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1. Introduction

This paper is devoted to exponential approximation, in the norms and
seminorms, of some real-valued functions and their derivatives on the real
line R =(—o0, ). Theorems of Section 2 concern the functions of Ber-
noulli’s type. Section 3 contains analogous results, but of more general
character. They correspond to the Ganelius and author’s theorems about
one-sided trigonometric approximation, announced in [2] and [7]. We adopt
the following convenient notation.

" Given a finite p> 1, let L?(a, b) be the space of all complex-valued
functions Lebesgue-integrable with pth power on the interval (a, b). Denote
by L%(a, b) the space of all measurable functions essentially bounded on
(a, b). As usual, the norm of a function f €L”(a, b) is defined by

(}| f(x)Pdx)'"" if p <o,

esssup|f(x)| if p=o0.

xe(a,b)

Ilf”Lp(a.b) =

We write LP(R) or L” instead of LP(— o0, o0). Moreover,'by convention, L
=L’

Let L?_ be the class of all complex-valued functions belonging to every
space LP(a, b), with finite a, b (a < b). Denote by ACy, the class of complex-
valued functions f having the derivative f™ absolutely continuous on each
finite interval {a, b). Write AC, instead of AC)..

For any function fe€L%, ., the limit

fll, = Hm (115,

a—— o
b—w

is finite or infinite. In the case of f e L*(R), ||fll, = ||f||Lp(R) < 0.

29 — Banach Center t. 22 [449]
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Given a (complex-valued) function f bounded on each finite interval I
= {a, b), let us define the pth power variation of f on I as

n—-1
Y]
V,(f; I) =sup { z |f(tj+1)—f(tj)|p} (>0,
n J=0
where [1 denotes the partition la =1, <t; <...<t,_, <t,=b}|. Write

V() = V(£ R =sup¥,(f: D) (I <R,

This is our basic seminorm.
Consider, now, a (complex-valued) function f measurable and bounded

on finite intervals of R. Introduce its local modulus of continuity
w[3:/10) = sup If@—f@), L(x) = x—8/2, x+§/2),

u,vel 5(x)

and average modulus of continuity
t(6:/), = llw[8:/2, (0<5<w,1<p< o).

Evidently 7(0; f), = 0 always. If § is a positive number, 1(; f), may be finite
or infinite (for existence and basic properties see [4], Sect. 1.3 and [6],
Sect. 2).

Let E, be the class of all entire functions of exponential type, of order o
at most. Denote by B, , the class of these functions F € E, which belong also
to L"(R).

Consider, next, a function f of class L{, . Denote by H, ,(f) the set of all
functions G €E,, such that f—G eL?(R). Then, the quantity

inf ||f=S|l, if H,,(f) is not empty,
A, (f), = $ SeHaph

00 otherwise

is called the best exponential approximation of f by entire functions belonging
to H,,(f). In the case of an arbitrary real-valued f, the set of all entire
functions P€E, [resp. Q €E,], real-valued on R and such that

1) P(x) 2 f(x) [Q(x) < f(x)] for all real x,

2) P-feLl”(R) [/-Q€eL’(R)]
is signified by H. ,(f) [H, ,(f)]. The best one-sided exponential approxima-
tions of f are defined by

inf ||f-Sl, if HE(f) is not empty,
AZ(f), = {Seli W
o0 otherwise.

The symbols ¢, [resp. ¢(r,...)] (k, l€N), occurring in particular for-
mulae, mean some positive absolute constants [positive numbers depending
only on the indicated parameters r,...].
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2. Approximation of Bernoulli’s functions

Given a positive number ¢ and a positive integer r, let ¢ be an even real-
valued function continuous with its derivatives ¢’, ¢”, ¢’ on R, satisfying the
conditions

1)e(0) =¢(0) =¢"(0) =

2) o"()=o0(t"*") and 0" (1) =O(t") as t -0+,

3) o(t)=1 for all t 2 ¢

Introduce the integral analogues of Bernoulli’s functions:

lim <o)
Na-o —fu( t)k

It is easy to see that

D (x) = —é"™*dt (xeR, k=1,2,...,r).

