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It is well known that if o is a Banach algebra with identity, with
associated norm |||, then

Lim A" = r(4),
n

the spectral radius of 4, for all A € & (see [2], p. 179). Wimmer proved [4]
that, for the algebra .#, of k X k complex matrices, and for the trace linear
functional Tr on .#,,

(1) limsup |Tr(A™)Y™® = r(A) for all A e #,.

Wimmer has also raised the problem of characterizing those semi-
norms g on ., which satisfy

(2) limg(A™)™ = r(4) for all 4 € #,.

This problem will not be solved in this note. Here we solve an easier
problem in a more general setting, a natural generalization of Wimmer’s
result. Specifically, we give a necessary and sufficient condition for & semi-
norm p on an algebra &, finite dimensional over the complex numbers C,
and with identity, to satisfy

(3) limsup o (A™)!™ = r(A) for all A e «.

The characterization is very satisfying by its simplicity ; its usefulness
will be given a little promotion here by an application to .#,.

Before the result is stated, some facts, basic to its proof, about finite-
dimensional algebras with identity, and seminorms on finite-dimensional
vector spaces, will be summarized. _

If o/ is an algebra with identity, finite dimensional over C, and 4 € «,
then, because « is finite dimensional, there is a unique, monic polynomial
m 4(x) € C[x] such that m,(4) = 0, and p(4) =0, p(%) € C[x] imply
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m 4(x) | p(x). Observe that, clearly, A is invertible if and only if m 4(0) # 0.
It follows easily that the elements of the spectrum of A are precisely the
roots of m ,(x). Consequently, the spectral radius and, indeed, the spec-
trum of A € & are the same as the spectral radius and the spectrum of A
considered as an element of any subalgebra of &, with identity, that
happens to contain A.

Suppose that F is a vector space over C, and ¢ and 7 are two semi-
norms on E; o < v means that there is a number K > 0 such that o(x)
< Kz(x) for all ze E. If o < v and 7 < o, then ¢ and z are said to be
equivalent. Set

N () = {w € E; () = 0}.

N(p) is a subspace of E. Clearly, ¢ < 7= implies N(7) = N(o). f E
is finite dimensional, then the converse is true: N(z) = N(p) implies
e<T.

For the proof observe that if N(z) = N(p), then = induces a norm,
and ¢ & seminorm, on E /N (7). It is well known that any seminorm on
a finite-dimensional normed space is continuous. Indeed, this fact follows
easily from the well-known equivalence of norms on finite-dimensional
spaces, a proof of which may be found in [3], p. 95. Returning to ¥ from
E /[N (z), we conclude that ¢ < 7 follows when F is finite dimensional
or, more generally, when N (z) is finite codimensional in E.

Now suppose that £ = «, a finite-dimensional algebra with identity.
If Ae o and

limsup o (4A™)'* = r(4),
n

and ¢ and v are equivalent, then the same equation holds with ¢ replaced
by 7. Thus, whether or not o satisfies (3) is determined by the nature
of N(p). '

Finally, for A € o/, to show limsupg(A™)'™ = r(4), it suffices to
prove that "

limsup g (4A™)V" > r(A).
n

The reason is that & may be represented as a subalgebra of .4,
for some positive integer k (see [2], p. 180). There is, therefore, a Banach
algebra norm ||| on «; {0} = N (||-]]) = N(e), 80 ¢ < ||*|l, whence

limsup o (A™)Y* < lim ||A'f||”" = r(4).
n n
THEOREM 1. Suppose that o is an algebra with identity, finite dimen-

sional over C, and o i8 a seminorm on . Then o satisfies (3) if and only
if N (o) contains mo mon-zero idempotent.
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Proof. If AeN(o), A #0, and A* = A4, then A™ = 4 € N(p)
for all positive integers ». Thus

limsupg(A".)"” =0 #1=r(4).

Now suppose that N (g) contains no non-zero idempotent, and let
A e of. We want to show that limsupe(4®)'" = r(4). It suffices to
prove that "

limsup ¢ (4™ > r(4),
n

and that this inequality holds with o replaced by the restriction of o
to the subalgebra of & generated by A and the identity. For simplicity,
we will henceforward assume that o is generated by A and the identity;
that is, every element of o/ is & polynomial in A.

Then the map P(x) > P(A) is an algebra homomorphism of C[x]
onto «f. Consequently, .« is isomorphic to C[z] /(m(a;)), with m(2) = m ()
being the minimal polynomial of 4, and (m(z)) the ideal generated by it.

