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An initial-boundary value problem
for quasi-linear parabolic systems of higher order

by ViApmmir Durikovi¢ (Bratislava)

Abstract. In the paper first the existence of a classical solution of an initial.

boundary value problem for the non-linear parabolic system Dy U — S Ax(X, t)D"
| %| =20

=F(X,t,...,D%U,...), where 0< |yl =p;+... +ym<2b—1,b> 1, is proved
under the assumption of Hélder continuity of F in a compact set but no other assump-
tions on the growth of F. Then, some sufficient conditions for the smoothness and
uniqueness of solution and for the convergence of successive approximations are
given.

These results are obtained by solving an integro-differential system of Hammer-
stein’s type in Banach spaces with the help of fixed point theorems.

1. Introduction. The existence of a solution of initial-boundary value
problems for quasi-linear parabolic equations has been studied by many
authors. The methods of solutions employed and assumptions imposed
on given magnitudes depend on the class of functions in which the expected
solution is searched. Some functional methods enable one to prove the
existence of a generalized solution provided that the conditions of con-
tinuity, measurability and restrictions on the growth of the non-linear
part of the equation are satisfied (see e.g. [1], [2], [5], [6], [7], [11]).
The existence of a classical solution requires the Holder continuity and
conditions concerning the growth of the non-linear part of the equation
in question (see [4], [8], [9]).

The aim of the present paper is to assure the existence of the classical
solution of an initial-boundary value problem with the homogeneous
conditions for the non-linear system

L(X,1; Dx, D)U =0Ujot— D' Ay 4 (X,1)0%U[osk... dakm
kl+...+km=2b

= F(X,t,...,0"U/oar ... B, ...),

where 0 < |y| = 1 +...+¥ym < 2b—1 and b > 1 is an integer. The problem
is investigated in the cylinder whose axis is parallel to the time axis ¢ and
whose base is a bounded domain of the m-dimensional Euclidean space.
The coefficients 4, , are sufficiently smooth matrix functions of X
and ¢ and F is Holder continuous in a compact set. We do not require
any other conditions on the growth of F. Applying some results from the
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theory of Green’s functions of linear parabolic operators (see [3]) the
above problem is transformed into an integro-differential system of
Hammerstein’s type and thus can be studied by means of fixed point
theorems. Some sufficient conditions for the smoothness and uniqueness

of solution and the convergence of successive approximations are also
given.

2. The formulation of problem. We shall start with some notions
and notations which will be used throughout this paper.

(a) 2 denotes a bounded domain of the m-dimensional Euclidean
space R, (m > 2) with the boundary 90 and with the diameter diam Q.
For 0 < T < oo we define the cylinder domain Q@ = 2x<{0,T) < R,
and the surface I' =002 x{0,T). The norm of X = (2,,...,2,)e R,

m
is given by |X| = ( > #})'*. Let k = (k,, ..., k,) be a multiindex whose
: i=1
components k; are non-negative integers for ¢ =1, ..., m. The modulus
m
of k is defined by |k] = 3 k;. Denote X* =2f1...4fm and X2 = | X2
. i=1
Further, write for an arbitrary integer r,t(r) = Card{k = (ky, ..., k)
2b—1
k;> 0 is an integer for + =1,...,m and (k| =7} and s = Zt(r) and
8

let us define the set H as the Cartesian product Qx[] n {— o0 < uj < oo}
1= lJ 1

and the set H(B) as the product Q x[] ” {—B<u;< B}, where p>=1

i= 1]
and 0 < B < o. The symbol D% deno_tes the differential operator

0" [8z%1...02%m and for a non-negative integer ky, D is the differential
operator 9% /g%,
~ (b) Let (Un, <), Tesp. (ME,<) (p=1 is an integer) be partially
ordered sets of all real (p x 1)-vector functions U (X) = (ul(_X )y eeey Up(X ))
resp. of all real p X p matrix functions 4 (X) = (a,, (X))?;-, with the range
of definition in R,. The binary relation “<” is defined as follows: if
U(X) and V(X) = (vl(X),. .y U,(X)) belong to %, then U<V iff
u;(X) < v;(X) for every X of their common domain of definition and
allj = 1, .oy p. If A(X) and B(X) = (b;(X))?;-, are matrix functions
of A7, then A < B iff a;;(X) < b;;(X) for every X of their common domain
of definition and for all¢,j =1,..., p.
The (p X 1)-unit vector and the zero vector are denoted by J and
0, respectively. The p X p matrix whose all elements are equal to 1 and
the unit matrix will be denoted by FE, and E, respectively. (U, V) is the
scalar product of U(X) and V(X) at any point X. Finally, we write
[T(X)* = (|ug (X% ..., [uy(X)°) and |[A(X)|* = (l65(X)|%)?;=, for aTeal a.
(¢) Now we shall deflne some commonly used classes of vector and
matrix functions. A vector function U(X, 1)e %y, ym, (Mg, my > 1) is said
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to be Holder continuous with respect to X on D, c R,, with the exponent
e (0 < ¢<1) and uniformly with respect to ie D, < R,,, if it is defined
on D, XD, and there exists a constant L = L(U) > 0 such that for any-
pair of points X, Y e D, and every ie D, the relation

