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Characterization of the solutions of a 2b-parabolic operator
with initial data in BMO

by A. GrimaLbl and F. RagNeDpDA (Cagliari)

Abstract. In this paper we show that the solution u(x, y) of 2b-parabolic equation

Hyu= Z a, D*u—cu/ct =0, satisfying a suitable integral condition, turns out to be of the
lal=2b

form u(x, y) = [G(-, N *f](x) with fe BMO(R") and G(x, 1) the ‘undamental solution associ-

ated to H,.

Introduction. Letting H, = > a,D*—(c/ct) the 2b-parabolic operator
a|=2b
on RV'! = R"x (0, + ), we wilslll to characterize the solutions u(x, t) of the
equation H,u = 0, which for r = 0 have initial values in BMO(R"). Il we
identify two solutions u; and u, which differ by a polynomial in x of
degree < b—1, each u(x, t) satisfying a suitable integral condition turns out
to be of the form

u(x, ) =[G, )= [1(x)

with f e BMO(R") and G(x, t) the “fundamental solution” associated to H,.
For b =1, we reobtain the results of E. B. Fabes and U. Neri [3]. The
methods used by us extend, in a natural way, those employed in [3].

In Section 1, we define the space T MO(R%"!) of all those solutions of
H,u = 0 satisfying a given global condition (modulo polynomials as above).
Taking momentarily for granted certain estimates on the D*u, we then prove
the characterization T MO = G *x BMO. In Section 2, we give the proofs of
the estimates on the D*u.

We thank Professor L. Cattabriga for his useful suggestions and we are
grateful to Professor U. Neri for the valuable discussions on the subject
matter of this paper.

1. Definitions and main result. Let us consider the equation

(1) Hyu= Y a,D*u—(Cu/t)=0

|a{=2b

where the a, are constants and D* = (— i) (M*/ax ax3 ... 0", la) = o, +
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+a,+ ... +x,. We assume that the equation be parabolic: for each o
=(0y,05.....0,)

(P) Re( Y a,0%)< —dlo|*

|zl = 2b
where 0* =6}' 65 ... oo,
If ugeCg (R"), say, the solution u(x, f) of the Cauchy problem

H,,u=0 on m+l,

2) _

lim u(x, 1) = uo(x)
has the form e
) u(x, 1) =[G(, 1) *up](x),
(see [1]). Here, G is the inverse Fourier transform
4) Glx, ) =F7'[QE N](x)

and Q(¢&, ) satisfies the bounds
10 (&, 1) € C exp[—81¢%]

with C and 0 strictly positive reals.
The fundamental solution G, and its derivatives, satisfy the following
estimates:

(5) IDa G(x, t)l < C,t_("+|'|)/2b exp[-c Z kaIZb/(Zb—l)r—ll(2b—l)],
k=1

() ID* G (x, ) < Cylxi™ 10,

) @) Gx, ) SCt 1 " exp[—c Y |x,|2¥b= Dy 1= 1]
k=1

where the constants ¢, C and C, are (as always) strictly positive and may
differ [rom line to line. For each ¢, the rapid decrease of G(x, f) and of its
derivatives (as |x| = o0) yields the inversion formula

[Z.G(x, 0] () =Q(, 1)
on account of (4).
For every ueC*(R%'') we associate the function y=7, on R"
0 < v,(x) < +o0 given by

(7) )1 =] ”Z ID*u(x, 1)|* dr.

0 |lal=bd
Then, if u(x, ) = [G(-, ) * f](x), with f € I?(R") we obtain the inequality
(7 ivll2 < BlIfIl;

where B depends on 4 of (P).
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To prove (7'), we follow the argument of [3], p. 2. Thus, using (twice)
Plancherel’s formula in the x variables, we have
2= (§ ¥ IDfux, ) at)dx= [ ([ Y |#D*u(x,t)? dx)dt

R O lal=b 0 gnlal=b

T[22 T [ 18 1 Zux, 00 dx] de
)]

jal=b gn

—@P [(T [ IR 1E G F 1P de) dr.