Let a4, ..., a; be the distinct roots of m(x),

t
m(x) = ”(w—a,)’f.
j=1
Suppose that |a,| < ... < |@| = r(4). Then C[x]/(m(w)) is an algebra
isomorphic to the direct sum

t
,’.(IC [#1/((z — a;)”)

(using the Chinese Remainder Theorem applied to C[«]) by the map which
sends an element P () (m(w)) of C[#]/(m(»)) onto

(P(@)+((@—an)?), ..., P(2)+ ((@—a))).

Clearly, the cosets represented by 1,z—ay, ..., (»—a;)%-1 form
a basis of C[2]/((#— a,)%), considered as a vector space over C. Let Uy
denote the coset of (¢ —a;)*~! in C[«]/((x— a,)%), and let B, denote the
element of & corresponding to (0, ..., Uy, 0,...) in the correspondence
of o to

t
leC [#1/((z — a))%).
(By (0,...,Uq4,0,...) i8 meant the element of the product with Uy

in the j-th position, and zeroes elsewhere.) The B;; (i =1, ..., 8; j =1, ...,
constitute a basis of o/. Note that

¢
A = ) (a;B,;+B,),

j=1
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since ¥ = @;-1+ (v —a;) for each j. Note further that Bj; (j =1,...,1)
is a non-zero idempotent.
If z and a are complex numbers such that # # a, then

(z—2) ) (z—a) " (z—a)"! = ((z—a)—(v—a)) D (¢—a) (z—a)

o1 iz
=1—(z2—a)*(—a)° =1 (mod (»—a)*).

That is, the inverse of z—« in C[#]/((x—a)’), if z—= has an in-
verse, is

8
D(e—a)(z—a) .
i=1
It follows (if we let I represent the identity in o) that
¢

((I—4)" =) Z’:(z—aj)"Bﬁ

j=1 i=1

for any 2 such that z #a; (j =1,...,1). On the other hand, for z suffi-
ciently large,

((I—A)?! = Zz“”“)A“
n=0 ’

(see [2], p. 171) with the convergence of the series on the right-hand
side taking place in any norm whatever on .

If t =1 and a, = 0, then A is nilpotent, and ¢(4A™)" =0 = r(4)
for all n sufficiently large. So suppose that r(4) = |a,| > 0. Since N (g)
contains no non-zero idempotents, B,, ¢ N(¢). Consequently, there is
a linear functional f € N (p)° (N (o)’ is the annihilator of N (p) in &', the
dual of &) such that f(B,;) # 0. Then

t 85
9(2) = fl(:I—A)") = D' Y'(2—a)"'f(By)

Jm=1 f=1

has clearly a pole at a,, since it has & non-zero residue f(B,;) there.
Consequently, the radius of convergence of the power series

g (%) — n=20 ,wn+lf(An)

is less than or equal to |a,|~' = r(4)3!, which, by Hadamard’s conver-
gence formula, implies that

limsup |f (A" > r(4).
n
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The seminorm 7 defined by =(B) = |f(B)| for all B e o satisfies
N (o) < N(z), since f e N(g)°. Therefore, v < o, 80

limsup o (A4A™)* > limsup = (4™)'" > r(4).
n n

COROLLARY 1. Suppose that o is a subalgebra of A, with or without
identity, and o ts a seminorm on L. Then- the following statements are
equivalent:

(a) o satisfies (3);

(b) N (o) contains no non-zero tdempotent;

(c) o has an emtension to all of A, satisfying (3) with of replaced by A,,.

Remark. Since any finite-dimensional algebra, with or without
identity, may be considered as a subalgebra of .#, for some k (in case
where the algebra has no identity, adjoin an identity and embed the
augmented algebra in .4, for some k), the equivalence of (a) and (b) extends
effectively Theorem 1 to finite-dimensional algebras without identity.

Proof. Clearly, (c) implies (a), and also (a) implies (b) by the first
part of the proof of Theorem 1. We show that (b) implies (¢). Let ||| be
any norm on .#,, and let P be any projection of .#, onto <. Write -

3(4) = I4—P(A)|+o(P(4)) for all 4 e A,

Clearly, p is & seminorm on .#,, an extension of g, and N (g) = N (p),
80 N(g) contains no non-zero idempotent. Thus statement (c¢) follows
from Theorem 1 applied to .#, and pg.

