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MARCZEWSKI INDEPENDENCE IN MONO-UNARY ALGEBRAS

BY

JAMES 8. JOHNSON (EL CERRITO, CAL.)

By a mono-unary algebra we mean a pair (4, f), where A is a non-
empty set and f is a function from A4 into A. For (4, f) a mono-unary
algebra and X a subset of 4, we denote by Sg X the subuniverse of (4, f)
generated by X, i.e. the smallest subset of A which contains X and is
closed under f. By |X| we mean the cardinal number of X; the empty
set is denoted by 0. For f a function and » a non-negative integer we
define f" recursively by fz = z and f**'z = ff"z. For R a relation on
a set X and zeX, we define /R to be the set of all ¥y such that
(z,y)eR.

Given an algebra (4,f), a set X = A is called independent if and
only if given any function g from X into A there is a homomorphism &
from (SgX, f) into (4, f) such that hx = gz for all xeX. This notion
is due to Marczewski; for a survey of the study of this notion of inde-
pendence, the reader is referred to [2], where additional references may
be found. The main result of this paper (*) is Theorem 2.1 in which we
characterize the family of independent sets of a unary algebra.

In section 2 of [1], Marczewski gives a necessary and sufficient
condition for a set X to be independent. In the case of a mono-unary
algebra (4, f), this reduces to the following:

(MC) For X < A to be independent it is necessary and sufficient that

(i) for any xeX and natural numbers m and n, if f"x = f"x, then
f"a = f"a for all acA, and

(ii) for any two distinct elements x and y of X and any two natural
numbers m and n, if f"x = f"y, then f"a = f"b for all a and b tn A.

From (MC) it follows that if Ind is the family of independent sets
of a mono-unary algebra, then Ind satisfies

(F) XeInd if and only if for every Y < X with (Y| <2, Yelnd.

(!) Rescarch supported by National Aeronautics and Space Administration
Traineeship and National Science Foundation Traineeship.
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The author is indebted to Professor Donald Monk for making
available some unpublished notes on this subject as well as for reading
the first draft of this paper.

1. Independent sets in mono-unary algebras. Throughout this section
we assume that (4, f) is a fixed but arbitrary mono-unary algebra and
that Ind is the family of independent sets in A. Before proceeding, we
need some special concepts.

Definition 1.1. For zed

(i) 1z (loop degree of x) is the smallest positive integer n for which
there is a non-negative integer m with f"x = f™*"x. If no such n exists,
then lz = oo.

(ii) hz (height of x) is the smallest non-negative integer m for which
there is a positive integer n with f™x = f™*"z. If no such m exists,
hr = oo.

(iii) # is a loop element if and only if hx = 0.

(iv) 14 is the least common multiple of {lx : xeA} if such a number
exists, otherwise, 14 = oo.

(v) h4 is the (possibly infinite) least upper bound of {hx:xzeA}.

Some basic properties of these concepts are given in

LeEMMA 1.2. For all xe¢A

(i) v = 1fx.

(ii) hfr = max {0, hr—1}. (Here co—1 = o0.)

(iii) lx = oo if and only if hx = oo.

(iv) f*z is a loop element if and only if n > hx.

Definition 1.3. (i) A subalgebra (B, f) of (4, f) is connected if and
only if for every z,y ¢ B, there are natural numbers m and n with f™z = f"y.

(ii) A maximal connected subalgebra of (A4, f) is called a component.

LEMMA 1.4. For 2eA, {r}eInd if and only if he = hA and lx =14.

Proof. It immediately follows from (MC) that if hxr = hA and lz =14
then {z}eInd. Now if hx < hA, there is a ye A with hy > hx. But then

My — f1, while ™%y # f**+¥y, whence, by (MC), {x} ¢Ind. A similar
argument shows that if lr < 14, then {x}¢Ind.

LeMMA 1.5. If & and y are distinct elements of A which belong to the
same component of (4, f) and {x, y}eInd, then (A, f) is connected, 14 = 1,
f"x = f"y implies m,n >hA, and hA is finite.