0 laf=b g
Since #,G = Q, we see that

2 =@u® [ (S [ 1E210 112 de) di

0 la|=b g

—m® [ IFP(] X 181 10 12 di) dé

Rn 0 |z|=b
SC [P ] 187 e 24 dr) dg.
R 0
Using the change s = t|£]** we conclude
I3 < C [ If1P (] e 2 ds) d& < B2||f1I3.
Rn 0
The space T® MO. Denoting by Q, = R" the cube centered at x, having

sides (parallel to the axes) of length 8, we associate with each u(x, f) on R%"!
the “average” [u],,., where

62"
t)) [d2,s=1Qd" § § Y ID*u(x, t)}? dedx
Q, 0 lz/=b
and
(8,) ”ulltt = Sl.lp :[u]xo.J: xOGR”s 6 > 0} .

The linear space of all solutions u(x, t) of (1) such that |ju||,, < oo will be
denoted by T*MO = T’ MO(R%*"Y). In T MO we identify two solutions u,
and u, which differ by a polynomial in x (independent of t) of degree < b—1.
In this way, the map u — ||ul|,, becomes a norm.

Recall that a locally integrable function f is in BMO = BMO(R") i it
has bounded mean oscillation on R":

©) ISl =sup Q! [ 1)~ fo dx: xo€R", 6> 0} < +0
Q,
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where f, 1s the integral average (or mean value) of f on Q,. With the
identification f ~ f + C (for any constant C), f — || f|l, becomes a norm. It is
well known that the ['-averages above (see [6]) may be replaced by
equivalent [’-averages [f], ; where

©) [/ B0s = 1047 T 100 S, d.

If we denote by G*BMO = {u =G +f: feBMO! our result can be stated
as follows:

TueoreM. TP MO = G « BMO, with equivalence of norms.
We shall prove the theorem through several lemmas.
LemMMA 1.1. G*BMO < T®MO and the inclusion is continuous.

Proof. We fix any cube Q; — R” centered at x, having sides of length
0 = 4h. By translation invariance of ||ul|,,, we may suppose that x, = 0. We
denote by y; the characteristic function of Q; and we choose any
feBMO(R"). We have that

S~ =fod=1f 1o us+[f—fo,] (1 —2s) = fi +1>
and we let
u, =Gxf, and u, =Gxf,.
Since f, € [*(R"), we associate with u, by (7) the corresponding function 7,.
On account of (7') and (8), it follows that
h*lluylig,n < Nydll3 < BNl = B2 (4h)" [f15,4n-
Hence ”L‘III** s B”f”*

In order to estimate ||u,||,, we observe that if xeQ, and yeR"—Q,, we
have |[x—y| = 3h/2 and |x—y| = |)] for gll large |y|. Moreover, for || = b, we
have

ID*G(x—y, 1) < C,lx—y|~ "D < 2C, [P+ ]x—y|"**] !
and
ID*uy(x, )l < 2C, | 1fQ)=fo, LA™ P+ [x=y""*]" " dy.
-0,
Letting now n = y/h and integrating on all of R" (see [5] or [4]), we deduce
that '
ID*uy (x, 1) < Chjifil,
since the BMO-norm is dilatation-invariant. Consequently,
(180 < CPH- 2SI 7

and hence |lu,|l,, < ClIfll,. This completes the proof of Lemma 1.1. To
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show the inverse inclusion, we shall make use of some estimates for D’ u
whose proof is deferred to § 2.