The next corollary requires some additional terminology and notation.
For A € #,, the conjugate transpose or adjoint of 4 will be denoted by A*.
If A, B € #,, the Hilbert-Schmidt inner product of A and B is the scalar

k k

[4,B] =) Y 4,B,.

i=1 j=1

Clearly, [, -] is a complex inner product on .#,; indeed, it is just
the usual inner product on .#,, considered in an obvious way as C¥.

The positive integer % will be fixed. For 8 = {1,...,k}x {1,..., k},
%s € M will be the matrix with 1 at every entry indexed by an ordered
Ppair in 8, and zeroes elsewhere. Note that, for any B € .4,

[xs) B] = Z Eij-
(4,7)eS

An upper diagonal will be a set of ordered pairs of the form
{G,p+¢—-1); i =1,...,k—p+1, p =1,..., k}.

10 — Colloquium Mathematicum XXXIX.2
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A lower diagonal will be a set of ordered pairs of the form
{(p+i—-1,0);i=1,...,k—p+1,p =1,...,k}.

The main diagonal, {(1, 1), ..., (k, k)}, is thus both upper and lower.
A diagonal block is the Cartesian product of any non-empty block of
consecutive integers, from {1, ..., k}, with itself.

It will be useful to note that
[A,B]=[B* A*] and [4B,C]=[C*4,B*] forany A, B,C e 4#,.

It follows that if A, B, P € #,,, and P is invertible, then

[PAP7!, B] = [4, P*B(P*)].

CoROLLARY 2. Suppose that B,,...,B,c .#,. The following siate-
menis are equivalent:
(a) for each A € #,,

limsup max |[4", B, ]'" = r(4);
t

n m=1l,...,
(b) there is no non-zero idempotent A € A, such that [A, B,,] = 0 for each
m=1,...,1%
() for each invertible P € 4, and each nmon-empty subset S of the main
diagonal, there exists m € {1, ..., t} such that

[xs; PB,P~'] # 0;

(d) ((d’), (d')) (}) for each invertible P € .#,, and each non-empty list
J1y ..oy dg of mutually disjoint diagonal blocks, there exist m e {1,...,1}
and an (upper, lower) diagonal D such that, letting

q
S =Dn(‘LJ1 J‘),

we have [yg, PB,P~'] # 0.
Proof. Define ¢o on 4, by

e(4) = max |[4, B,]|.

m=1,...,

Clearly, o is a seminorm on M., and
N(e) = {Bl’ --wBt}'L = {A; [4,B,] =0, m =1,...,1}.

Thus (a) and (b) are equivalent by Theorem 1.

(b) implies (¢). If p is invertible, and 8 is a non-empty subset of
the main diagonal, then P*y4(P*)~! is a non-zero idempotent. Thus, by (b),
there exists m € {1, ..., 1t} such that

[P*xs(P*)™"y Byl = [xs) PBoP™'] #0.

(}) The different statements (d) are obtained by writing “upper” or “lower”
or nothing in front of the second occurrence of the word “diagonal”.
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(c) implies any of statements (d). Given P and J,,...,J, a8 in (d),
let D be the main diagonal. Then

i=1

is a non-empty subset of the main diagonal, whence the desired conclu-
sion follows from (e¢).

Among statements (d), each of the first two implies the third, the
one in which the type of diagonal whose existence is asserted is unqualified

by “upper” or “lower”. We show that this weakest statement of the
three implies (c). Given

S={(81781))"'7('gq78q)}.’ 1<81<“'<8q<k,

a non-empty subset of the main diagonal, and an invertible P € .4,
set J; = {(8;,8)}, ¢ =1,...,¢. Then Jy,...,J, are mubually disjoint,
non-empty diagonal blocks. The diagonal D whose existence is asserted
in (4”’) must be the main diagonal, in view of the full conclusion of (4"),

gince no other diagonal intersects U J;. Then § = Dn (U J), and the
conclusion of (c) follows. i=1

It may be of interest here to note that (d) and (d’) are easily seen
to be equivalent by the fact that each A € .#, is similar to its transpose
(see [1], p. 115, Problem 8), but that the equivalence of all three state-
ments (d) is not trivially obvious.