Proof. Since z,y belong to the same component of A, there are
natural numbers m and n with f"z = f"y. Then by (MC), f"a = f"b
for all a,bed, thus (4, f) is connected. Furthermore, f"a = f"b = f"fa
= f"*"'a, s0 14 = 1. Now whenever f™ 2= "y, we have [z = f"fy,
80 n > hy = hA. The last statement follows from the others.
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THEOREM 1.6. Suppose x and y are distinct elements of A. Then {z, y}
eInd if and only if he = hy = hA, lx =1y =14, and either (i) x and y
belong to different components of (A4, f), or (ii) A is connected, 14 =1,
and "z = f"y implies m,n > hA.

Proof. The necessity of the conditions follows from 1.4 and 1.5.
Conversely, suppose hx = hy = hd4 and lx =1y =14. If (i) holds and
"w = "z, where {w, 2} < {r,y}, then w'= z, thus it follows from 1.4
that (MC) holds for {z, y}. If (ii) holds, then {x, y} clearly satisfies (MC).

Condition (F) together with 1.6 already gives us a fairly clear picture
of the appearance of Ind. There is one more important condition on Ind
which we must establish. Let U be the set of all # such that {z}eInd,
and let R be the set of all pairs (x,y) with «, ye U and either x = y or
{z,y}¢Ind.

THEOREM 1.7. R is an equivalence relation with field U.

Proof. Obviously R is reflexive and symmetric and has field U.
To show R is transitive, suppose {z,y}¢Ind and {z,z}<Ind; we will
show that {y,z}eInd. If (A4, f) is not connected, x and z must belong
to different components, while # and y belong to the same component.
Thus ¥ and z must belong to different components and so, by 1.6, {y, z} e Ind.
Now suppose that (A4, f) is connected; then, by 1.6, there are natural
numbers m and n with f"z = f"y and at least one of m and » is less than
hA4,say m < hA.Then hf"y = hf"z = ha—m # 0. Thus hy —n = hox—m;
but hz = hy, so m = n. Now suppose that {y,z}¢Ind; then by an
argument similar to the one above, there is an s < hA with f°y = f°z. Let-
ting t = max {n, s}, we have f'o = f'z and ¢ < hA. This contradicts the
assumption that {r, z}eInd, thus {y, z}<Ind.

2. Characterization of the family of independent sets. If 0 < |4] <3
and Ind is a family of subsets of A4, it is easy to see that Ind is the family
of independent sets of a mono-unary algebra (4, f) if and only if Ind
contains a non-empty set and satisfies condition (F). Throughout the
remainder of this section we assume that 4 has at least four elements,
Ind is a family of subsets of A, and U is the set of all x such that {z}Ind.
Further, we assume that R is the set of all pairs (z, ¥) with « and y ele-
ments of U and either z = y or {z, y} ¢Ind. We are now ready to state
the main theorem of this paper.

THEOREM 2.1. Ind i3 the family of independent sets of a mono-unary
algebra (A, f) if and only if Ind satisfies condition (F) and R is an equi-
valence satisfying at least one of the following three conditions:

(i) For each xeU, x|R is infinite.
(ii) For all z,yeU, |z/R| = |y/R|; if |®/R| =1, then |A ~ U| < 1.
(iii) {x/R:2eU}| < |A ~ U].
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Note that it is not claimed that (i), (ii), and (iii) are mutually exclusive;
in faect, it is possible that all three hold simultaneously. The remainder
of this section is devoted to establishing 2.1. First recall from section 1
that if Ind is the family of independent sets in a mono-unary algebra
(4,f), then Ind satisfies condition (F) and R is an equivalence relation.
The next three lemmata show that at least one of the three numbered con-
ditions is also satisfied.

LEMMA 2.2. Assume Ind is the family of independent sets in a mono-
unary algebra (A,f) and hA = oo. Then for each xeU, x|R is infinite.

Proof. Let 2eU. Then by 1.4, hx = oo, and so for each positive
n, hf*z = oo; thus f"x e U. Now for » positive, x # f"z, so by 1.6, {z, f"«}
¢Ind. Therefore f"zex/R. Finally, for m # n, f"o # f"z, so z/R is
infinite.