(X, )= U(Y,)|< LI X-Y°

is true. The set of all such vector functions will be denoted by H, ,(X, D,;
Ay D,). From the above definition it is obvious that if D, is a bounded set
and 0 < ¢ < <1, then H; (X, D,; A, Dy) « H, ,(X, Dy; 2, D,).

If 1> 0 is an integer and D = R,,, then CL(D) is the Banach space
of all vector functions U(X)e %% defined on D which together with
their derivatives D% U(X) up to the order ! (including 1) are contin-
uous and bounded on D. In this space the norm ||:||P? is defined by

max [2 Y suplDXuJ W}. If 0 <a<1, then CL*(D) denotes the

i=l,..,p i=0 [k|=1

subspace of all vector functions U(X)e Cf,,(D) whose derivatives of I-th
order satisfy the Holder condition on D with the exponent a. In this case
the norm is defined by the sum

10IP?+ max { 3 sup |Du;(X)— Diwy(¥)I/1X — X))

i=1,...,p k| =1 - X,YeD

We say that the boundary 8D of D = R,, belongs to the class ¢**°
if to each Ze dD there exists d > 0 such that the part of the boundary
0D contained in the ball @ = {Xe R, : |[X —5| < d} can be explicitely
expressed by the equation z, = ¢g(z,,..., ®,_,) In the ortonormal coor-
dinate system X = (Oz,...2,,_,x,,). The direction of the axis Oz,, coincides
with that of the inner normal to 0D at the point & and the scalar function ¢
is an element of the class C4*%(@,), where Gy = {X' = (@1, ..., Bp_1)€

R, : | X'|<d}.

Let 1>0and 6> 1 be intege’rs and 0 < a < 1. The set of all vector

functions U (X, t) = (u,(X, 1), ..., u,(X, t))e %5,,, fulfilling the inequality

W IUIEZ = max | 2<<D"°D’;:u (X, )98 x+

j=l,...,0 p=1

+ Y (DPDEu (X, )8t Z ' sup [ Do Dus (X, 1)lf < o,
0<14a—-h<2b i=0 h=1
where b = 2bk,+ |k|, will be denoted by C4¥7{+920(Q). For 0 < u < 1 and

u(X)e %L, the symbol u)?y means sup  |u(X,t)—u(Y, t)|/|IX-Y*
(X,0),(Y,0)eQ
and {u)?, means sup |u(X,t)—u(X,t)/it—t""
(X, 4),(X,¥)eQ
In the following section we prove some properties explaining the

strueture. of the sets introduced above. By M we shall denote the set
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of all matrix functions belonging to .#% whose rows and columns are
vector functions of the class M. In the conclusion of that section we shall
establish the initial-boundary value problem.

Consider the system of p > 1 differential equations of 2b-th order
(b > 1) with p unknown functions

(2) #(X,t;Dx,D)U =DU— )Y A(X,1)D5U
k) =2b
=F(X,t ..., D%U,...), (X, t)e @,
where y = (1, .-, ¥m) 18 @ multiindex whose components y; are positive

integers for ¢ =1,...,m and 0< |y|<2b—1. The solution of (2) is
required to fulfil the initial condition

(3) Uley =0, XeQ
and the boundary conditions
(4) #,(X,t, Dx)Ulr

= D' (BPX,1, D5U)+ D (BO(X, 1), Dk U)lr -0
|k|=rq |lc|<rq
for r,<2b—1 and ¢ =1,...,bp. A (X,t)= (a}’(X, 1))} ;-, is a matrix
function of #2%,,, and B (X, t) = (bi'(X, ?), ..., bi*(X, 1)) or

F(X,ty ..y D% Upre) = (fu( Xy by ooy D5 Uy )y ooy Xy ty oevy DR T, 0)

is a vector function of %% ., or 4% .. .4, respectivély. In the following
considerations we shall assume that conditions concerning the parabolicity
of (2) and smoothness of 4,, B2 and F are satisfied.

