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ON INFINITE COMPLETE ALGEBRAS

BY

A. IWANIK (WROCLAW)

1. In this paper the following problem is considered. Find a family
F of operations on a set A, as small as possible with regard to the contents
and arity of operations, and such that each operation on A could be
presented as a composition of some operations from F. Our considerations
are concerned only with infinite sets. Many results for the finite case
are collected in [5].

It is convenient here to use the terminology of abstract algebras
(cf. [7]). We denote by O™ the set of all n-ary operations on A. Let
oOMVLO0Wy ... =0. A system U = (4, F) with F c O is said to be an
algebra. We denote by A(A) the family of all operations which can be
obtained as compositions of operations from F and trivial operations

€M (g euy @) =y, 1<k,

A(N) is called the family of algebraic operations of AU.

Definition 1. An algebra U = (4, F) is complete if A(A) = O.

Finite complete algebras are also called primal. They were recently
examined in numerous papers (see, e.g., [8]).

2. From this moment on we assume that the set A is infinite. First,
we recall one of Sierpinski’s [11] results: for each infinite set A, the algebra
A = (4, O®) is complete. According to this we can restrict our consid-
erations to operations of arity not greater than 2.

THEOREM 1. If A is infinilte and g: A*—A is one-to-one on a rectangle
A, X Ay, where |A,| = |4,y = |A|, then the algebra A = (4, 0D u{g})
18 complete. '

Proof. If f;: A—>A4,;, ¢ =1,2, are one-to-one mappings, then also
91(x,y) = g(fl(a:), fz(y)) is one-to-one. Any binary operation f can be
obtained as a composition of g, and of some unary operation. In fact,
it suffices to define a unary operation A on the range of g, by h(2)
= fgr'(®). Now, f(x,y) = h(g,(=, y)) which completes the proof.
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Using Theorem 1, we can easily prove Theorem 2 which confirms the
Bieberbach [2] hypothesis that each operation of the set of real numbers
can be obtained as a composition of some unary operations and the binary
operation . It was proved (in a different way) by Sierpinski [9] for the
case ¢ = 2.

THEOREM 2. Let A; for ¢ =1,2,3,4,5 denote the set of complex,
real, rational, integer, and natural numbers, respectively. Then the algebras

(a’) 911 = (Ai’ O(I)U{+}) fOT i = 17 2) 37 47 57
(b) B; = (44, OV U{-}) for i =1,2
are complete.

Proof. 1° To prove (a) for ¢ = 1,2 it suffices to show that there
are two subsets B, and B, of real numbers, |B,| = |B,| = ¢, such that
+ |B,x s, is one-to-one. In fact, let B, be the set of numbers which have
binary expansion of the form 0, @,00a,00 ... and B, the set of numbers
of the form 0, 00,005,00 ... It is easy to see that we can reconstruct
each component from the sum of any two numbers of B, and B,.

2° In the case of 7 = 3, 4, 5, let B, be the set of all natural numbers
of the form 2°" and B, the set of all numbers of the form 2**~!, n > 1. Use
the argument similar to that of 1°.

3° To prove (b) it is sufficient to observe that 4 can be obtained as
a composition of - and some unary operations, viz. x+y = log(e®-¢Y).

Theorem 1 helped to solve some particular problems, but it does not
answer the following more general

ProBLEM 1. For which operations g the algebra A = (4, 0P u{g})
is complete? (P 885)

In the finite case the solution is given by a theorem of Shupecki [12]:
if A is a finite set, then the algebra A = (4, OV U {g}) is complete if and only
if g is onlo and depends essentially on at least two variables. It is easy to
see that in the infinite case this assumption is neither sufficient nor neces-
sary for the completeness.

3. Theorem 1 gives a possibility to replace all operations on A by
all unary operations and one binary operation. It is obvious that some
unary operations can be obtained by ecompositions of the others, whence
we do not need all of them. We shall find a possibly small family of unary
operations F for which there exists an operation g such that the algebra
A = (4, Fu{g}) is complete.

Let F be a family of unary operations on an infinite set 4. We con-
gsider the following properties of F:

(0) There is a binary operation g such that the algebra (A, Fu{g})
18 complete.
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(p) There are countably many operations ¢,, g, ... such that the algebra
(A, Fu{g,, g3, ...}) i8 complete.

(0;,) There are two unary operations f,, f, such that each unary operation
can be obiained as a composition of some operations from Fu{f,, f.}.