The proof will be completed if we show that (¢) implies (b). If 4 is
non-zero idempotent, then, for some invertible P 4§nd some non-empty
subset S of the main diagonal, A = Py¢P~'. Then by (¢) there exists
me{l,...,t} such that

0 # [x87P*Bm(P.)—l] = [4, B,].
COROLLARY 3. If B € #, and

limsup |[[4", B]|Y® = »(A) for each A € A,,

then B i8 a non-zero scalar multiple of the identity matriz.
Proof. If some entry of B off the main diagonal is non-zero, say
B;; # 0 with ¢ # j, set
B,
4 = 1em— g em:
i

Then A is a non-zero idempotent, and [4, B] = 0. Thus B is a diago-
nal matrix. If any two main diagonal entries of B are unequal, then B
is similar to a non-diagonal matrix. Hence the construction above, to-
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gether with the properties of [ -, -], again yields a non-zero idempotent A
such that [4, B] = 0. Thus B is a scalar multiple of I, and the scalar is
surely not zero.

Corollary 4 asserts that, up to equivalence, the absolute value of
the trace is the only possible seminorm on ., with null space of codi-
mension one that could satisfy (3). That |Tr(-)| does indeed satisfy (3)
was Wimmer’s result, and it follows also from Corollary 2. It is reasonable
to ask if |Tr(-)| is the weakest seminorm on .#,,, with respect to the order-
ing <, modulo equivalence, satisfying (3). Equivalently, if B,, ..., B, € .#,
satisfy (a) of Corollary 2, is it necessarily the case where I lies in the linear
span of B,,..., B;? The answer is no.

Example 1. Set

1 0 0 0

Clearly, I ¢ sp(B,, B,), and it is claimed that B, and B, satisfy (a)
of Corollary 2. We will check the claim directly with the use of (¢) of

Corollary 2. Suppose that
a b
r-[2 4]

is invertible; we may also assume that detP = ad —be = 1. Then

a —b ad — 2bo ab
P!l = . , PB,P!= )
—¢c a —cad —be+2ad

bd ——bZ]

PB,P! =
el

The sum of the main diagonal entries of PB,P~!, i.e. the trace of
PB,P~!, ig, of course, 3, so to show that B, and B, satisfy (¢) of Corollary 2
it suffices to prove that it is impossible for the (1, 1)-entries of PB,P™!
and PB,P~! to be simultaneously zero, and the same holds for (2, 2).

If bd = 0, then either b =0 or d = 0. If b = 0, then ad—be % 0
implies ad = ad —2be # 0.Ifd = 0, then ad—be # 0 implies —2be = ad —
—2bc # 0. The argument about the (2, 2)-entries is similar.

CoROLLARY 4. If B,,..., B, e .#, and the span of all the columns
(or rows) of all the B,, ..., B, is a proper subspace of C¥, then B,,..., B,
do not satisfy (a) of Corollary 2.

Proof. Let V be a proper subspace of C* to which the columns of
B,, ..., B, are confined, and let @ be the matrix representing (with respect
to the usual basis of C*) the orthogonal projection of C* (with respect to
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the usual inner product on C*) onto the orthogonal complement of V.
Then Q is a non-zero idempotent. The columns of @ are in ¥+, so, clearly,
[@, B,] =0 for each m =1, ...,%.

Before leaving Theorem 1 and its consequences, it may be instructive
to observe in what way Wimmer’s original result is a special case of
Theorem 1 with & = ;. Wimmer’s result may be deduced from Theo-
rem 1 by using the fact that an idempotent matrix with trace zero must
be the zero matrix. Alternatively, this little fact, an easy exercise in ele-
mentary linear algebra, may grandly be deduced from Wimmer’s result
and Theorem 1.

Infinite-dimensional analogues. For a vector space E, and
a subspace F of E, let QZ denote the canonical map of E onto E/F. If E
is equipped with norm ||-||, and ¥ is closed, IQZ(-)|| will denote the quotient
norm on F/F.

It might be expected that the simplest extension of the inquiry
with which this paper started would be effected by replacing finite-dimen-
sional algebras by arbitrary Banach algebras, and by requiring the semi-
norms under investigation to be continuous. There is, however, a simpler
question to be asked: for which closed subspaces N of a complex Banach
algebra «f with identity, is it the case that

(4) r(4) = im||Q¥ (4™ for all Ae o
or
(B) r(A) = limsup||Q¥ (A" for all A e 1

If ¢ is a continuous seminorm on &/, then N = N (p) is a closed sub-
space of o, and o < ||Q%(-)|. It follows that if ¢ satisfies (2) or (3), then N
satisfies (4) or (5), respectively. The converse implications, however,
do not work.