3. Some assumptions and theorems. The study of non-linear problem
(2), (3), (4) is based on some results of the theory of linear parabolic equa-
tions. We shall need the following assumptions (see [10]):
(A) The system (2) is supposed to be uniformly parabolic in the sense
of I. G. Petrovskij, i.e. there is a constant 6§ < 0 (independent
of X, t) such that the roots a,(X, t; =) of the polynomial

L(X,1;i5, a) = det# (X, t; i5, a) = det(éwa—i“ D G X, e =0
|k)=2b

(z = V—1 and 0y; 18 the Kronecker symbol) satisfy the inequality
Rea,(X,t; Z) < —0E® - for all (X,1)eQ and Z¢ R,,.

(B) Let X be a point of 02 and let v(X) = (v,(X), ..., v, (X)) be the
unit vector of the inner normal to 02 at X and let {(X) be a vector
lying in the tangential plane to 02 at X. Then for any (X, t)e I’
and for a complex number a with the properties Rea> — 6,L%
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and |a?+(*Y >0 (0< 8, < b,8, is an absolute constant) and
for any arbitrary vector {(X) the rows of the matriz

(172 ;‘ DY (X, 1) [£(X) + (X)) JF "‘"fj Z(X, t; i+ ), a),
Iki=7

where & = LZ™Y, are linearly independent vector fumctions of v

with respect to the module of the polynomial M*(X,1t; ¢, 7, a)

bp
=[] (r—7 (X,%;¢,a));5t] for ¢ =1,...,bp are the roots of the
g=1 '

polynomial L(X,t;i(+ ), a) (in t) with the positive imaginary
part. (This condition is called the wuniform supplemeniary con-
dition.)

(Ciza) Let 1> 0 be an integer and 0 < a < 1. The coefficients A,(X,t)
belong to C5C+I(Q) for |kl =2b and B@(X,t) belong to
the space CiE 3t~ 7o (et =1dl( ) for k| < r, <2b—1andq =1,...

., bp. The boundary 00 belongs to the class C**+e,
THEOREM 1. (V. A. Solonnikov [1Q].) Let the requirements (A), (B),

(Crra) e fulfilled and let @ (X,t) = (pi(X, 1), ..., 9y(X, 1)) be an element

of C38+9%(Q). Moreover, suppose that @ satisfies the “coordinative

conditions” of order 1 on the boundary 082 (see [10], p. 86). Then there is
one and only one solution U(X, t)e O > @+1+2(0) of the linear differen-
tial equation

(5) #(X,t; Dg, D)U = &(X, 1)

satisfying conditions (3) and (4). The inequality

1015 < 2 lltgl1s 20 < GZ lp) P

i=1
ts also true.

- Estimates of Green’s matrices of % (for the definition see [3]) and
their derivatives are stated by

THEOREM 2. (S. D. Ejdel’'man and S. D. Ivasifen [3].) Let assumptions
(A), (B), (Cype) (I = 0) be held. Then there exists Green’s matriz G (X, t; Z, 1)
€ Miomyry of the problem (5), (3), (4). Its derivatives Db D% @G satisfy, for
2bko+ k| < 2b6+1 and for 0<T<it,<ti<T, X,Y,Ee = QUi
(r =1/(2b—1)), the inequalities:
(6) |IDPDRG(X,¢; &, 1)l
< O(t—1)~ (bt exp { — 0| X —E™[(t— 1)} B3
(7) IDfOD'&G(X, t; 5, T)“-D?ODEKG(Yy 4 5, 1)
S O|X — T (t—r)~mthotitralbexp {— 0| X* —E)™[(t— )} B,
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if 2bko+ k| = 2b+1 and |X* —Z| = min(| X —&|, |Y —E&]);
(8) IDPDYG(X,1; 5, v) —Dj* DY G(X, ty; E, 7)|

< O(t _ to)[zb(l—ko)+l—|k|+a]/2b(t0 _ T)h(m-|-2b+l+a)/2b exp { —e l X —E l Zbr/(t _ T)r} -El

if 1< 2bky+ k| <2b+41. The positive constants C, ¢ are independent of
X, Y, t, and E, 7.