(p1) There are countably many unary operations fy, f,, ... such that each
unary operation can be oblained as a composition of some operations from

Fu{fi,fe .-}

Obviously, (o) = (p) and (0,) = (p,) = (p).

We obtain (p,) < (0,) from the following result of Sierpinski [10]
(see [1] for a simple proof): for each countable set {f,, fs, ...} of unary
operations on an infinite set, there exist two unary operations g and h such
that each f, can be composed of them.

Analogously, (p)<> (o) follows from a result of X.o§ [6]: for each count-
able set {g,, gz, ...} of operations on an infinite set, there exists one binary
operation g such that each g, 18 a composition of g.

It follows from the last equivalence that there are no minimal families
with property (o).

Let us observe that if F has property (o), then |F| = 2! (A infinite).
The next theorem shows that the converse is not true.

THEOREM 3. If A is uncountable, C = A, |C] < |A|, and
F = {feOV: f(A) c 0},

then F has not property (o).

Proof. Suppose that there is a binary operation h such that the
algebra (4, Fu{h}) is complete. Let F, denote the set of all unary opera-
tions f such that k is the minimal number of occurrences of » in any composi-
tion of algebraic operations equal to f. Let G, consist of all constant
mappings ranging over C and of the trivial operation e{. Putting

Gii1 = {h(g1) 92): 91592 G} U Gy, for k>0,
it is easy to see that

Gl < IC1+N, and fclJ g for each feF,
9eGy,
(this inclusion is understood as the usual inclusion of binary relations).
Put now G = G,UG,u ... and B, = {g(a): ge G} for ac A. Note that
IB,] < |G| < |A| and f(a)e B, for each algebraic unary operation f, which
contradicts the assumption of the completeness.
The next theorem gives a sufficient condition for property (o,).

THEOREM 4. Let A be an infinite set and F a family of unary operations
on A. Suppose that there exist a subset B < A, |B| = |A|, and a family
{4.}ac 4 Of pairwise disjoint subsets of A such that, for every family {Bg}gea
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of pairwise disjoint subsets of B, there is an operation fe F with f(B,) « A,
for all ae A. Then there exist two unary operations g and h such that each
unary operation p can be obtained as gfh for some fe F.

Proof. Let g be an operation satisfying g(4,) = {a} and let h: A—>B
be a one-to-one mapping. Suppose that p is an arbitrary unary operation.
Let B, = h(p~'({a})), ae A. There exists an fe F such that f(h(p‘l({a})))
< A,. Therefore

g(f(r(p*({a})) = 9(4a) ={a} and gfh =,

which completes the proof.

Let us observe that the family ¢, of all permutations of the set A
satisfies the assumption of Theorem 4. Indeed, it suffices to take a partition
{As}ees With [A,] = |A| and a subset B such that |B| = |[A\B|. Hence
we get

CorOLLARY 1. If A 8 infinite, then

(i) there exist two unary operations g and h such that each unary opera-
tion p can be obtained as gfh for some permutation fe % ,.

Consequently,

(ii) 4, has property (o0,).

Consider now the semigroup 7, of all transformations (i.e., unary
operations) of A. Corollary 1 (i) says that ¢,u{g, h} is a set of generators
of 74, =9%,h.

Denote by D the family of all transformations f with |f(4)| = |4|,
i.e. the Green 2-class containing the identity mapping (see, e.g., [3]).
There are 24! disjoint Green’s s#-classes in D and %, is one of them.
Hence, for each such s#-class H, there exist two transformations ¢’ and &’
such that ¢, = ¢'HMW (see [3], Theorem 2.3). Thus we get

COROLLARY 2. If A 1is infinite, then for each H#-class H contained in
D there exist two transformations g and h such that I 4 = gHh.

This corollary gives 2'4! disjoint families with property (o,).

Observe that 7 ,\D is an ideal of 9, and it does not satisfy (o,).
Hence 5#-classes contained in D are the only ones satisfying (o,).

We have obtained a lot of families of unary operations With.prope'rty
(0,) and, obviously, with (o), but the answer to the following problem
remains unknown: '

PROBLEM 2. Which families of unary operations on an infinite set
satisfy properties (o,) and (o)? (P. 886)

I would like to express my gratitude to Professor E. Marczewski
for his guidance during the prepara.tmn of this paper. The results were
announced in [4].
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