Lemwma 1.2, There is a constunt C > O such that for all ue T" MO, || = b
and all (x, HeR!:
(10) ID”u{x, Nl < Cp 12 48l ——m/zn”u”**‘
(10 (/e u(x, 0] < Ct™ ' |ull g -

Lemma 1.3. Let ue T°MO. If k is any positive integer, then the con-
volution G *u(-, k™ ?) exists everywhere on R

Proof. Let us consider the Taylor expansion of u about y =0: u(y, t)
= P(y, t)+(error term of order b) where

PL.O=u0.0+ ¥ Du, 0y
FELE!
Replacing (as we may do) u by the representative v— P, we have

| Gix—y, ) u(y, k™% dy— [ Gix—y, 1) P(y, k™ ?) dy]
R R

SM [ Y [yDu@y, k™) dy < Clull 4

R y|=0b

on account of the estimates (5) and (10), where the constant C depends only
on k and 0 <0 < 1.

Lemma 14. Let ue T°MO. Then, for each ke N and all (x, t)e R%'!
(11) [Gxu(, k™3] (x) = u(x, t+k™?).

Moreover, setting from now on u,(x.t) =u(x, t+k~ %), we have the uniform
estimates

(12) tlhyw < C ll1e]] -

Proof. Both sides of (11) are solutions on R%*' of (1) having pointwise
limit u(x, k~2) as t = 0*. Now, for all (x, t)e R%'!, estimates (10) show that

l Y IDPu(x, t+k™ ) < Ct+k™3)7 V2 jull,,.
Bi=b

Hence. for each k, ) DPu(x,r+k"?) is a bounded function on R and
1Bl =b
as 1 — 0% with pointwise limit Y D?u(x, k~?). Therefore, by the unique-
181=b
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ness of the solution of the Cauchy problem on R%'' with trace
Y D’u(x, k™% on R (see [1]) we have that

18l=b
Y DPu(x,t+k ) =[G(, 0+ Y D'u(-, k™ ] (x)
Bl=b 1Bl=b
= Y DLG(, )su(, k™)
1Bi=b

which shows that u(x, t+k~2?) and G »u(x, k~?) are equal up to a poly-
nomial in x of degree < b— 1. Since they have the same limit as t — 0%, this
polynomial is zero.

Estimate (12) is then verified exactly like Lemma 14 of [2], by exam-
ining (u,]3 , separately: for 8® > 1/k and &® < 1/k.

LEmMMma 1.5. Let ue T’ MO and set f, = u(x, k™2). We prove that

I filly < Cllullgy-
Proof. Given ue T’ MO and setting

u (x, ) =u(x, t+k°2),
we consider the identity
(13) (/) [uy—a, ) = 2[u,—a, J(¢/Cuy = 2 [uy—a] I IZ a,D’u,,
Bl=2b

where the g, are polynomials in x of degree < b—1, to be determined later.
Integrating the left-hand side of (13), we have

Jlb
I( § (¢/ct)[uy—a,J? dr) dx = I (u(x, 6**)—a,)* - I (4 (x, 0)—a,]* dx.
J 0 0
Hence
| [u(x, 0)—a,}dx
<,
62b
= I [“k(x 62b) a,,]zdx 2 j I [u,‘—-a,‘] Z aﬂDpu,‘dtdx
Q, Q, 0 18l=2b

We now suppose, as we may do, that Q, = {x: |x—x,| < 4} and we evaluate
each term of the last equality choosing the polynomials

a = }: ¢a D" uy (xo, 3%)(x — xo)*
le] <b-—1

where ¢, are the Taylor coefficients. We obtain then

I [ui(x, 6)—a, ] dx = 5 [ue(x, 6%)— Y caD*up(xq, 67)(x —x0)') dx

Q, ja| €b-1

Sc [ x=x?[ T D u(x, 6] dx

0, lal =
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so, by (10), we may write

ée‘ [uy(x, 62*)—a, ] dx < Cllulji, g |x —xol22 (62 +k~ %)~ 'dx
S Cllull2 072 [ Ix—xq/?dx < Cluli?, 10,
QJ

with the constant C which is independent of Q, and k. We consider now the
terms of the form