THEOREM 3. (See [3].) Let assumptions (A), (B), (C,,.) be satisfied
and let (X, t)e C%(Q)NnH, ,(X, 251, <0, T)) be a bounded function in the
norm ||+ ||9F. Then

i
(9) U(X,t) = fdrfG(X,t;E’, ) D (5, 1)dE
0 0

28 a solulion of the linear problem (5), (3), (4).

4. The existence of a solution of the non-linear problem. First of all
we shall introduce some useful inequalities. The estimate (6) may be
modified to the form

(10) 1D DYG(X,t; E, 1) < C(t—1)~*| X — 52w~ m+2kot k) o
X U-X _Eizb/(t_T)](m+2bk0+|k|—2b.u)/2bexp { _ c[|X _Elzb/(t _',r)]r} EI

< K(t — 1)—:4 IX _Elsz—(m+2bk0+|k|)E1

for0<r<t<Tand X,Ze¢ 2, 5 # X and u < (m+ 2bky+1k})/2b, where
K is a positive constant independent of X, &, ¢ and 7.

Note, since 2 |z,z,|/(z] + x3) < 1 for all z,, x,¢ RB,, thus the inequality
2 @, 2| (@3 4+ 23) < (1 — K2)/K: holds for every =z,,z,¢ R, if (1—K3)/K?
>1,i.e. 0< K,<1//2. Hence the relation K,(|z,|+ |z,]) < Va?+a2 is
true for all #,, ,¢ R, if K, belongs to the interval (0, 1/V2). By induction
on m one obtains for any X = (24, ...,2,)e R,

m m
(11) Kp Dol < 1X1< ) Iy,
i=1 =1

where the constant K, (0,1/ (1/5)’"“1) does not depend on X.
From (1) we get for | =2b—1

(12) U120 = max | D) (Do (X, 0985+
i=1,..,D0 p=3p—1
2b—1

+Z 2 [&D%u; (X, 1)) Qo 14acyinyan, e+ SgP | D% u; (X, t)l]}-

im0 |k[=i
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If U(X, t)e C%7 o149 Q) then we directly see that
DEUX,t)e H, ,(X, 258, (0,Ty) for |k =2b—1 and D%U(X,t)e
«H gy 1 1oy, plts <0, T3 X, Q) for [k| = 0,1,...,2b—1. In view of the
mean value theorem and of (11), also the derivatives D% U(X,1) for
k| =0,1,...,2b—2 belong to H, ,,(X, 2;1, (Q, T)).

LemmA 1. Let |k| = 0,1,...,2b—1. If the requirements (A), (B),
(C,) hold, then

(13)  I,.(X,Y,1) fdz f[D G(X,t; 5, 1)— D5G(Y,1; B, 7)|dE

Ly | X — Y| HeDik/e-1)

(the expression [x] in the exponent denotes the integer for which [z] < x{[x]+
+1) and

(14) I, X, t) = fdrle G(X, t; &, 7)|dE < Ly . By,

where L, , and L,, are positive constanis independent of X, Ye 2 and
te €0, T. If conditions (A), (B), (Cyy_,,.) are satisfied, then

t
(15) L u(X,t,¢) = [dr [ IDXG(X,1; 5, 7)—DG(X, 15 5, 7)|d5+
0

2

v
+ [ @ [IDAG(X, 15 B, 7)| 45 < Ly 4 (¢ — )@ T4o- 0 g,
¢ Q

Jor (X, 1), (X,%)e@ and t < t', where the constant L, ; > 0 does not depend
on X,tand t'.

Proof. Let X,Y = (yy,...,¥,) and 5 be three different points
of 2 and 0 <7< {<T. Then, from the mean value theorem and by (11)
and (10),

D% G(X, t; 5, 1) — DG(Y, t,u,z|<2|wi vl \IDEYG (X, ¢; 5,1)]
< (K/Km)(t_T)—n]X’;_‘:]zbn—(mﬂk(iu) IX_ Y]El,

where k(i) = (kyy ..y kg, K41y Kipry ooy by) a0d X7 = (91, .00y Y51, &y
Tiiqy ey ). £; lies between the numbers «; and y; and | X — Y| > |X; — X]|.
For |k| =0,1,...,2b—2 and |k(¢)|/2b < pu <1 the last expression in
the precedlng 1nequa11ty is an integrable majorant of |D%G(X,t; &, 7)—

