ANNALES
FOLONICI MATHEMATICI
XVI (1965)

A difference method of solving
the differential equation y' =k, y,v,v)

by Z. KowALskI (Krakdw)

§ 1. In this paper we discuss a method of solving the differential
equation

(1.1) Yy =ht 9 9Y),
which may be placed between the method of successive iterations
(1.2)  un(t) = b(t, un(t), Un-a(t), Un_s(1)), () =0, O0<t<a,

dealt with in the paper [2] and the Eulerian type method of rectilinear
polygons considered in the paper [3].

The method in question is that of retarded argument, the sequence
of approximations y,(t) (» =1,2,3,...) being defined by the formula

. 8\ . 0 8
(1.3)  walt) =h (t, Yalt), Ynft— .}y vat - a)) , for “<t<a,
(1.4) Yn(t) = h(t, ya(?), 0, dn), for 0<t<%,
(1.5) dns1 = 1(0,0,0,d,) (n=1,2,3,..), d =0.

The connection between the papers [2], [3] and the recent paper
may be seen in a following way:
Let
0

(1.6) t?'=t7'(n)=j'ﬁ (?.2011!2;"')’

be a sequence of equally spaced points ¢; in the interval I': 0 <t < aq,
n being a positive integer and 0 < § = const. We define successively
curvilinear segments of the line %,(f) in the intervals

(1.7) 4y La<t<ty; (3=1,2,3,..).

First we define a slope y,(0) at the initial point ¢t = 0 with the aid
of (1.5) and then the first curvilinear segment by the differential equa-
tion (1.4). Supposing that the segment y,(¢) in the interval 4;(n) (j—fixed,
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122 Z. Kowalski

4 > 1) is given, we define the segment yx(f) in the next interval A4;.,(n)
as a solution of the differential equation

A8) )= b6, 9al0 1= 5 wat— 7)) for tedyatm,

7
joining the segment ¥n(f), t e 4;41(n), with the preceding one so as to
obtain the continunous function y,(t) for 0 <? <51,

The unknown function #%5(!) occurring in equation (1.8) appears

only at those places where y,(t) is printed, yn(t— %) and y;(t— %) being
known functions for e 4;41(n).

So we can say that the mecanisme of the iterative method (1.2),
supplying successively the functions u,(t) in the whole interval I’, is now
modified (cf. (1.8)), and supplies successively curvilinear segments yn(t)
in the intervals A4;(n) (j = 1,2, 3, ...).

This similarity enables us to modify the majorant functions 2,(?)
of the paper [2] so that they can be used in the present paper, and in
paper [3] on rectilinear polygons pa(?):

(1-9) P;i-(t) = h(ti; P'n(ti)y Pn(ti—l)y p;l(t:i—l)) for le A?’+1('n') ’
(1.10) pn(t) =h(0,0,0,d,) for ted(n),

(1.11) dni1 = 1(0,0,0,d,) (n=1,2,3,..), d =0.

In the present paper we solve the equation (1.1) in a complete
Banach space with a homogeneous norm, the case of n differential equa-
tions for » real functions being included without complicated calculations.
We sclve the problem of location of y,(t) and () and prove the almost
uniform convergence to the unique solution of (1.1). In addition we de-
rive two error estimates for y,(t), the second with the aid of the values

6 ’ ’ 6
yn(t)—yn(t— ﬁ) and yn(t)—yn(t—,—@).
The method of proofs is similar to that of the paper [3].
§2. We shall use three well known theorems quoted in the paper
[2] as:

Theorem A on differential inequalities (cf. T. Wazewski [7]);
Theorem B on the relation

Dl (Ol <l

D, being the right upper derivative in a Banach space with a homo-
geneous norm (cf. T. Wazewski [5]), and

Theorem D on the solution of the differential equation %’ = ¢ (¢, )
in a Banach space with the aid of successive approximations (cf. Lusternik,
Sobolev [4]).
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§ 3. Throughout the rest of the paper we shall use the following
assumptions and notations:

AssumpTiONS H. 1) Suppose that the function h(t, w, v, w) is de-
fined and continuous for (¢, %, v, w) ¢ w, where

(3.1) w 0t <a, u|<b, v <b, W <e,
(@ < +o0, bK< +00, 6 +00).

2) The values of k(¢, 4, v, w) are in the Banach space B with a homo-
geneous norm:

h{t,u,v,w)eB for ({,u,v,w)ew.
3) The Lipschitz condition
(3.2) |n(,m, v, W)—h(t, u, v, w)
< K- -t + M- [u—ul| +N-|[o— +L-|[w—wl,

holds for (¢,%,%,w)ew, (t, %,v,w) e, With some non-negative con-
stants K, M, N, and the constant L satisfying

(3.3) 0<L<1.
We suppose also that
(3.4) [R(0,0,0,0)| <P (P <+o00),
where the constant P satisfies the condition
(3.5) P <c-(1-L)y.

Denote by s(t) the solution of the non-homogeneous linear diffe-
rential equation

M+N k(t) L-P
(3-6) ) =F=7 S+ + GoIp’
satisfying the initial condition s(0) = 0, and let
(3.7) k(1) -—ma,xllh(t' 0,0, 0).

o</t

Let I’ be the greatest interval contained in the interval I: 0 < ¢ < g,

(3.8) I 0<<t<a (a<a),
such that
(3.9) s(t) <b, s'@t)<e for tel'.

The existence of the interval I’ follows from the theorem on con-
tinuation of the solutions of differential equations.
Suppose that

(3.10) 5 — {arbitra.ry number if a = 4o,

aif a < 400,
9*
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and denote by 4; the intervals
(3.11) dir a<t<y (1=1,2,3,..),
with end-points

. 0 .
(3.12) ti=1t(n)=7- n (j=0,1,2,..),

n being an arbitrary fixed positive integer.