(1) (x) = —{jg( )smtxdt+ -‘jmlsmtxdt} (x eR).

Therefore, @, is a real-valued odd function continuous- on (0, ), for which
$,0=0, &,0+)=1/2, &,(0-)=-1/2.

Under the assumption x > 0, the partial integrations lead to
2 ()

- {3.(# Q(t)+t639 (‘)"iQ (t)+19"’(t))costxdt— I@Ed}
0

whence
&, (x)=0(x"3 as x —+ 0.

For x > 0, the formula (1) ylelds

c

P (x) = %{[Q(r)costxdt— .
0

sincx

} when x # 0.
This implies that @) is continuous and bounded on (0, c©). Applying the
representation (2), we obtain

@) (x) = O(x 3) as x—o.

In the case 2 < k <r, the Bernoulli functions @, are real-valued, even
[resp. odd] if k is even [odd]. Moreover, &, are continuous on R and

P (x)=0(x"3% asx—-x.
Also, it can easily be observed that
2(x) =d,(x) for all real x # 0,
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@, (x) = D,(x), ..., Do(x) = D,_,(x) for all xeR,

whenever r > 3. Consequently, for m=1,2,...,r—1,
D1 (x) = [ Pul(s)ds (—o0 <x <o0).

Now, the well-known result ([1], Sect. 101), connected with Bernoulli’s
functions, to one-sided and ordinary exponential approximations in L*-
metrics will be extended.

THEOREM 1. Given a finite o = c, there are two entire functions P,, Q,
such that

() P,eH;,(®y), Q,€H; (D))
and, for every p =1,
(i) [|Po—Pyll, S €107 Y7, ||@,=Qll, < c o™,
(iii) [|P,—®ill, < c20' "2, ||@1—Qull, < c,00 1P
(in the case p = oo, the symbol 1/p should be treated as zero).

Proof. Let us consider the entire functions P,, Q, defined by

4572 45 2
P,(z) = G,(2)+ 8" D} (@), Q,(2)=G,(z)———D; (2),
where
k
Go(2) = k_z_wcbl(x,,)s—‘“%‘zT:)‘*—), xp = %
and

Y t\|%\c )] ? _
D}(z):{sma(z-l_—i;)} %E(Ziz—a)} (z = x+1iy).

As is known ([5], Sect. 2), these P,, Q, satisfy the relations of (i) and the
inequalities of (ii) for p = 1. Assuming that 1 < p < oo, we will deduce the
first estimates of (i) and (iii), successively.

Let us start with the identities:

' 5n?
3 Py (x)— P, (x) = g Do (X)— 1P (x) =G, (x)},
smtx 2 T tsintx
4 D, (x)—G,(x) = f ; E‘) kgl Wdt,
) &, ()~G, (x) = > Z | ®sin 6x Ccostx

Mo o t+(2k+1)o
(see [1], Sects. 87-88 and 100-101).
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Clearly,
4 - ] 4 ® S. 2
j D} (P dx =_§ sinu|® . du <- g (%’f) du.
Consequently,
(6) ID; 1|, < (2m)'/P g™ 1P

and, by the inequality of Bernstein’s type,
™) IDSll, < (2m)'/P ot = Ye.

Therefore, it is enough to ‘estimate similarly the difference Q(x) =

—G,(x) and its derivative. Evidently, putting

“®sintx it

AX) = |

(4

tsin tx
i<y (2ko)2—12

dt, B(x)= ?
0

and

F(x)=§ *f"’ costx

—dt 0),
i=o o t+(2k+1)o (x#0)

we have (see (4)H5)

(8) Q(x)=%A(x)+%B(x)=%F(x)sinax (x#0).

It can easily be verified that, for x # 0,

A() = ’. *sinu du, A'(x) = _smxax

, ox

) costx
7= ikzl rop -

J+DHn

Fx) = Z z(_ 1y 5 |sin u|

k=0 i=o jn |u+(2k+1)crx‘2 "

and

© ® UYD% (4k4d)olsiny
’ - -1 +1
F(x) ,‘;0 jgo( Y J:!, (u+(2k+1)ox)?

whence (see [5], Sect. 2),

0 < F(x) <5/(6x)?, 0< —F'(x) <10/(a?x3).
Write ¢ instead of 27! x, = n/(26), and observe that

sin au

A =3+ [ A @du=F- 5 (x>0,

453

2, (x)
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This identity, together with the obvious estimate

*sinou

] du| < = 0<x<Y),
o U 2
gives
¢ n \/P
©) 1A dx) < (5) .