—D%G(Y,t; B, 1)| locally independent of the parameters X,t. Thus
(13) is true for |k] =0,1,...,2b—2.
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Let now % be a multiindex with the module |k| =2b—1 and let
X, Y, £ satisfy the inequality |£ —X| > 2|X — ¥Y|. Then it is obvious that
X—-Y|<|X;—E| and | X—E&|< | X—X]|+|X;—E| < 2|X;—EZ|. Hence
\D%G(X, t; 5, ©) —D%G (Y, t; &, 7)|
< (K/E,)(t—1)""271 | X —Z|™ "+ X —Y|E,.
If we put 8, = {£¢Q2:|E—X|>2|X—-Y|} and 8, = 2—8§,, then
we get

Iln k ('X’ Y’ t)

¢
< {(K JE ) 2™+ [y [ (1 —7)~*|X —¥|| X —EPou-tm gz 4
0 S,

¢
+detf (t— t)—p[lx_slzb.u—(m+2b—l) + ly_Elzby—(m+2b—l)]dE} El-

o S8
For (2b—1+a)/2b<pu<1 both integrals converge and the estimate
I (X, ¥, 1) < Ly X — Y030 L X — Y [#e=Co-D g
+ Lg| X — Y~ B, < L, (diam Q)" X _Y°E,

holds, where L,, L, L, L,are positive constants independent of X, ¥ and ¢.
Formula (13) is thus proved. The relations in (14) follow directly
from (10).
To prove the third formula of this lemma we shall again employ
the mean value theorem. Then there exists t*e (¢, ') such that

|D%6G (X, t; E, v)—D%G(X, t'; £, 7)| = |D,D5G (X, *; &, 7)|(t' 1)
SK{W—t)(t—1) | X—EP-tt g, (1—7v <t —7).
If 8, = {Ee Q:|5—X| > (' —t)"™} and 8, = 2—8,, then from the
preceding inequality and by (10) one obtains

t
I, < [dr [ID%G(X,1; 5 1) —D4G(X, t'; 5, 7)|d5 +

0 S3

’
+ [ dv [IDYG(X, t'; 5, 7)l a5+
t Sy

¢ ¢
+ [dr [ID%G(X,1; 5, v)id5+ [ dv [|DYG(X,1; 5, 7)|dE
Sy Sy

4
< K{fdf f(tl —t)(t _T)—M|X_E|2bll—(m+2b+|k|)d5+
§3

0
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v
+fd'r f(t'—r)_“lX—Elm_(mJ’”")dE—i-
¢
+ [dr [(@—0)| X —Fe-mtkgE 4
0 8,

+ J{'d-r f (t' =)~ | X —Fe- g5 B,

From this fact for (26 —1+a)/2b < p < 1 and 4 < |k|/2b the estimate

Ia,k(Xy t, tr) < {L,,Tl—"(t' _ t) (tr _ t)(2b.u—2b-|k|)l2b +
+Ls(t' _ )(Zbl 1k1)/(20)+1—2 +L Tl—# ( t)(2bﬂ—[k|)/2b +
+L1°Tl-"(t’ —1 )(2b,u—|k|)l2b} ‘El

is evident. The constants L;,4 = 7, 8,9,10 do not depend on X,¢,1¢.
Since p— |k]/2b = (2b—1 —|k|+ a)/2b and 1 — |k|/2b > (20— 1 — |k| + a) /2,
we have

I (X, 4, 0) < TP (L + Ly + Lo+ Lyy) (1 — )01 He- e g

which proves formula (15).
LEMMA 2. The set C%LFoC=149%(Qy with the norm ||-||97, .. defined
n (12) constitules a Banach space.

Proof. It is sufficient to show that the linear space C3; 4> 0=+ (@)
of real functions u (X, f) with the norm ||- || ;. , is 2 Banach space. Indeed,
if U,(X,1) = (u}(X,1?),...,up(X,?)) for n =1, 2, ...1is a Cauchy sequence
of elements belonging to %, '¥*®-1+9 (@) in the norm ||-||$%?, Lo then
{u} (X, t)}7-, is & Cauchy sequence in the sense of the norm ||-||&*,,, for
j=1,...,p. Consequently, we can find p real functions wuj(X,?)e

e 0% 1+“ @-1+a)2(Q) such that lim |[uf—aud$ti . =0 (j =l, ey P).