§ 4. Now we shall give without proofs Lemma 1, connected with
some estimations for a sequence d,, and Lemma 2 on functions z,(?),
T, <t < + oo, simplifying the proof of Lemma 3 (cf. Fig. 1).
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Fig. 1. The graph of the functions z,(f) (cf. Lemma 2)
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These lemma can be proved in the same way as Lemmas 1 and 2
in the paper [3].

LEMMA 1. Let us suppose that the function h(t, u, v, w) fulfils assum-
plions H.

Under these assumptions:
1° All terms of the sequence

(4.1) dus1=1(0,0,0,d) (n=0,1,2,..), do=0
are defined, the sequence dn converges and a limit d =lim d, ts a unique
n—-00
solution of the equation d = h(0,0,0,d).
2° The inequalities
n—1 P P
(42) p—dfl <2°L'" 795, ll<y—F (=1,2,3,..),

are satisfied for arbitrary positive inlegers n, p, q, such that p = n, q > n.
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3° The error estimates of the form
(4.3) ldp—dif < 2-I"-

hold for p=n (n=1,2,3,..).

LEMMA 2. Suppose that the real-valued function z,(t) fulfils the follow-
ing assumptions in the intervals 6; .

02 Ta<t<y G=1,2,3,..),

P
1-L’

(4.4) R
77‘277'(”'):70"‘?';& (j=0,1,2,..):

1° The function zn(t) defined in the interval 6,, as well as the derivative
2n(t) are increasing functions in 0, and satisfy condilions 2,(t,) > 0 and
(4.5) Z(t) =0, 2n(t)=0 for teb,,
(4.6) 2n(t) = M- 2n(t) +N - 2,(t) ~L-23(t) +fu(t) for teb,,

where fu(t) is a real-valued function 4increasing im each interval 0,
(1 =1,2,3,...), and

(4.7) fn(t—%)=fn(t) for 7, <t< 4too.

2° The function z4(t) is the solutton = 2,(t) of the linear non-homo-
gencous equation

8 , 4
(4.8) 'ty = M-C(t) -|—N-z,,(t—f'—t) +L~zn(t— ﬁ) +fa(t),
for tefB;(n) (j =1,2,3,...), and satisfies the initial condition
(4.9) £(75) = an(z;) 2 0.
Thus, (4.8) becomes
) = Moan(t) 4 Noslt— 8 .r(_é)
(4.10) Zn(t) = M-2za(t) + N =y +L zn\t o I XU

identically for te 0;,(n) (n=1,2,3,...).
3° Initial values satisfy the inequalities
(4.11) Zn(Ti) 2 2n(Tj41) 20 (1 =0,1,2,..).
Under these assumptions the function z,(t) and its derivative z,(t) are
increasing for te 0;(n) (j =1,2,3,...), and satisfy the conditions
t— =) >=2,(1) >0
(4.12) \ ”) H=0
z;,,(t—?i) =2(t) =0 for teb;y, (1=1,2,3,..),
(4.13) 2n(t) = M - 2,(2) + N - 2,(t) +L- 20(1) +fult) for teb; (j=1,2,3,..),
and
(4.14) 2.(t) <2Zu(1;—0), 2a(t) <zn(1;—0) for 1,1 < +co.
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Remark 1. Inequality (4.12) can be interpreted in a following way:
the translation of the graph of the segment 2,(t), f € 6;, parallel to t-axis

yields the graph of z,.(t—%) for t e 0;41. According to (4.12) the segment

2a(t) for t e 0;;1 is under the segment z,(f) for te 6;, consequently the
function 2,(t) satisfies the inequality 0 <C 2zn(f) < 2a(r;—0) in the whole
interval 7, <t < +oco. A similar result can be rewritten in the case of
derivative 2p(t).

Remark 2. It may be noted that the unknown function 2,(t)
occurring in equation (4.8) appears only at those places where the letter
{ is printed. Consequently, equation (4.8) is a linear non-homogeneous
equation, since

N zn(t—%) 4 L-z;,(t— %) +falt)

is a known function for ¢ e 6;+:(n).

§ 5. Now we shall prove Lemma 3 connected with some properties
of the functions 74(?), Ra(t), 8a(t), Su(t) (cf. Figs. 2 and 3).

The functions s,(!) are used to obtain the estimations for the dif-
ferences

all) _y"(t“%) and y;(t)—y;,(t—%)

(cf. (8.24) and Lemma 6).
The initial values of these differences, i.e. the values ya(t;) —ya(tj—1)
can be estimated with the aid of functions 7,(f) (cf. Lemma 5 and (7.26)).

A

] i1 1..

J

Fig. 2. The graph of the functions R,;(f) and 7,(t) (cf. Lemma 3)

In addition, Rx(!) and 74(!) supply the precise location of y,(f) and
of each element of ya(t) respectively (cf. Lemma 4).
Let 6 be an arbitrary prescribed interval

0: 0<t<t (v <e),

bounded and contained in the interval I’'.
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LeMMA 3. Suppose that the real-valued functions ra(t) satisfy the follow-
tng conditions in the interval 0:

10 74(t) = Ru(t) for te A (n), where Ry(t) denotes the solution of the
linear non-homogeneous differential equation

M +N Cy(t)
1-L 1-L

satisfying the imitial condition R,(0) =0, and
Cot) =v-t+vn for teb,

(5.1) Rn(t) = Rq(t) +

for te0,

(5.2) P
y=(M+N)s'(t)+K; ya=2-L" 1-L"°

In these formulas s(t) is the solution of linear equation (3.6).