61&
[ {f [u—aJDPu.dt}dx, |l =2b.
Q, o
Adding and subtracting u,(x, 6?%), we may write
61&
I (] |“u—a,,|D’uhdt}dx|
Q O
62.
<|f f [udx, 0—uy(x, 621D uy (x, 1) drdx|+
Q0 »

+’ .f .‘ [ul(x’ 52b)_ Z (',D‘Uh(xo, 62',)]Dﬂuk(x, t)dtdxl
Q, 0

lal <b- 1
= I, (k)| + 1 (k).
Let us introduce the Taylor remainder of order b:
Ry(x) = uy(x, 9%%)— . Izb ¢4 (X = Xo)* D"ty (X0, 07).
al<b-1

For every xeQ, and |yl > 0 we claim that

(14) ID* Ry(x)] < Co™*|lull -
Il |y =1 we obtain
D*Ry(x) = D*uy(x, 6)— Y ¢, (x—x0)* D***uy (o, 6%)
laj <b-—-2

which is the remainder of order b—1 of D*u,(x, ).

The estimates (10) show that (x—xo)*D***y, is domainated by
07" ||lullyo- By iteration we obtain (14).

First, we estimate I, (k). For a fixed + between 0 and 6?°, integrating by
parts in x, we have

62&
I =| [ [ Ry(x) D" uy(x, t)dxdi]
0 0,
61" 3k
< [ [ IRy(x)l ID"1 u, (x, 1)] drdx+| | | D™ R,(x) D" u,(x, 1y dxdt|
0 s, 0 @,

where |f,| =2b—1, |yl =1 and S, = {x: |x—xo| =9].
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From estimates (10) and (14) it follows that

azh
(k) < Clull2e ! [ | (e+k=2)7 17020 drdg +
S') 0
a2k
+ | J TNk AR dr )
Q, ©

< Cllulli* 10185/ +07131Q4).
Hence
15 (k) < CllullZ 10,

Similarly we estimate I, (k) as follows:

2b
[

I )< |l D=uy(x, 6] D" ™ 9 dxdr +
0 S)

2
15,)

+] § § D" [u(x, )—up(x, )] ID"* u (x, 0] dxdi|
0 0,

=1 () +11 (k).
For the first addendum, if 6® < 1/k, we see that

52&

I < CllullZy | J 02— (+k ) (t+k™ )1 dgdr

5, 0

< Cliullz,1Qs  since 8%*—t < 62+t < k™2 +1.
If 5 > 1/k,
526 §2b4p-2

Ha@i< § §{ [ Ka/dsyu(x, s)ds} D" u(x, 0} dtdo
S, ©

1+k2

o2t 2b -2

0 k

< CllullZ, j'{ | log ~t—+j;(_z (t+k‘2)“+‘”2"’dr‘,tda
. s, Lo :

&
and with an easy computation we deduce that

52 26 g2
log ————(t+ k™2~ 120 g < C 6.
i & t+k 2 ( )

Therefore, for both the cases, we can conclude that
Iy (k) < Cllullsy 14

In order to estimate I,,(k), integrating by parts, we see that
2»
P

2 (k)< | f ID"1u(x, )= D" uy(x, )| 1D’ uy(x, 1) dodt +

0 5
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a2t

+] [ [ [D"2u(x, )= D" u(x, 6727 D 2uy(x, t)dxdt|
0 Q,

= I3 (k) +1T1a (k)5 182l = 2b=2, |pp| = 2.

Il 6" < 1/k, since u, are solutions of (1), we have
52h

L] < § (0% = 0d/de) D" gy (x, 0(6% =) D" (x, D) do di
0 56

92b

=§ [l6*-n ¥ a,D“"‘uk(x, 0(82° —1)) D 2u, (x, 1)\ do dt.