Hence lim [|U,— Ug|$%11a = 0, where Uy(X, t)= (ul(X, 1), ..., ul(X, 1)),

Now let {«, (X, t)}5—, be a Cauchy sequence of real functions belonging
to the space CR i t*0-Ha2%(Q) i e. to each &>0 there is N(e)
such that for all I,n > N(e), [[u;— unll>’,.c < & Then the inequality
)t o <L holds for all » =1,2,... and positive constant L.
Hence and by (12) for p =1 the uniform boundedness of derivatives
{(Dhu (X, )}, on @ follows (k| =0,1,...,2b—1). Furthermore,
the equicontinuity of {D%u,(X,?)}>, follows from the well-known
i'ela.tions: D% u, (X, t)e H, (X, 2;1,0,T)) for |kl =0,1,...,20—2,

Diu,(X,t)e H, (X, 2;1,<0,T)) for [k =2b—1 and Diu,(X,1)e
eH g, l+u—|k|)1'2b1(t {0, T),X ) for |k| =0,1,...,2b—1. If the Ascoli
theorem is repeatedly ¢-times applied to {D a(X, )}oey, then we
find a subsequence {u, (X, t)or, of {u,(X,t)}y.,, which together with
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derivatives {D'j['u,,s(X, t)}s=y for k| = 0,1, ..., 20 —1 uniformly converges
on @ as § > oco. Denote the uniform limit lim u, (X, t) by %,(X, t). Then
8—00

lim D& wu, (X, t) = Diu (X, t) for [kl =0,1,...,2b—1 uniformly on Q.
8—00

Letting s > oo in the relations
Dt (X, 1) Dl (T, )] S LIX—XI%, |k = 26—1;
Dt (X, 1) — D, (X, )| < Ljt— /|07 1retiie,
| D% u,, JE OI< L  for [k =0,1,...,2b—1
(X, Ye 251,10, Ty) we have uy(X, t)e CR TP~ 1+9/2%(Q) Tt remains
to show that the sequence {u,(X, t)}n—, converges to u,(X, t) in the norm
-2 o Since {un (X, 1)};Z, is a Cauchy sequence in that norm, thus
to each & >0 there is N (¢) > 0 such that for all I, s > N(¢) and (X, 1),
(Y,1),(X,t)eQ:
IDI}t{uns(X’ t) DXunl(X t) (Y t) +Dx’“n,( Y? t)l
LelX—-Y|* if k] =2b—1;
IDfY'u'ns(X’ t) "-D,)ttunl(xy t) _D Un, (X v )'l'Dxunl(X’ t')l
< slt—t’l(2b 1+a—|k|)l2b
| Dt (X, ) —Diu, (X, 0)| <& if k| =0,1,...,2b—1.
Letting 1 - oo in these inequalities, we get Hm|lu,; — uqll$);,, = 0.
8§00
Hence and by the inequality

”’u’n - uo“qu’—ll+a < ”un ns”2b 1+a + ”uns - uo”zob'll+a
we may conclude the proof.
Remark 1. (a) If we replace the norm ||-||$?, . by another equivalent

norm, then the result of Lemma 2 remains correct.

(b) Let I, <1, be non-negative integers and 0 < f < a < 1. Then
the following relations are valid:

Ol;f—tap(lz+a)/2b(Q) - O}:{-tt’z,p(ll+a)/2b(Q) c Cl;{-.l-t.ﬁ;’(l]+ﬁ)/2b(Q)'

The analogous relations are satisfied for C%%(+9/2(Q).

LEMMA 3. Let conditions (A), (B), (Cy_1,4) be fulfilled and let the vector
function F(X,t,...,D%U,...) (lyl =0,1,...,2b—1) be continuous and
bounded in the norm |- ||&-?. Then the operator

H
(16) AU(X,1) =fdt fG(X, t; 5, 1) F[E, 7,...,D%U(E, 1),...1d5, (X, 1)<Q

maps the space Cz" Lra(-1+92(9) into the ball 8§ = {Ue#%: |U|%2,.°
< B}, where B >0 is a sufficiently large constant.
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Proof. Let U(X,1)e 0% @ 1+ (Q) and ||F|I"? < M, M > 0.
Then, by (16), for (X, t), (¥, t), (X t)e@,t <t we have:

|D§:AU(-X7 t) DXAU(Y 0 < MIl,k(X; Y, t)Ja k] = 2b—1;
IDX AU (X, t)| < M1, (X, 1)J;
|ID%AU(X,t)—D%AU(X, )| < MI, (X,t, )], |k =0,1,...,20—1.