Example 2. Let & =%, be the space of absolutely summable
sequences of complex numbers with the usual norm and with the convolu-

tion multiplication
n
a 'b == (Z akbn_k)n=o.
k=0

(o]

e(a) = D) 27Hay).

k=0

Define ¢ on &; by

Then ¢ is surely a continuous seminorm on «, and N(g) = {0},
80 (4) holds with N = N (o). Set ¢, = (0,1,0,0,...). Then pg(e*)'* =1}
for all n, whereas r(¢;) = 1, so (3) and, consequently, (2) fail to hold.
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In modest contribution to the uvnravelling of the problems indicated
by (4), (8), and, for finite-dimensional algebras, (2), one proposition and
some corollaries will be presented here. The proposition is well known,
although the author would not know to whom to attribute it.

The Jacobson radical J of a Banach algebra o with identity I is
the set of elements A such that I+ BA has a two-sided inverse for all
B e «. It is also the intersection of all maximal left ideals of <, and of
all maximal right ideals, and is, therefore, a two-sided ideal (see [2],
p. 161 and 162). It is closed, since any maximal left ideal in a Banach
algebra with identity is closed. Thus «//J is itself a Banach algebra with
the norm Q7 (-)I.

PRrROPOSITION 1. Suppose that of and J are as in the lines above. For
all A € o, the spectrum of A and that of Q¥ (A) are the same.

Proof. Let o(A4) denote the spectrum of 4, and set Q = Q¥. If Al — A
is invertible (in &), then so is AQ(I)—@Q(4), whence ¢(Q(4)) < o(4).

On the other hand, if 1Q(I)—@Q(A4) is invertible in «//J, then there exists
B e o such that

B(AI—-A)—I =C0C,eJ and (AI—A)B—1I=0C;€eJ.

Now, I+C, has a two-sided inverse in o/ and, in particular, a left
inverse, s0 AI — A has a left inverse. Similarly, AI — A has a right inverse,
which completes the proof.

COROLLARY 5. If N is a subspace of J (not necessarily closed), then
r(4) = im|Q% (A™)|"™ for all A e .
n

The result follows from Proposition 1 and the inequalities
197 (4)I < 1IQF (A < |14l for all A e o.

COROLLARY 6. If o 18 a finite-dimensional algebra with identity,
o a seminorm on &, and N (o) a subspace of a nilpotent left (or right) ideal
in o (or, which is the same thing in the finite-dimensional case, a left or
right ideal all of which elements are nilpotent), then

limp(A™)'" =r(4) for all Ae o.
n

Proof. Suppose that N(¢) = N < N is a nilpotent left ideal. If B € N
and C € o, then OB € N, so OB is nilpotent. Therefore, I +CB is invert-
ible. Since C is arbitrary, B € J, the Jacobson radical of «/. Now the result
follows from Corollary 5 and from the fact that o and Q¥ ()| are equiv-
alent for any Banach algebra norm |-|| on «.

Proposition 1 has the following alternative proof in the finite-dimen-
sional case. In that case, J is a two-sided nilpotent ideal. For A € «,
let m(x) be the minimal polynomial of A in &, and m(z) the minimal
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polynomial of Q(A) in o /J. Then, surely, m(x) divides m(x). On the other
hand, since m(A) is nilpotent, m(x) divides some integral power of m (x).
Thus the distinct linear factors of the two polynomials are the same.

It should be noted that, in Proposition 1 and its corollaries, o is
assumed to be a complex algebra.

Some problems. (a) Does Theorem 1 remain true if o is taken
%0 be a real algebra, say a subalgebra with identity of the k X k real matri-
ces, with r(A4) still denoting the spectral radius of A as a complex matrix?
(P 1039)

(b) Characterize those subalgebras «f of .#,, with identity, for which
Beo and limsup|[4®, B]|Y" =r(4) for all 4 e o
n

imply that B is a non-zero scalar times the identity. (Corollary 3 asserts
that .#, itself has this property. Surely, the one-dimensional algebra
congisting of scalar multiples of the identity does as well.) (P 1040)

(c) Characterize those subalgebras & of ., for which, if p is & semi-
norm on & and

limsupp(A™)/® =r(4) for all A e &,
! :

then it must be the case that |Tr(-)] < ¢ on . (Exaniple b shows that .#,
itself does not have this property. The algebra generated by the identity
alone does ftrivially.) (P 1041)
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