A /
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Fig. 3. The graph of the functions s,(f) and Sx(f) (c¢f. Lemma 3)

04 = .9,,(2- %) 0B = R,.(%) +% - 8'(2)

20 ra(t), te Aj11(n) (j = 1), ts the solution p = ra(t) of the linear non-
homogeneous equation

(5.3) o) = M- o(t) +N-rn(z— ,%) +I-rift- %) elt),
for ted;i(n) (j=1,2,3,..), where

(5.4) () =y-(t—=t)+yn for tedin(n) (=1,2,3,..),

and fulfils the initial condition p(t;) =rn(t;) =0 (j=1,2,3,..)
Thus (5.3) becomes

(5.5) rlt) = Moralt) £ - maft— 2) + T Aft=3)+eat),

tdentically for ted;41(n).
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Suppose that the real-valued funclions sy(t) satisfy in the interval 0
the following conditions:

30 84(t) = Sa(t) for t e A,(n), where Sa(t) is the solution of the linear
non-homogeneous differential equation

vy M+N . a, )
(5.6) Sn(t) = '1—:1.’— Sn(t) + I“:L‘ fOT ’I—’l; <t <7,
where
é (6 é
(5.7) o= N-Bif2)+2-Bi(2) +0(2),
and satisfies the initial condilion for t = 8/n:
0 6\ &
(5.8) (2 = mf2)+2 5.

4° 84(t), t € Aj1{n) (j = 2), 18 the solution o = $4(t) of the linear non-
homogeneous equation

Y — M- N P AN Y P A U
(5.9) o'(t) = M-o(t)+N slt— )+ L-sift— )+ K-,

for ted;a(n) (1 =2,3,...), and fulfils the initial condition
é .
(6.10) o(l) = 8allj) =7alt; —0) +— -8'(7)  (j=2,3,...).

Thus, we have
(5.11) s'(t)=M~s(t)+N-s(t—é)+L-s'(t—g +K~é
. n - n n n n n n,

identically for t e 4;:1(n).
Under these assumptions the functions ry(t) and sx(t) satisfy the con-
ditions of monotonicity

é é [ O fo O
e12) 522 <sfe-2), mlzd)<mzd), o fr pon,
the conditions of untform boundedness

(5.13) 0 < 7yt) < Rn(%) , 0t < R;,(%) for tef,

(5.14) o<sn(t)<sn(2-%), o<s;(t)<s;(2-%) jor  t(n)<t<w,

and the conditions of convergence

o [0 ) o 6 ,
(5.15) Rn(?—',)—> 0, .Rn(;,’)—> o, Sn(2 . h_)—-> 0, ,S’n(z . %)4 0, as n—>+ oo,
(5.16) 7,(t) =0, 7,(t)=>0, s,(t)=>0, s,()=0, a,>0, as n->+oo

for te0.
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Proof. We verify first the conditions of monotonicity (5.12). The
differential equations (5.1) and (5.6) are linear and can be solved in
quadratures, which gives

~ 1 Y Yn
({).17) Rn(t) = 1—3 . [(ﬁ + _k—) . (e"‘—l —kt) +yn . t] for tef s

Oy
M4+N

for é/n <t <7, where t, =t(n) =4é/n and k = (M +N)/(1—-L).

According to (5.17) we have R,(t) > 0 for te 6, whence R,(t) >0
for t¢ 6 as can be seen from (5.1), i.e. Ry(f) is an increasing function
for t € 0. Therefore it follows from (5.1) that the derivative Ry,(f) is also
an increasing function for te 6 and (cf. (5.7)):

[okt-00-1],

(5.18) Sn(t) = [Rn(t1) _|_% . 8'(1)] - gkttt 4

(5.19) ap<a, for p>=n,

which proves the third part of the desired formula (5.12).
In addition (5.17) and (5.1) imply

(5.20) Rn(%)eo, R;.(%) -0, as #n->+oo,
whence
(5.21) a,—>0, as n->4oo.
The formula (5.18) for 8,(!) and the inequality (5.19) imply
(9.9 ( 8
(5.22) Sp\2 ? < Spl2 . for p>=n.

On the other hand, according to (5.22), (5.19) and (5.6) we obtain
(5.0 < gls. 8
S,,(z p)gSn\2 n) for p=>=n,

which means that the conditions of monotonicity (5.12) are satisfied.

We shall ncw deal with the conditions of the uniform boundedness
(5.13) and (5.14). To this end we observe first that the functions 7,(t)
satisfy all assumptions of Lemma 2. In fact, the function

Tu(t) = ca(t) =y (t—1)+vn (j =0,1,2,..), tedjnn),

satisfies the condition (4.7), and according to (5.17) and (5.1) we have
in the first interval 4,(n)

() =0, 1u(t) =0 for ted,(n),
Ta(t) = M -rp(t) +N - ra(t) +L-10(t) +cu(t) for tedi(n).

Thus, by formula (4.14) of Lemma 2 we obtain the conditions of
the uniform boundedness (5.13).
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We shall now prove the conditions (5.14). To this end let us observe
that ra(f) satisfy the inequalities

é , é }
Tn(t— ﬁ) =7a(t) =0, rn(t— ﬁ) =1(1) >0,

for teAjpa(n) ( =1,2,3,...), which immediately gives
(5.23) ra(ti—0) = 7a(tj:—0) >0 (j=1,2,3,..).

From (5.23) it follows that the initial values (5.10) of the functions
84(t) satisfy assumption 3° of Lemma 2. The functions s,(t) satisfy also

assumptions 1° of Lemma 2, since (4.7) holds for f,({) = K- % Further-

more from (5.18) we obtain s,(t) > 0 for t € 4,(n), hence the equation (5.6)
implies s,(f) > 0 for te Ay(n), which means that s4(f) is an increasing
function for t e 4,(n). Therefore it follows from (5.6) that the derivative
8n(t) is also an increasing function for e 4,(n), and

Sp(t) = M- 8,(t) +N - 8,(1) +L- sp(t) + K - % for tedy(n).