By Lemma 1 we may assert that there exists a constant B > 0 for
which |AU|$?,.. < B.

Now we formulate the existence theorem:

THEOREM 4. Assume that the requirements (A), (B), (Cyy_, ) are satisfied.
Let the right-hand side F of equation (2) be a continuous and bounded vector
function in the norm ||-||EE? where B, > B (B is the constant of Lemma 3)
and let the Holder condition

17 (X, 8 ..., 0, ... —F(X,t ..., V" ...}

2b—1

<fglX—TP+ 3 (@ Ur—V"Plg

i=0 |yl=i
hold for (X,t,..., U?,...), (Y, t, ..., V¥, ...)eH(B,). Q" is a constant vector
(g1, -.-, @) with positive components q} for j =1,...,p and g, is a positive
real number. Further, let 0 < < a, <P, <1 for |p| =0,1,...,2b—2
and B,a > B for |y| = 2b—1. Then the problem (2), (3), (4) has at least one
solution U(X, {)e O >®=1(Q)  satisfying the inequality ||U|$%
< B,.

Proof. Let P denote the Banach space of vector functions U (X, ?)e

e O Lo @149/ (0 with the norm [[U|$?,,, defined by (12). In view
of Lemma. 3 the opera,tor A of (16) maps the closed and convex set
Sy = {UeP:|U|%* . < By} into itself (48, = §,). Let (X, ?), (Y, ) and
(X, t'), t < t' be points of @ and V (X, t)e 8,. In virtue of (17) for ¥, (X, ?)
=F[X,t ..., DxV(X,1),...],

]FV(X’ t) _FV(Y’ t)l

26—1
<|aX-TP+ 3 > (@, DRV (X, ) —DiV (Y, )")}J
=0 |Jy|=¢
<{01X- Y|"+Z‘j2 2 Sgrmx-1#)+ 3 (S aBbx-vr)
=0 |y|=% j=1 Jyi=2b—1 j=1

where L is a positive constant independent of V. Consequently, the vector
function ¥, (X, t) is Holder continuous with respect to X on £ with expo-
nent # and uniformly with to respect te <0, T), i. e. P (X, t)e Hg ,(X, 2;
t, (0, T>) for every V(X,t)eS,. According to Theorem 3, the problem
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(2), (3), (4) is reduced to solving the operator equation AU = U on 8§,.
The existence theorem for the given problem may be proved by the
Schauder fixed point theorem.

First we prove the continuity of the operator A on the set §,. Let
U (X, t) = (u}(X, 1), ..., up(X,t)) for » =1,2,... be a sequence in
8, tending to Uy (X, t) = (’ll,'{(X, t)y-..y up(X, t)) (UoeSohyie. |U,— Uo”zob'fl-g-a
— 0 as n — co. By (17) we get

|D% AU, (X, ) —D%AU(X,t)-D% AU, (Y, t)+D5%AU,(X, 1)

2b—1
<L(X, ¥, f)sup D M@ IDR UL, ©) =D Uo(5, 1)) J, k| = 2b—1;
i=0 |yi=i

I-D’.;{A Un(Xy t) _DIJ‘(A Uo(xy t)l
2b—1
< L(X, t)sup D° D' (@7, ID% Un(E, 1) =Dy Uy(5, 7)) J,
i=0 1yI=i
|D%AUL(X, 1) —D5%AU,(X, 1) —D5AU,(X, 1)+ D5 AU,(X, t')|
2b—1
<L (X, 4, t)sup X' M (@7, IDk Un(E, 1) =D} Uy(E, 7)) J
ico y=i
for |k| =0,1,...,2b—1. From this estimates and Lemma 1, lim {|[AU, —
—AU, |87 .o = 0. The operator A is thus continuous. noeo
We now prove the relative compactness of A8,. Put |[F||FE0-? < M,
M >0 and consider a sequence V,(X,?) = (v}(X,?),...,v5(X, 1) of
elements of A8,. There is a sequence U,(X,1) = (u?(X, 1)y ey up(X, 1))
in the space P for which V,(X,t) =AU, (X,t) (n =1,2,...). Since
V%27 .. < By, thus the sequence of derivatives {D%V,(X, )}, for
k| =0,1,...,2b—1 is uniformly bounded on . From the inequality

