg = M4(8)
= M (8). This suggests the following question:

For which commutative Banach algebras B is B the dual space of
the norm closed subspace of B* generated by the multiplicative linear
functionals on B? (See Problem 7.5 in Section 7.) ‘

It is easy to see that an infinite-dimensional uniform algebra does
not have this property.

5.1. We may assume that B has an identity.

Indeed, adjoining an identity to B if B lacks an identity consists
in enlarging 8 by adding an isolated point e to § and defining se = es = s
for all se SU{e}. Thus, no perfect set has been added to or subtracted
from 8.

5.2. Every group G < 8 is finite.

Indeed, if G were infinite, then the Bohr compactification G would
be an infinite compact subgrdup and M;(G) would be a closed subalgebra
of B. Of course, (G,)" is the Silov boundary of M,(@), and so 4B = 8y,
= 8|@ equals (G;)" (cf. [2]). Therefore, G has the discrete topology in 8,

which implies G is finite.

9.3. Any chain C of idempotents in S is discrete.

Indeed, the Silov boundary of M,;(C) is AM4(C), so Slg = AM4(C).
But, if ¢ye C, then the map

p—= p({e: eop = 6})

is a multiplicative linear functional on M4(C). Therefore, {¢: cc, = 6o}
is a component of C. Similarly, {¢: ¢ # ¢, and cc, = ¢,} is a component
of C. Therefore, {¢,} is a component, so C is discrete.

5.4. Any chain C of idempotents is finite.
Otherwise, C contains an infinite descending (or ascending) sub-
chain C'. By 5.3, C’ is discrete, but, by the compactness of S, ¢' must
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have an accumulation point ¢,. Then C'U{e¢,} is an infinite compact chain
which contradicts C.

5.5. Let I denote the (closed) subsemigroup of idempotent elements
of S§. For ze I, put

xt ={yel: 2y =2; uel, uy =u, ur =2 =>u =2 or 4 = y}.

LEMMA. Under the hypotheses of Theorem 5, x* is finite if and only
if x s isolated in I. ,

Proof. Suppose 2t is infinite. Then u, vex™ imply wv = x, so if
xe 8, x(x) =1 implies y(u) =1 for all uex*. If y(x) = 0, and y(u;) =1
for u,e2*, then x(v) = 0 for all ve z*\{u,} Thus (%)~ contains z, by
the definition of the (subspace) topology on I.

Suppose z* is finite. Set

S ={yel: vy =y, y +# a}.

Then ¢: F£uU{x} - {0,1} defined by ¢ =0 on &, g(xr) =1 is the
restriction of a continuous semicharacter on § to L uU{xr}. Therefore,
x¢ P, Set

¢ ={yel: zy =w, y #a},

and let y,,...,¥, be an enumeration of the elements of #*. For each
j=1,...,n, there must exist y;e § such that y;(y;) = 6y, x () =0.
Clearly,

2 < {y: Y Iyt =1,
j

S0 x¢ L.

If {y,}eeq S I is a net which converges to z, then either {a: zy, # «}
= A, or {f:wy, = x} = A, is cofinal. If A, were cofinal, then {ry,: ac4,}
c ¥, 80 x¢{wy,: aeA,}”. Therefore, A, is cofinal, so {zys: fed,}~ con-
tains z. But {oy,: fed,} = £. Therefore, x is isolated.

Here is a proof that for each j there exists a x; e 8 such that 2i(y:) = 6y,
Let T = {g}uzt, and & = M(T). Then & is a closed L-subalgebra of o

and # is symmetric, so the Silov boundary of # is all of the maximum
ideal space A4. Therefore, the restriction of § to 7 maps onto dg = T.