Hence the functions s,(f) satisfy assumptions 1° of Lemma 2. The
functions s,(f) satisfy also assumptions 2° of Lemma 2 in view of (5.9);
thus by formula (4.14) of Lemma 2 we obtain the conditions of the uni-
form boundedness (5.14).

The conditions of convergence (5.16) follow immediately from (5.13),
(5.14) and (5.15); consequently, all that remains to be proved is that
relations (5.15) are satisfied.

The first and second part of (5.15) is identical with (5.20), therefore

place t = 2-% in the formula (5.18) and (5.6). Then we obtain

8 8\ 6 1kt @ x2
Sn(2-9—z)=[Rn(ﬁ)+%-s(r)] 4 pa  (¢FR—1) >0,

é i) an M +N

(5.24)
S"(z';b)=k's"(2'ﬁ)+1_—_L+o’ as n >+ oo, k=1—_L—,

which means that conditions of convergence (5.15) are fulfilled.

This completes the proof of Lemma 3.

Remark 3. The functions 7,(t) and sa(f) satisfy all assumptions
of Lemma 2; therefore in particular

é , 0 '
'rn(t— %) = ra(t) =0, r,,(t— '7&) >7ra(t) 20,
(5.25) 5 5
s,.(t— a_z) =s(t) =0, s;,(t — ﬁ) =s(t) =0,

for teA;pa(n) (j =1,2,3, ..).
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These inequalities are in connection with a certain property of esti-
mates used in § 7 (cf. Lemma 4).

§ 6. Now we shall give a theorem connected with the existence and
location of the functions y,(t) and of derivatives #,(f) in some interval
common for all yu(?).

THEOREM 1. Suppose that the function h(t,w,v,w) fulfils assump-
teons H.

Under these assumptions the continuous functions ya(l) satisfying
conditions

y;c(t) = h(t’ yn(t)r 01 dn) fO’I‘ t EAl('"')y yn(o) =0 ’

é

60 5 =m0, wli- 2 li-2) g 2<ica,

dni1 =h(0,0,0,d,) (n=1,2,3,..), & =0,

are defined in a common interval I': 0 <t < a and satisfy the inequalities

(6.2) lya@ll < s(t), llyn <s'()  for el

where s(t), t e I', denotes the solution of the non-homogeneous linear equa-
tion (3.6) and s(0) = 0.

Proof. We can easily verify that the function y.(f) is defined in
the first interval 4,(n), and satisfies the inequalities

(6.3) lya®l <s(8),  llya@®)| <8'(t) for tedy(n).

Proceeding by induction let us suppose that the funetion ya() is
defined in the interval 0 <t < t; (j > 1), and fulfils the conditions

(6.4) =@l <s(b), lya@l<s'(®) for 0<t<t (j=1).

We prove that the function yx(f) exists in the interval 0 <? < ;44
and

(6.5) lyn(Ol <s(t),  lya@I <))  Tfor  0<t<tjyq.
In fact, consider the differential equation

é

(6.6) n'(t)=h(t,n(t),yn(t—%),y;a(t—;z)) for tedjm(n),

the initial condition
(6.7) n(t;) = yalt;),
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and the sequence of successive approximations

M(t) = yalt;)) for 1edja(n),

©8) i = bt n0, mlt— 2y walt=2))  tor v,

n
ni(t;) = yalt;)  (£=0,1,2,..).
The first approximation #y(t) = ya(¢;) satisfies the inequalities
(6.9) (O <s(t), [m@I<s() for tedjn(n),

therefore suppose that the approximation #;(t) satisfies (6.9). Then the
next approximation #;;,(t) fulfils the conditions

(6.10) i@l <s(t), i@l <8'@)  for  ted;jn(n),
because of Theorem A, since [ln;+1(?)] satisfies the differential inequality

a0 < 35, 10, w1~ 2), e 2)) 52, 0,0, 09

-3

+lIn(t, 0,0, 0)]

< M- jing(t) +N -

< M-s(t) +N-s(t—%)‘+L-s’(t—%) +A(2)
< Moa() +N-s()+L-5'() +F() + 1o,

i.e. the inequality (cf. Theorem B):

L-P

Diligesa(®l < M-8 ()+N-s() +L- ') +h () +

for tedjii(n),

the function s(t) is the solution of (3.6), and the relation

1nis2 (8 < 8(25),

holds for the initial values (cf. (6.4) and (6.7)).

Consequently (6.9) holds for all ¢ = 0,1, 2, ..., because of the prin-
ciple of finite induction, whence the solution #(f) of the equation (6.6)
exists in view of Theorem D and satisfies the conditions

(6.11) 7@l <s(t), I’ <&'() for tedjialn).
We define now ya(f) = n(t) for ¢t e A;4,(n), and we obtain
lya(Ol < 8(1), llyaO <s°(t)  for 0 <t <tjpa,
because of (6.4) and (6.11), which completes the proof of (6.5).
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The principle of finite induction, (6.3), (6.4) and (6.5) imply that
the estimations (6.2) hold in the whole interval I’, and this completes
the proof of Theorem 1.

§ 7. Now we shall give the precise location of the functions y,(?)
and their derivatives yp(t) (p > n), te 8, with respect to the tangent
y(t) = t-yp(0), t e 8, at the origin. Here the functions R,(f) of Lemma 3
will be used.

We shall give also the precise location of the curvilinear segment
¥a(t), t € 4;1(n), with respect to the tangent

Y (1) = yalt;) +(E—1;)-yult;)  for ted;i(n),

at the point (¢, ya(t;)) with the aid of functions r,(f) of Lemma 3.