0 s, |la| = 2b
For every addendum of the last integral we have

‘).‘h

a, | | (5”-:)|D““- u(x, 66 — 1)) ID*2u, (x, 1) dodt
0 S

[
32b

S Clull2 IS8 | G® =0 +k™2) k™2 AN (4 k=271 H220 gy
0
Hence. reasonning as for I, (k), we see that last expression is dominated by
§2h
lull3 1Sal § (k=372 de < Jull3 1Q)-
0

Therefore, if 6* < 1/k we have

113 (k) < Cllull gy 1Qs-

If o > 1/k,
52b 62b+k-2
Ll < § §{ [ Nd/ds) D" u(x, )l ds}iD 2w, (x, 1)l do dt
0 s t+k2
52b sk
= ({ Y a( [ ID""u(x, s))dsD 2 u(x, 1)} dodr.
0 S, Jal=12b t+k~2

For each term of the sum, we may write

62h 52#1,,‘-2
I j ' \ ID"'“uk(x, s)ldleﬂzu,‘(x, )} dodr
o s, t+k™2

&2b

_ _ _ 5 ‘,'2h+k*2
gc”u”:*lsal g(t_'_k 2) l+(2/2bl[s Il-h],+k‘2 dl

52h

S ClullZ, 1S { § (r+k= 217 @ (52 4 k=212 g4
0
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2b
]

+ ‘ (l+k_2)-l+(2/2b)(f+k_2)_l"zbd[}
o
< C”u"i* |S,jl :(6”4—’(- 2)‘2/2") _“/2“_'_
+(k—2)2/2b(52b+k—2)1/2b+(52b+k—2)1/2b+(k—2)1/25}

< CHlull3, 154 6.

In order to estimate

J?.b

| | | [D"2u(x, )= D21y (x, )] D" u (x, ) dxdt]
0 Q,
let us make an integration by parts. We can estimate the term relative to the
surldce integral as in the previous case and for the term relative to the
volume integral we make a new integration by parts. If we iterate this
process b times we obtain the volume integral

Jllt

| | § [D"u(x, N—D"u(x, 821D uy(x, dxdt| = J
0 Q,
where [f,| = 2b—2 and |y) = b.
By the elementary inequality ab < a®+b?, J is majorized by

625 62‘)
{ § D™ u(x, 0] dxdt+ | | D" u(x, 6% dxdr+
090, 0 Q,

61"

+§ D" u, (x, 1) dxdr.

0 9,
For the second integral, we obtain
"25 ﬁlb
[ (D" u(x, 62)2dxdt < Cllull}, Qs [ (0% +k~2)7 1212 dr
o Q, Y

< Cllullgy 1Qsl-

The first and third integrals are dominated by |ju||2,|Q, in view of the
definition of T MO. Hence the lemma is proved.

The proof of our theorem may then be concluded as follows. For any
fixed t > 0 and |af = b the function x+ D*G(x, t) belongs to the space H!
= H'(R") where H' = {feL': R)(f)eLl,j=1,2, ..., n} and R; denotes the
Riesz transform (see [7]). For this proof the reader can see Lemma 1.5 of
[2]. Now, for each (x, )eR%'! and ke N, formula (11) implies that

(D" G)* £ ()](x) = D*u(x, t+k~ 7).
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On account of the duality BMO = (H')* reasoning as in [3] we deduce the
existence of some feBMO such that

(DG x f)(x) =D*u(x,t) for any |af =b.

Hence u(x, t) = G »f modulo a polynomial in x of degree < b—1, that is,
u =G+ [ as element of T° MO. The proof of the theorem is complete.

2. Proof of the pointwise estimates (10) and (10'). We denote by H, the

operator Y ayDf—7/Ct. Fixing any (xo, to)eR%'' we choose some
181 = 2b

@eCg (R" such that, 0 < p(x) < 1,

Vol | <1, :
¢ (x) —% 0 if Ix>2 and |D? o(x)| < K, say, if || = 2b.
We then choose Yy eC*(R) with 0< ¢y (f) < 1,
0 if r< )
w(r)={ Ui 15y M WOI<K

for some ébsolute constant K > 0.