5.6. The set I of idempotents in S contains mo perfect subsets.

Indeed, let P =< I be a perfect non-empty subset, and let x,e P.
Then, by the Lemma in 5.5, z;" is infinite, and 2} NP # @, since P is
perfect. The argument used in 5.5 to show z¢ ¥~ shows x, -« implies
zz, = . Therefore, there exists an x,e P such that #,2, = «,. By induction,
we thereby construct a set of elements z,, #,, ...¢ P such that z;,,; = ;.
Therefore, P contains an infinite chain, which contradicts step 5.4.
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9.7. 8 contains mo perfect subsets P.
Indeed, let m: 8 — 8 be the map which sends each element se¢ S to

limn!s = n(s).
n—o00
- Of course, w(s) is the idempotent element which is the identity of
the maximal group containing 8. We claim that = is continuous. If 8, — ¢
in 8, then y(s,) — x(s) for all ye 8, so x(s,) — x(s) for all idempotent
xe 8. But if 5y = 4% then y(s) = x(ws), so y(ns,) — x(ns) for all idem-
potent ye 8. But the idempotent elements of S induce the topology on I.
Indeed, if se I, then x(s)? = x(8?) = x(8), so by the compactness (use 5.1)
of 8, there exists an idempotent

o = limy™

which agrees with y on I. Therefore, » is continuous.

We claim that n(P) is perfect if P is. For if xe n(P) were isolated
in #x(P), then z~'(x)NP would be a component of P. But n~*(x) is finite
for each we I, by 5.2. Therefore, n(P) is perfect. But by the preceding 5.6,
I has no perfect subsets.

The author is grateful to D. E. Ramirez for pointing out an error
in the original formulation of Theorem 5 and suggesting Example 6.5
which shows that one cannot conclude that B =2 M,;(S) implies 8 has
discontinuous semicharacters.

6. EXAMPLES

6.1. Theorem 1 is sharp. Take B = L!(T) and apply Chapter 6 of [8].

6.2. Theorem 2 is sharp. Let 8; = {0, 4, }, ...} with multiplication
xy =0 if ¢ #y and zx = x. Set B, = M(S,); then 8, is the structure
semigroup of B, and if F': C — C satisfies (1.1), then F operates in B.
Let 8, = {0, }, %, ...} with multiplication xy = min(z, y); if F: C - C
satisfies (1.1), then F operates in i?z for B, = M (S,). These assertions
follow from straightforward computation.

6.3. From Taylor [13], p. 162, it is easy to see that if S contains x
such that |y|~!(0,1) # @, then only analytic functions operate.

6.4. It is not true that non-symmetry of B implies only analytic
functions operate. Here is an example B for which § is a product of an
idempotent group with the group of three elements and such that all
C*-functions F: C — C give F o (u?)e B whenever pe B.

Let B, = L'(0,1), where (0,1) is given the multiplication xy
= min (z, ¥). Let

B, = {ue B;®B,: suppu < {(r,8): r+s<1, 0<r, s<1}}.
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Let v, be the usual length measure on {(r, 8): r+s8 =1, 0 < r, 8 < 1};
then »,*v, is a constant multiple of area measure on

{(ry8): r+8<1, 0<r, s<1}.

((0,1) x(0,1) is given the product semigroup multiplication.) If ue B,,
then u*vye B,. Let Z, be the cyclic group of order three, and let 6 denote
the unit point mass at some (fixed) element of Z, not the identity of Z,.
Put -

B = {(M(Z;)® By)} UL' (6 X v,).

A series of straightforward computations shows that B has the
required properties (and that the above-given assertions are correct).

6.5. If B, is the algebra of 6.2, then M(S,) = M4(S,) = B,, and
every semicharacter on 8, is continuous. Thus Theorem 5 is sharp, for
one cannot conclude B 2 M,(S) implies § is finite.

7. SOME QUESTIONS

~ 7.1. Let T be the structure semigroup of M (8), where 8§ is the struc-
ture semigroup of &. Can there exist F: C — C such that Foue M(8)”

for all ie M(S)", and such that, for some fge o, Fofig¢ & (Assume &
has an identity.) (P 950)

7.2. If only real-analytic functions operate in «, must § contain
arbitrarily large groups? (P 951)

7.3. Find those algebras # of functions f: C — C such that there is
a commutative convolution measure algebra & such that all (and.only)

functions Fe £ operate in . Does there exist a commutative convolution
measure algebra & on an idempotent semigroup such that only real-

-analytic functions operate in L (P 952)

7.4. If I is a closed ideal of a convolution measure algebra &, and «f /I
is a uniform algebra on its maximal ideal space X, does” /I = C(X)?
(P 953)

7.5. Whieh commutative Banach algebras B have the property that B
is the dual space of the norm-closure (in B*) of the linear span of the
multiplicative linear functionals on B? (P 954)
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