It seems-to be worth observing that there is a certain characteristic
property connected with the difference method (6.1) namely estimates
(7.2) and (7.19) are decreasing when the interval 4;(n) is replaced by
the next interval 4;.,(n) (cf. property (5.25)).

LEMMA 4. Let us suppose that the function h(t,w,v,w) satisfies
assumplions H, consider the sequence ya(t) defined by (6.1), and assume
that 6, 0 <t <7t (1< a), s an arbitrary prescribed interval, bounded and
contained in the interval I'.

-
4 4 o bt

Fig. 4. The precise location of y.(t) with the aid of the function Ra(t) (also the pre-
cise location of segments of ya(t), cf. Lemma 4)

Under these assumptions the functions ya(t) fulfil the inequalities

ly»(t) —t- yo(0)ll < En(t) ,

(7.1) , , ,
lyp(t) —yp(0)| < Bp(t) for teb,p>=m,
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in the interval 6, and

lyn(t) — yalts) — (t— 1) - yult)l| < 7al?)
lya(t) —yn(t)l| < 7a(t) ,

in the intervals A;(n)-0 (j=0,1,2,..), the functions R,(t) and r,(l)
being defined in the part 1° and 2° of Lemma 3.

Proof. We prove first that (7.1) are fulfilled in the first interval
4,(p) (p = n), choosing n so as to obtain d/n <7.

In fact, all -functions y,(t) (p = 1,2, 3, ...) exist in the common
interval I’ in view of Theorem 1, whence from (6.1) and (4.2) it follows

(7.2)

(7.3)  [lyp(t) —yp(O)l| = A (t, (1), 0, dp) —h(0, 0, 0, dp)| < K -t + M - ys(t)
< M- |lyo(t) —1- yp(0)]| +-N - Ba(t) +L - Bu(t) +
P

L RO + K] t+2- L - for  tedy(p).

But ||yp(0)]| < 8'(z) in virtue of (6.2), whence the function ||y,(t)—
—1t-yp(0)|| satisfies the differential inequality (cf. Theorem B):

(7.4)  Dillyn(t) =1 yp(O)| < M -[lyp(t) —1- yp(O)l +N - Rn(t) +L- Bn(t) + Cu(t)

for ted,(p), the function A = R,(?) satisfies the differential equation
(ef. (b.1)):

(7.5) A'(t) = M-A(t) + N -Ry(t) +L-Ry(t) +C0n(t) for teb,
and initial values are equal:
Rn(0) = lys(0) — 0 yp(0)]| = 0.
Therefore Theorem A implies
(7.6) lyp(t) =t yp(0)l < Ba(t)  for tedy(p) (p>mn).
In addition, from (7.3), (7.5) and (7.6) we obtain

(7.7) llyo(®) —y2(0)l < M {lyp(t) — 2 yp(0)] +-N - Bu(t) +L - Rn(t) +Cn(?)
< M -Ry(t) +N - Ry(t) +L- Ro(t) +Ou(t) = Ra(?),
for t € 4,(p) (p = n), which means that the inequalities
lyn(t) —1- y},(O)l[ < Ru(t),
y5(8) — yp(O)ll < Ba(?)
hold in the interval 4,(p) (p = n).

(7.8)
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We shall verify now that the relation (7.1) hold in the interval
d/p <t<r (p=n) In fact, (6.1), (4.2), (7.8) and the monotonicity of

R,(t) and Ry(t) imply that

’ !’ 6 ¥ 6‘
(7.9) Nyp(t) — yp(0)i] = ”h (t; Yn(1), ?/p(t_??); yp(t_ 5)) —h(0,0,0,dp)

f-2) -

i)~ (=2 s

SE-t+M-lyp()| + N

6
Aot

< M- |iyp(t) —t- yp(0)| + -

0
y,(t - 5) —dp41

< M- {lyp(t) —t- yp(O)i +N - Ba(t) +L - Ry(t) +Cn(t) ,

for §/p <t <t (p = n), since |lyp(0)| < §'(z).
Thus, the function |ly,(t) —t- y5(0)|| satisfies the differential inequality

(7.10)  Dyflyp(t) —t- yp(O)ll < M -|lyy(t) —1t - yp(0)|[ + N - Ru(t) +-L - R(t) +O(2)
for édp<t<z (p>n),

+[(M +N)-|lyp(0)| + K] +L- L |ldp 1 —dy|

the function 4 = Ru(t) satisfies the differential equation (7.5), and initial
values for ¢ = §/p fulfil the inequality

yp(%) — % . y;.(O)” < Rn(%)

in view of (7.6), hence from Theorem A we obtain

(7.11) liye(t) —2-y(Ol < Ra(t) for dfp<t<z (p>=m).
In addition, (7.11), (7.9) and (7.5) imply that

ly(?) — yp(0)| < M *|lyp(t) — - Yp(O)|| +-V + Bu(?) +L - Bu(t) +Cn(?)
<M 'Rn(t) +N '-Rn(t) +L -R;z(t) +0n(t)
=R(t) for dp<t<t(p=n).

This completes the proof of (7. 1) in the whole interval 9: 0 <t <~
for p = n.

The proof of the inequalities (7.2) in the first interval 4,(») is com-
pleted, since (7.1) for p = n is identical with (7.2) in the first interval
4,(n).

Proceeding by induction suppose that

1Yn(t) = Yn(ti—1) — (—11) Yt < 7a(t)

(7.12) , , , o
[yat) —ynlti-ll <7a(t)  for ted;(n)-0 (j fixed).
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We shall prove that
1yn(t) = Yn(ts) — (B — 1) Y(t)l < 7alt)
[ya(®) —yn(t)l S7a(t)  for ted;jii(n)-6.
In fact, from (7.12) and (5.4) it follows that
(7.14)  [lyn(?) — ya(t)l
= “ 4y unt®), wnft = 2 1= 2)) = bl 00, vl -0, - "i!