LEMMA 2.3. Suppose Ind is the family of independent sets in a mono-
unary algebra (A,f) and hA is positive but finite. Then |{z|R:xeU}|
K|[A~Ulor |[A~U| =1 and |z/R| =1 for all zeU.

Proof. Let X be a set containing exactly one element from each R
class. By condition (F), XeInd. Since h4 +# 0, we have hfzx < hz for
xeX, thus fr ¢ U. Now if  and y are distinct elements of X and fx = fy,
then by (MC), fz = fw for all z and w in A4; it follows that (4, f) is con-
nected and h4 = 1. Applying 1.6, we obtain |A ~ U| =1 and |z/R| =1
for each xe«U. The only other possibility is that for all z,yeX with
x #Y, fo #fy. In this case |{fr:xeU}| = |X| = |{z/R;2xeU}|. But
{fe:xeU} = A ~ U; the lemma follows.

LEMMA 2.4. Suppose Ind is the family of independent sets in a mono-
unary algebra (A, f) and hA = 0. Then for v U, |z|/R| = 14 ; furthermore,
iflA =1, U = 4.

Proof. If 14 = 1, then f is the identity on A4, so the last statement
holds. Now suppose 14 >1. For zeU, lfr =1z and hfr = 0 = hA4d,
so by 1.4, fre U. Furthermore, by 1.6, (x, f"x) ¢ R for each natural number .
Now the sequence z, fr, f2x,... contains exactly 14 distinct elements,
thus |z/R| > 14. On the other hand, if (z, y)e R, it follows from 1.6 that
there is an integer » with f"# = y, thus |z/R| <14.

- We have shown that if Ind is the family of independent sets in (4, f),
then at least one of (i), (ii), (iii) of 2.1 holds. We now proceed in the other
direction.

LEMMA 2.5. Suppose Ind satisfies condition (F), R is an equivalence
relation, and at least one of (i), (ii), (iii) of 2.1 4s satisfied. Then there s
a mono-unary algebra (A, f) having Ind as its family of independent sets.

Proof. For each of the various posibilities we construct an algebra
having Ind as its family of independent sets. The proofs that these examples
do indeed have the proper family of independent sets are similar, so
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by way of illustration, we shall do only the first one and leave the others
to the reader. We will assume U # 0, the case where U = 0 being
trivial.

Suppose condition (i) holds. For each E class, z/R, let ¢, be a one-to-one
function from the natural numbers into z/R. (If (x, y)eR, then ¢, =1t,.)
Define f as follows; for xe U, if there is n with {,n = x, let fx = t;(n+1),
otherwise let fr = ¢,0. For ¢ U, let fx = . We claim that (4, f) has
Ind as its family of independent sets. First observe that for xed, xeU
if and only if hz = oo, and by 1.4, this is equivalent to {x} being inde-
pendent. Now if z and y are distinct elements of U, {z, y} is independent
if and only if # and y belong to different components; this is equivalent
to (#, y) ¢ R, which in turn is equivalent to {x, y}eInd. Now by condition
(F) for both Ind and the family of independent sets, Ind is the family
of independent sets in (4, f).

Next suppose that (ii) holds and that for each xeU, n = |z/R| is
greater than one but finife. For each R class z/R, let ¢, be a one-to-one
function from {0,1,...,n—1} into z/R. Define f as follows: For z¢U,
there is m with {,m = x; for m < n—1, let fxr = t;(m+1); for m = n—1,
let fx =1,0. For ¢ U, let fx = x. Then (4, f) is the required algebra.

If (ii) holds and z/R has a single element for each xe¢U, we have
two cases to consider. First, suppose |[A ~ U| = 0; then let f be the iden-
tity on A. Second, suppose A ~ U = {z}; then let fr = 2z for all xeAd.
In either case, Ind is the family of independent sets in (4, f).

Finally, suppose (iii) holds. We may assume |A ~ U| >1, for if
|A ~ U| = 1, then either (i) or (ii) also holds. Thus let ¢ be a one-to-one
function from {/R:xze¢U} into A ~ U. For zeU, let fr = t(x/R); for
x¢U, let fx = x. Again (4, f) has Ind as its family of independent sets.

This completes the proof of 2.1.
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