By Minkowski’s inequalities,

4 o (¢
(fIB(x)|Pdx}'? < | { |
0 0 {0k

tsintx [P, )P
YRV Y] | dx dt
1 (2ka)“~t

(2ke)* =12

n )l/pl 6 ®

< -
26) o (‘, kz, 4k2—l
L n\P 21
S—(_> —2-,
3\2¢ =k
ie.,
n? 1/p
f Pdx)Vr g — (’t ) .
(10 HB(v)l dx 250
Further, setting C(x) = F(x)sinox, we get
@ o) P
[ICCaPds < [ i)zsm o] dx
¢ ¢
X1 5 o *p+1 5
= Zsinox dx+ sinox dx
Lo P f (ox)?
5> © 5p (u+1n du
X Ismu’-—+ sinul|P —
(O{)ZP ‘ | ,.=1(6x,,)2” ”‘; ' | p
h1d 5 ©
- 1[2"0’(2 p+2)n§1ﬁ’
whence
40

(11) ‘lIC(V)I"dV””’ T
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From (3), (6), (8)(11) and the identity

| 1Q(x)|Pdx = 2(|+ Q)IQ(x)l”dx
the first part of (ii) follows. The second one can be obtained parallelly.
Passing to Q'. we observe that

0

x/2
M epax =0t TS a0 ¢ =m0
Hence
é. > s 1/p
(12) {_HA'(X)Ipdxz””g(E) ol VP,
V]
In view of Minkowski's inequalities,
t2costx [PV
’ P ]1/P< _Lreostx i it
([ rasyr < ] 5 {2, x}
éllp
1L
21
< éllp Z_z
Consequently,
2 1p
13 (1B (x)|"d n/p<”_(5) 1-1/p.
(13 \| (2|7 dx s(3) @

The derivative C’(x) can be estimated (in absolute value) by
[F(x)ocosax|+|F'(x) (x> 0).

Therefore

© .
[IC (¥ dx
4
X1 @ Xu+1 ®

SIFE)P (locosax|Pdx+ Y |F(x,)” | locosox|Pdx+ VIF ()P dx
&

u=1 Xy <

VAN

P! %(( 5)2 )p ; [cos u|? du

[« o]

+ 2

u=1

S
(ax,)?

p(u+)x ® 10 \°
| lcosul"du}+ é[(;Tx—S) dx

ux
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Thus,

b 12 1
(14 {[ IC'(x)lpdx}llp <5 (‘1?2"{"3)0'1— p,
14

The identities (3), (8) together with (7) and (12)(14) lead to the assertion
(i), immediately.

Remark 1. From (iii) it follows that
Vo(P,—®y) < Vi (P,—®y) < 1+c,.
Evidently, the same estimates with Q, instead of P, are also true.

Remark 2. The assertion (ii) leads to the inequality
(15) AF N, <24, O<o<w, 1<p<w)
for each real-valued function f € AC, with f'eL%  (Th. 3.2 of [5]).

THEOREM 2. Given a number o = c, a positive integer n<r and an
arbitrary p > 1, there exist entire functions P,,, Q,, such that

(@) Pon€Hg,(Pn), Qon€Hsp (P

and, for v=20,1,...,n,

. ca(n, v) ca(n, v)
(ii) ”P(a‘,‘)n—¢£tv)”p < ;_7:—‘.‘:‘;—.,‘._1;, B — LV)n”p < PEETESESVE

Proof. In view of Theorem 1, we may suppose that n > 2.
Consider functions ¢ belonging to the space L? = L?(R) (1 < p < o).
Introduce the singular integral

1@

(16) Wil =~ | oMK, (z—ndt  (z =x+iy),
with

K, (¢) = (cos 6l —cos 2a0)/(6t?) (0 <o < ).