S K- (=) + M |ya(t) —yn(t)| +N -

(7.13)

yn(t— 9) — ity )|+

+L-

yn(t—é) —Yn(ti-1)
< M - llyn(®) —ynlt)) — (¢ —1;) - Yult| + M - (¢ —1;) - llya(t)]] +

5 5 ,
LN yn(t—-) Yalty 1)—(t———t, ) Yalti—)| +

(¢ , ,
4 -(t= 5 =tms) Wl Lot ) + B =)

I ) —~alt) = (=) Yolt ] + 3 - raft = )+ Lo 1= 2) +eatt).

Thus, the function u(t) = |[ya(t) —yn(t;)—(—1;)  ya(t;)|| satisfies the
differential inequality (cf. Theorem B)

(7.15) ]7+,u(t)<M~y(t)+N~rn(t—%) +L-'r;.(t—%)-|-cn(t) for tedyqy(n)- 6,

the function ¢ = 74(f) satisfies the differential equation (5.3) and initial
values are equal: u(t;) = 7.(¢;) = 0, whence from Theorem A we obtain

(7.16)  [lya(?) —yalt)) —(E—1;) - yn(t;)]| <7ru(t) for tedjia(n)-6

In addition, (7.16), (7.14) and (5.3) imply that the second inequality
(7.13) holds for ¢ e 4;.1(n)- 0, which completes the proof of (7.13).

By induction relations (7.2) are satisfied in the whole interval 6.

This completes the proof of Lemma 4.

We shall now give the estimates for y,.(t)—ya(t;) and ya(t) —yn(¢;)
with the aid of functions 7,(f) considered in Lemma 3.

LEMMA 5. Let us suppose that the function h(t,u,v,w) satisfies
assumptions H and consider the sequence ya(t) defined by (6.1).

Under these assumptions

[¥n(t) — Yaltj—2)ll < 7a(t) 4 (2 —1;-1) - 8(7),

(7.17) , , ., )
[ly2(t) — Yalti-1)ll < 7u(1) for te A?'('”’) 0 (j=1,2, 3y.0)s
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and in particular

gy O R3]+ () v,

’ 4 14 a .
W)~ < B3] for  tedm)-0 (i =1,2,3,..).
Proof. Inequalities (7.1) and (7.2) imply the second line of the
formula (7.17). But '
llya(t) — ynlt; 1)l
<Ya(®) —Yulti-1) — (@ — 1) Yulti-)ll + @ — 1) - [yal;-1)]
Sra(t) +(t—t;_1)-8'(r) for ted;n)-6 (j=1,2,3,..)
which completes the proof of (7.17).

Inequalities (7.18) follow immediately from (7.17) and the conditions
of uniform boundedness (5.13).
This completes the proof of Lemma 5.

We shall now give the estimates for y,(f) —yn(t — %) and y, () — 'y;,,(t — %),
with the aid of the functions s,(¢) defined in Lemma 3.

LEMMA 6. Suppose that the function h(t,u,v,w) satisfies assump-
tions H and consider the sequence y,(t) defined by (6.1).
Under these assumptions

i) —on{t—2)| < utt),

)~ it~ 3

and in particular

1

!yn(t) —yn(t— %)" < Sn(2- %) ’
(0wt %)]

Proof. We prove first that (7.19) holds in the interval A,(n). In fact,
(6.1), (7.18), (4.2) and (5.7) imply

(7.21)  [yn(®) ‘?/;w(" %)u

” (yyn t);./n 6),y;»(t_-%))—h(t—%,yn(t—%)’O’dn)
gK-% +M - yn(t)—yn(t—%)“ -{-N-”yn(t——%)— | y;z(t—%)—dn
0y, o

5 , 3\ o K
3 Jynt) = (1= 3 43| Bal3) 5 60| T Bl ) LM — ol + -5

(7.19) 5
< sp(t)  for 7—L<t<r,

(7.20) 5
gS;l(Z-—) for ;"é_i<1:'.

(.

AN -su(t) LL-sp(t) -a, for tedyn).

M - |lya(t) _yn(t_ %)ll

Annales Polonici Mathematici XVI 10
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Thus the function fulfils the differential inequality

wnlt) ~ {13

(7.22) D,

{

Yn(?) —yn(t— %)“ <M-

for te dy(n), the function s(f) satisfies the differential equation (35.6)
Sn(t) = M- 8u(t) + N - 8a(t) +L-8n(t) + @,  for tedy(n),

and initial values for ¢ = d/n satisfy the condition (cf. (7.18) and (5.8))

ol 2)—n0)] < Bf2) + 2 -5y = (2]

Uut) =3t ) |+ ) +T - s1(0) +an,

(]

Hence Theorem A on differential inequalities implies

é
Yn(t) — yn(t — ;',)
In addition, from (7.21), (7.23) and (5.6) we obtain

Yn(?) —y;( 6)

(7.23) < 8p(t) for tedy(n).

—MN<M-

Yalt) —yn(t _ %)U LN 5a(t) +L - (1) + an
< M- 8,(t) +N - 85(1) + L~ 87(1) + an = 83,(2)

for ¢t € 44(n), which means that (7.19) hold in the interval 4,{n).
Proceeding by induction suppose that (7.19) hold in the interval
Adi(n)- 6 (j fixed).
We shall prove that (7.19) are fulfilled in the next interval
Aj41(n)- 0, ie.

)=t 2)| <sutt),

(7.24)

Yn(t) —y;,(t— %) “ <8p(t) for ted;ii(n)-0.