D%V (X, 1) D&V (Y, t)| < IDEXAUL(X, ) -D5 AUL(Y, 1) +
+ D5 AU(Y, ) —DXAU (Y, ') < ML+ 1),
in view of Lemma 1 we obtain the equicontinuity of {D%V (X, t)}o_,
on Q for every k with |k| =0,1,...,2b—1. Then we find a subsequence
{Va (X, D52 = {AU, (X, )2, of {V,(X,?)};., tending to a bounded
vector function V,(X,1) = (v}(X,?), ..., v3(X,?)), for which |D%V, —
—DEV &P >0 as I > oo (Jk| = 0, 1, ..., 2b—1). Moreover, letting ! - oo
in the relations
|D%Vo(X, 1) —D5Vo(Y, )] < IDXVo(X, ) = D5V, (X, )| +
+MIl,k(-X7 Y7 t)J+ ]Dl&an(Y’ t) —D,J‘KVO(Yy t)l for |k| = 2b*1;
ID%Vo(X, 1) < IDKVo(X, 1) = D%V o (X, 1) + M1, (X, 1)
ID4Vo(X, 1) —D5Vo(X, 1) < |D5V, (X, t) =D Vo (X, )] +
+MI, (X, 8, t)J + | D5V, (X, t')—D5V (X, t)] for |kl =0,1,..., 2b—1



Quasi-linear parabolic systems 157

we see that V,(X,t) belongs to the class C%;'F=®-1+92(Q). We have
constructed the sequence {V, (X,?)}Z, and the element V,(X,t) for
which it is now necessary to establish: ||V, —V|$214a = 0 as I - oco. For
this purpose the following consideration Wlll be helpful. Let S; be the
completion of A8, in the norm

2b—1
(18) 101P¢ = max (' 3 sup|Diu(X, 1))

JI=L..sP i=¢ k=1 Q

It is obvious that V,(X,t)e S;. We shall show that S is a subset
of CRLFeCv-1+970 (0. Indeed, let V(X,1t) = (v,(X,1),...,7,(X,?) be
an arbitrary vector function of 8;. There is a sequence { W, (X, t)}3_, = 48,
such that ||W,—V|%2%f >0 f n — oo. Similarly, like in the estimates
(13), (14), (15), letting n — oo we get
IDV (X, ) D5V (Y, )| < IDXV (X, )~ D% W, (X, 1) +

+MI, (X, Y, t)J 4+ |DEW, (Y, 1) —D5V (X, t)|
< ML, X —Y"| X - = ®"0E,J,
where k| = 2b—1 and
(DEV (X, 1) < |D5V (X, t) — D& W, (X, 1)+ M1, (X, t)d < ML, . E,J,
IDXV (X, t) —D4V (X, )| < ID%V (X, t) —D5W,. (X, t)| + MI, (X, t,t')J +
+ 1 DEWA (X, t')—D%V (X, t')|
< ML* (tp_t)(2b—l+u—]k|)/2b[(tr_t){2bu—(2b—l)—a}/2b+(tl_t)(l-—a)/2b]E J
for £k =0,1,...,2b—1, where L}, >0 and L;, >0 are constants. yx is

a fixed real number of the interval {(2b—1 + a)/2b, 1) Hence the expected
assertion follows and besides hm ]DX@),(X t) — D~ X0 (Y, )/ X-YI° =0

uniformly with respect to te <0, T> for |[k] =2b—1 and
lim | D% v;(X, t) —Dkv(X, t')][(t' — )b He-tkDi2e — ¢
>t —

uniformly with respect to Xe Q2 for |k| =0,1,...,2b—1 and for every
i=1..,p.
For brevity let us use the notations: (u),, x = [u(X,t)—u(Y, )|/
/I X—Y* and <(u)?, = |[u(X,t)—u(X,t)|/t—t'|*. By the preceding
limits, to each &>0 we find 6 > 0 such that for every j =1, ..., p;
1=1,2,... (V,,I(X, )—Vo(X,1)e8; for 1 =1,2,...),
(Diwr—Diu2y <6, if k] =2b—1 and 0 < |X—Y|< 4,

<Dx");"“Dx'vj>(2b—1+a-|kt)/zb,t < &,
if 4/ =0,1,...,2b—1and 0<?t —1< 4.
