Clearly, K, €B,, ;.
As is well known, W[¢]€E,, and, in the case of ¢ €B, ,,

(17) Wlel(x) = @(x) (x€R).
The estimate .

IKolls S csm (cs = (4+2log 3)/m)
implies
(18) W Lelll, < esliell,,
ie, W[ep]eL? (see [1], Sect. 106).
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Write
loll =lioll,, Al(@) =A,(0),, A (@) =A4,(p),, =0,

Denote by S[¢] the entire function of class B, , corresponding to a function
¢ €L? for which

(19) llo—SLelll = A, (o).
Choose the entire function PeH, ,(®), such that
(20) |IP—d| <2A4; (D).
Supposing that 0 < v < n and using the operator (16), we have

lo™ — POl < ll‘P‘”’ —WeM]||+|s™ [w[e1]- P
+[Wrev) - s [w o]
=M, +M,;+M,, say.
By (17), (19) and (18),
M, < ||¢D‘”’—S[¢‘”’]ll+||W[S [27]—0™]|| < A, (PV)+c5 A, (D).
The Bernstein type inequality and (19), (17), (20) give
<d'|s[wiel]-A|
<o {|IS[We]] - W] +IW [#1-S[2]l|+IIS [®]- || +]|® — Pll}
S o' {A, (W[ +(cs+1) A, (D) +24] ().
Under the assumption v< n—1,
W[PdM](x) = W [@D](x) for all real x.
Applying, in this case, the Bernstein type inequality and (19), we get
M; < (20)"||W®]1-S[W[P]]|| = (20)' 4, (W [D)).
But
A, (WD) < W[P]-S[®]ll = [W[2-S[]]|| < s 4,(D),
by (17)H19). Consequently,
M; < ¢5(20)" 4,(9).
Therefore, if 0 < v < n—1, the estimate (15) yields
M, S (1+¢5) A, (@) S (1+¢5)c3 ™17V a" "1 4, (@ 1),
M, <o (es+3)A; (D) <3(1+cs)ch ta 1 4, (9" D),
M, < (20)°cs Lgl=n 4 (@ V) = 2" ¢ 1ot A, (P D).
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Since (see Theorem 1) A, (9" V) = A4,(®,) < c,¢” 7 and
IP? =@ < (¢ +c)a! P +a||P™ D — =D

the first parts of the assertions (i) and (ii), with P, , = P, are established. The
second parts can be obtained parallelly.

3. General theorems

Let us start with the following

LeEmMMA. Let y € AC,,. " Land let ' €L? for some finite or infinite p > 1.
Then, for the operator W defined by (16),

W yl(x)=WY'l(x) (x€eR).

Proof. The Lebesgue dominated convergence theorem ensures that

W Yl = [ y@OK,(x—n)dt = | y(x—w)K,(u)du (x€R).
Since
W@ —y ) =|{v@©Od| <Wll,lul'  (p+q = pg),
0
we have

Yyw=0(u) asu—+o.

Therefore, by partial integration,
W WIx) = | y(x—wK,(wdu= | K,y (x—u)du =nW[Y](x).

PROPOSITION. Let Y be as in the Lemma. Suppose that, for some entire
function G of class E, (6 > 0), the estimate

IG—yll, <ceo™ ' 4,¥), (1<p< o)
holds. Then
IG' = ¥'ll, < ¢7 Ag(¥),-
Proof. Consider functions g € L?,. and the operator W defined by (16).
Denote by S[g] the entire function of class E,, such that

1) llg —S [gll, < 24,(9),.
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Writing || || instead of || |,, we have
' =Gl < Iy’ — W[W]II +||S'[W Y1) =G|+ ||W [¥'1-5 [W¥1]|
= N;+N,;+N;, say.
The identity (17), together with estimates (21) and (18), gives
< =S M+WISW -9 < 201 +c5) A4, (),

By the Bernstein inequality and our Lemma (see also (21) and (18)),

N, < a“S[W[lﬁ]]—G”
<o {|S[WYI]-wiyll|+Iw¥1-S W +IS Y-yl +Iy —Gli}
<o {24,(WYD,+(25s+D A, W), +cs07 "' 4,(0),},

N; < 20||WY1-S[W Y]] < 404, (W [¥)),.