If ¢, r are > 0 we let ¢, = @(x/r), Y.(t) =y (t/e) and we examine the
smooth function

vix, 1) = @, (x—xo) Y. (t) D*u(x, ), where |af>b.

For all (x, )eRY'!' we have the representation formula (see [1]}, [3])

U(x’ t) = j l G(x—ya t—s)[HbU] (y’ S) dyds
0

where G(x, t) is the fundamental solution associated to H,u = 0. Moreover,
if 0 <eée <tyfe, on account of the previous definitions we have
v(Xq, to) = D u(xo, to).

Consequently

o
D*u(x,, to) = j I G(xo—y, to—s)[H, v] (y, s)dyds.
o R
We observe that

Hyv = Hy[¢,(x—xo) ¥.(t) D*u]

= Y agy. () (2° D" ¢, D"2(D*u)]—
18 = 26

— @, (/) Y (t) D*u—, Y, (1) (¢/Ct) D*u
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where the ¥ means that the sum is taken for all y, and y, such that y, +7,
= f. Since H,(D*u) =0, we have

(15 Hyw= Y a0 () (2" D' ¢, D7(D )= 9,(¢/1) v, D*u)
1Bl=2b
where the 2? is taken for all y,+y, = B but y, # 0.
Now, (15) implies that

‘o
(16) D u(xo, to) = Y agZF | [[G(xo—y, to—35)Y.D" @, D"2(D*u)]dyds—
18]= 2b oR
. .
— | [ [G(xo—y, to—5) @, (¢/Ct) Y, D*u]dyds.
0 g
In (16), we consider first the term

Yo

f [ [G(xo—Y, to—3) @, (/) D*u]dy ds
oR

2¢
< CKe ' f [ (toq—s)""?*|D*u|dyds

£ Iy—xOISZr

2e
S CKe H1g—26)"" [ [ [D*uldyds

0 Iy—xOISZr

2
- - 1 1/2
< Cplto—26) "2 V22 ([ [ |D*u|*dyds)"
OQZI

by the Schwarz inequality and where Q,, is the cube with center x, and side
2r. Letting & = to/4, 2r = t}/?", the last expression is majorized by

. 2b
(2r)
_ _ ‘ . 1/2 -
Cotg24rm | [ IDul*dvds)'"™ < Ctg 2 ull,,
o QZI

for any a with |a| = b.
Let us estimate the terms of the form

{

[ | G(xo—y., to—5)¢, D"t ¢, D"2(D*u)dyds.
o R

If we integrate by parts in space |y,| times (where |y,| < 2b—1). we have

{

|| [ Gxo—y, to—35)¥.(t) D1 @, D'2(D* u)dy ds|
R

<

Q e,

‘o

< [ID"Gxo—y, to—5) D"t * @, 4, (D" u)| dy ds

o R
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where 272 means that the sum is taken for all v and p with v+ = 7,. Using
(5') and remarking that[D"1"*¢,| < Kr 71" we may write that

o

J JIDYG(xo~y, to=5)¥ D" " ¢, (D*u)| dy ds

oR
o
< Krmtmti f i Ixo—y| """ M |D*u|dy ds
€ rS|y0—y|52r
1o
< Kr~Wnl=lalp=n [ \D*u|dyds
Y QZJ
‘o 1/2
S Kr B2 {rmm | | |D*ul?dyds} /
0 QZr
5Zb
< CotgV2 2[5 [ [|D*ul>dyds]" < Cots 2 |ull,,
0 Q.S
where 2r = t}/*®* = § and |a|] = b. Hence, for |a| = b,
(17) lDau(XOa tO)l < th?‘”“““;.-

For |a| > b, we can obtain the estimate integrating |a| —b times by parts and
reasoning in the same manner as for |x| = b. Therefore, we have

(18) |D*u(x, 1)) < Cty VD~ Uel=002b  for any |o| > b.
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