In fact, from (6.1) and the induction assumption we obtain in the
interval 4;¢4(n)- 0:

y;.u)—y;.,(t_ %)H
- Hh(t, yn(t),yn(t—%), y;(t—%))—h(t_ %, y,,(t_ %), yalt—2- %) : y;l(t_ 9. %))“
Ya(t) —yn<t - %) n +N- yn(t— %) —yn(t_z : %)“ +

-2 -ses)

)+K-% for ted;iy(n) 0.

(7.25)

é
<K.;L+M.

+L-

o

<M- ”yn(t)—yn(t— %)\I+N . s,,,(t— %) +L- s;,(t— -
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Hence the function
(cf. Theorem B):

Ynlt) — yn(t - %) ﬂ

yn(t) — y,n(t — %) l satisfies the differential inequality

(7.26) D,

<M

0 o , 0 é
Yn(?) _‘yn(t - %)" +N- sn(t'— 1_,&) +L- Sn(t — ;h) +K- n’

in the interval A4;i.(n)- 6, the function s,(t) fulfils equation (5.9) in the
interval A;;,(n)- 0, and initial values for ¢ = {; satisfy the condition
s
WYn(ls) — Yalti -l < ralt; —0) +;‘ *8'(7) = 8a(t))

because of (7.17) and (5.10).
Therefore Theorem A implies

(7.27) ¥n(2) ——yn(t _ %)

Furthermore, using successively (7.25), (7.27) and the equation (5.9)
we obtain

Yn(?) —y;(t— ,%)‘ <M-

< 8:,,(” for Te Aj.H_(’ﬂ) - 0.

n n n
0
n

yn(t)—‘yn(t— %)H +N- s,,(t— 6) +L- s;,,(t— 6) +x.2

< M-sn(t)—l-N-sn(t—%) +L°8;,(t— )-i—K‘ %= 8n(t) ,

for t € Aj;1(n)- 6, which completes the proof of (7.24).

By induction relations (7.19) are satisfied in the whole interval
on <t <.

The conditions (7.20) can be obtained from (7.19) and (5.14), and
this completes the proof of Lemma 6.

§ 8. Now we shall prove a theorem connected with the existence
and uniqueness of the solution. )
THEOREM 2. Let us suppose that the right-hand member of the diffe-
rential equation
(8.1) y =hit, ¥, 9,9,
satisfies assumptions H.
Under these assumptions

1° The sequence of functions ya(l) defined by the formula

Yn(t) = h(ty Yn(t), 0, dn) for tedi(n), ya(0) =0,
, 8\ , é 0
(8.2) Yalt) = h(ta Yn(t), yn(t_ ﬁ)y yn(t— ,;‘@)) for n <t<a,
dn+l=h(0y070,dn) (n=1’2731'")7‘ d1=07
converges almost uniformly in the interval I': 0 <t < a to the unique solu-
tion ¥y = @(t), t € I, of equation (8.1), satisfying the initial condition ¢(0) = 0.
10*
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20 The error estimates of the form

llya(t) — @ (DI < kalt)

lya(t) —@’ (N < ka(t) (¢=m), e,
hold in an arbitrary prescribed interval 6:

(8.4) : o<t<t (t<a),

bounded and contained in the interval I'.
Here the real-valued fumction kn(t), te 0, is the solution of the linear
equation with constant coefficients:

M+N by

(8.3)

(8.5) kn(t) = q1-I kn(t) + A

and satisfies the tnitial condition kx(0) = 0. The constant b, > 0 is defined by
_../.é)..'/.é J

(8.6) b, =2N Sn\2 - +2-L Sn\z - +0nn,

can be computed from (5.2), (5.24) and (3.6), and fulfils the condition

(8.7) bp—>0, a8 n—>+oo.

Proof. a) We shall prove that the sequence y.(t) and the sequence
of derivatives y,(t) satisfy the Cauchy criterion of the almost uniform
convergence in the interval I'. For this purpose let us denote by 0:
0<t<7t (tr<a) an arbitrary prescribed interval, bounded and con-
tained in the interval I’, and suppose that d/n <rt.

We shall verify first that

l2(8) — Ya(D| < Eal?) ,
lyp(t) — Yol < Fu(t), tedi(q), p=q>=n,

in the interval 4,(¢): 0 <t < é/¢q. In order to see this it is sufficient to
verify that

[95(t) — ¥a (D)l < Ral?),

(8.8)

8.9 ’ , ’

(8.9) o)) —yadll < Ralt) for tedyq), p>q>n,
and

(8.10) Rull) <kall), Eolt) <Kult) for tedyq),

where R,(t) is the solution of the linear equation (5.1).
In fact, in the interval A4,(p): 0 <t < é/p we obtain from (8.2)
and (4.2):

(8.11)  [lyn(®) —va®ll =[(t, 9o(t), O, dn) —h{t, yo(t), 0, do)|
< M - |lyp(t) — yalt)| +L- ”dp_dq”
< M |lyp(t) — ya(t)]| =N - Ru(t) + L - Ri(t) +Cu(t)

for 1 e 4y(p), Cau(t) being defined by (5.2).
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Furthermore, using successively (8.2), (7.1), (4.2) and monotonicity
of R.(t) and R,(t) we see that in the interval é/p <t < d/q:

(8.12)  [lyp(t) —yq(?)l

= h‘(t7 Yn(l), yrrt— é)a y;(t_%)\' _h(ty Yq(1), O, dq}

P
< M lyp(t) —a(t)] + N \y,,(t__l ot 2)~d,
< )= 9l + [t = 2] — (£ 2) 95000+
LU +F) - [yp(0)] + K]t +I- yp(t—z—,)— il 4L (s —