Observing that A,(W[y]), < ¢5s 4,(¥), (see the proof of Theorem 2) and
applying the estimate like (15), we get at once the desired assertion.
Now, the main results will be presented.

THEOREM 3. Let f be a real-valued function of class AC].! (r € N) having
(a.e) the derivative f@eLf, (1<p <o), and let A.(f"), <o for some
positive number c. Then, for every finite o > c, there exist entire functions T,,
U, such that

(i) T,eH,;,(f), U,eH,,(f)
and, for v=0,1,...,r—1,

Cg (r v) Cg (r v)

(i) 177 =fll, < A (f D) IIfV=UDN, <

A (S,

If, in addition, f"‘”eL and f© eL?, then

(i) 1T =1, < co (VA (S, ISP =UDM, < €5 (r) Ao (f),

Proof. Let g, be a function of class E,, real-valued on R, satisfying the
inequality

f =g, < 24,(f*),.
Retain the symbols &,, P,,, Q,, used in Theorem 2 with p = 1.

By the well-known theorem ([1], Sects. 101-102, [3], pp. 113-116), for

every x€R,
Q0

S(X)=gq(x) = A (x)+ f fO)-gl O D, (x—t)dt (0= 0),
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where A, denotes some entire function of class E.. From this identity it
follows that

O0=g0 () = AP+ | 170~ 0} 8 (x— 1)

for v=0,1,...,r—1 and all real x. Therefore, putting
hy (1) =300 O —g3 O+ () — g5 ()},
he (6) = 330 (0 =g Ol = () +45 ()],
we can write

FO ) = O+ AV I+ | B (OB (=) de— b7 () BV (x—r)dr.

Introduce the function of a complex variable z:

T,(2) =g,(2)+ A2+ | h' ()P, (z—1)dt— | h (1)Q,,(z—1)dr.

- @

It is easy to show (see [3], pp. 137, 308-309) that T,€E, and that, for
ved0, r—1),

22 T () = T ht ()P (x =) — PP (x— 1)} dt

b R O@O(x-0-00(x—0}dt (xeR).

In particular, by Theorem 2 (i),
T,(x) = f(x) for all real x.

Applying to (22) the Minkowski inequalities and Theorem 2 (ii), we obtain

I =N, < B 11 1IPS) — @20y + 1 1 e — QI
< O =gl 2c4(r, o™
S 4C4 (I‘, V) av—'Aa(f(r))pa

whenever v < r—1. Thus, the first parts of (i) and (ii) are proved. The second
parts ¢an be deduced parallelly.
The assertion (iii) follows at once from (ii) and Proposition given above.

p

THeOREM 4. Let f be a real-valued function measurable and bounded on
each finite interval. Suppose that, for some finite p>1 and 6 >0, 7(J;f),
< 0.
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Then, for every finite ¢ > 0, there are entire functions T, U¥* such that

(i) T*eH,;,(f), UteH,,(f)
and

(i) | T* =S, S crot(@™ 3 )y, If=Udll, S crot(@” '),
If, in addition, f is of bounded p-th power variation on R, then

(i) | ¥ —fll, < ci1 67" V,(f), IIf— U*Ilp cii0” PV, (f)
and

(iv) V(T =f) < c.. V,(f), V,(f=U3) < eV ()

The proof of (i) and (ii) is given in Section 3 of [5]. The assertions (iii)
and (iv) can be stated similarly to their trigonometric analogues (3.2), (3.3) in
Theorem 3 of [7].

Remark 3. In the case of real-valued feAC.' (reN) such that
fPel® nBV, (1 <p < o), the entire functions T,, U, (¢ > 0) determined in

loc

Theorem 3 satlsfy the inequalities
N =M+ = URN, < 2e5(r, v)eq 6* 7 " VPV,(f)
(v=0,1,...,r=1).
This is an immediate consequence of the last two theorems.

THEOREM 5. Suppose that f is a real-valued function of class AC;'
(r eN), with f” eL? ~BV, for some finite p> 1. Then, for every finite ¢ > 0,
there exist entire functions T,, U, such that

@) T eH;,(f), U,eH;,(f)
and, for v=0,1,...,r—1,

(ii) |7 f‘“’l|p+||f‘"’ 09N, < cralr, v) o " PV,(F),

(i) V(T =) +V,(f"=09) < cpalr, vV, (f*).

Proof. In view of Theorem 4, there is an entire function T} €B,,
(6 > 0), real-valued on R, satisfying the inequalities

23)  NTH=fON, < cio”PV,(FD), V(Th =) <2 V,(f7).

Suppose further that ¢ > ¢ > 0. Retain the symbols @,, P,,, Q,, used in the
proof of Theorem 3 and start with the identities

S (%) = F.(x)+ 050 OO, (x—t)dt

=F.(x)+J,(x)+ }D{f"’(t)-72’,',(!)}¢r()_c—t)dt (x€R),
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where F, means some entire function of class E., and

L@ = | 6,0 THe-udu (@ =x+iy, %, yeR).

= @

It is easily seen that J,eB, ,.
Introduce the auxiliary function

g(x)=f(X)—F.(x)=J,(x)= | fO0)—T%50)] D, (x—1)d;

write
k(@) =3 00 -TLOH+f 0 - T @),
he () =3 O O-TLOI -0+ T (1)
Then
g(x) = T h' (t) D, (x—t)dt— ? h” (t)P,(x—t)dt (x€R).
Putting

Y= [ Y OP,,(z=0dt— | h (0Q,,(z—0)dt (z = x+iy),
we obtain

24 Y=g = | B () |Pon(x—1)=,(x~0)) dr

+ }).,hf 0P, (x=1)—Q,,(x—1)] dr.

Evidently, Y, €B, , and Y,(x) > g(x) for alll real x. Moreover, by Theorem 2,
1Yo —=gll, < I8 1, 11Pgr — Polly + 11711, 19— Qs il
< 264(r, 00" [If 7 = TH,, |
i.e. (see (23)),
(25) Y, —gll, < 2¢4(r, 0)cyy o™ " 1PV, (S).
Taking the entire function T, defined by
T.() = F.()+J,(0)+ Y, (2),
we observe that

T,(0)—f(x) = Y, (x)—g(x).
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Therefore ﬁeH;‘ (/) and, in view of (25),
(26) NT, =1, < 2ca(r, )y 07"~ PV, (f).
Further, by Minkowski’s inequalities and Theorem 2 (ii),
V(T =V,(Y,-9)
< Vp(hr-'.)”Pa,r_ ¢r”l + Vp(hr—)HQr_Qd,r”l
S V,(fO=T}) 2,(r, 0)07";
whence, in view of (23),

(27) V(T—f) 2c4(r, 0)cy 0" 'V(f('))

Analogously, we can construct the entire function U,,eH,,‘,,,(f) having

the same approximation properties as 7,, determined by (26) and (27).
Thus, for v = 0, the desired estimates of (ii) and (iii) are proved.
From the identity (24) it follows that

YO —g® () = [ B (0) (P (x—1)— B (x— 1)} dt

+ TR O@Pe-)-0Rx-0}d (1 <v<r—1)

for all real x. Hence, by Minkowski’s inequalities and Theorem 2,

1Y =gl < 11l 1P — 81, + A7 1} 19 — Q2
< 24 (r, VY T O =T,
Consequently (see (23)),

(28) IT=f N, = 1Y =g, < 24 (r, VIcyy 0* 77" 1PV, (f).

Since
V(Y —g™) < V,(WOIPS, — BNy + V, () 198 — Q01
< 24(r, V)" V(O -T2,
we have
(29) v, (TY—f™) = V(Y —g™) < 2¢4(r, v)cy50° " V,(f7).
Obviously, the estimate (28) [resp. (29)] in which ||T”—f®||, [V, (T

—f™)] is replaced by [T —f )|, [V, (0 —f™)] remains valid. Thus in the
case 1 < v <r—1, the assertions (ii) and (iii) are established.
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