< M- lyp(t) — Yol + N - Ba(t) +L - Rp(2) +Ca(?) .
So (8.11) and (8.12) imply that the relation
(8.13) lyn(t) —ya(t)} < M - |lyp(t) — yo(Oll + N - Ru(t) +L- Ru(t) +Cu(?)

holds in the whole interval A4,(q): 0 <t < é/q (p = q = n).
Thus, the function |ly,(f) —y,(t)|| satisfies the differential inequality
(cf. Theorem B):

(8.14) Dllyn(t) —ya(t)ll < M - lyp(t) — Yot + N - Bo(t) +L - Ro(t) +Cu(t)
for teAd,(q) (p > ¢ = n), the function A = R,(¢) fulfils the differential
equation (ef. (5.1)):
(8.15) A(t)= M-2(t) +N -RBa(t) +L-Ry(t) +Cr(t) for teb,
and initial values are equal: R,(0) = |[yp(0) —y4(0)|| = 0, whence from
Theorem A we obtain
(8.16) lyp(t) —yo(t)ll < Bn(t) for tediq) (p=q=mn).
In addition, (8.13), (8.16) and (8.15) imply that

(8:17)  Iiyp(t) — Yol << M -llyn(t) — yo(t)l| + N - Ra(t) +L-Ra(t) + Cu(?)
< M -Ry(t) 4N - By(t) +L - Bu(t) +-0ult) = Ru(?),

for t e Ay(q) (p = q = n), which completes the proof of (8.9).
The inequalities (8.10) can be proved as follows:
From (5.2) and (8.6) we see that

(8.18) 0,,(t)<on(%)<bn for  tedym).

Thus, the function R,(?) satisfies the differential inequality

M+N

(8.19) Ry(t) < 51

for  tedyn),
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because of (8.18) and (5.1), the function X,(¢) fulfils the differential
equation (8.5), and initial values are equal: R,(0) = %k.(0) = 0, whence
Theorem A implies

(8.20) Ra(t) <ka(t) for ted,n).
In addition, using successively (8.19), (8.20) and (8.5) we see that

M+N M+N
Ba) <2 Ralt) 4 g2 <IN () £ = Kl) for 1 dyn),

which means that relations (8.10) hold.
This completes the proof of (8.8) in the interval 4,(g): 0 <t < d/q.
Now we shall prove that in the interval d/q <t < 7:

lYp(t) — Ya()l| < Kalt)
lyp(®) — o)l <En(?) for Sfg<ti<z (p>=g=>n).
In fact, if ¢ is in the interval é/¢ <t < 7, then by (8.2) we obtain:

(8.22)  llyp(t) —yq(¥)l

= ﬂh (t, Yo(t), yp(t — %), y;(t— ;—,)) —h (t, Ya(t), yq(t a) y yq(t - —)) ii

ft=g) o= glbee ot g) =)

(8.21)

M - |lyo(t) —yo(O)| + N
But

(8.23) “yp( ~ %) —y“(" %)“

< yp( — g)—yp(t)

-2y

<|yalt— _) — ()| +

+ﬂyp<t)—yq(t)

+”yq(t) - yq(t — g) ” )

9
q

I ’

whence according to (8.22) and (8.23) we have
(8.24) (1—L)|lyp(t) —ya(O)ll < (M +N) - llyn(t) — yo®)ll +

8- [ty = ot = 2| + Jrat) el 2)

Ya(t) —y;,(t - 5)” + \[yé(t) —y;(t - é)l

q

oty —va| + yq<t)-uq(t-—

|+
I

+1-|
for dg<t<rv (p=g=n).
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Hence, (8.24), (7.20), the conditions of monotonicity (5.12) and
definition (8.6) of the constant b, imply

(8.25) (1—=L) - llyu(t) — Yo < (M +N) - |lyp(t) — yo(D)l| + bn

for dlg<t<v (p=q=n).
So the function [lyp(f) —ye(t)l| satisfies the differential mequahty
(cf. Theorem B):
s M+N b
(8.26) D.llya(t) —va®ll < - - al) — 90+

for d/g<t< 7t (p>q>mn), the function Zk,(f) satisfies the differential
equation (8.5) for ¢t e 6, and initial values for ¢ = §/¢ fulfil condition

ARZH R
A — w2 < Eal
Yo q) f‘/q(q 7’

because of (8.8). Hence from Theorem A it follows

(8.27)

b
(8.28) Nyp(t) — ya(t)l] < En(t)  for P Lt<zr(p=zg>=n).

In addition, from (8.25), (8.28) and (8.5) we obtain

’ M -N bg
() — 9a(t] < =g - lyalt) — alt)] + T2
MAN ba o, 5
<q-T n(t)-l-l L—kn(t) for !—l<t<r(p>q>n),

which completes the proof of (8.21).
Thus, according to (8.8) and (8.21):

[¥o(t) — Yol < En(?)
lyp(t) —yolt)l < kn(t) for teb (p=q>=mn),
in the whole interval 6.
But k4(t) is the solution of the non-homogeneous linear equation

(8.5) with constant coefficients, %,(0) = 0, and the term b, tends to zero,
as n—+oo because of (8.7), whence

(8.29)

(8.30) ka(t) =0, ku(t)=>0, as m-—>-too,te,

(cf. for example Kamke [1], p. 145).

From (8.29) and (8.30) it follows that the sequence yx(t) and the
sequence of derivatives y(t) fulfil the Cauchy criterion of uniform con-
vergence in the interval 0, consequently they are almost uniformly con-
vergent in the interval I'.
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b) Let us denote by ¢(t), ¢ € I’, the limit function of the sequence
yn(t). Since the sequence of (right) derivatives w,(t) is also almost uni-

formly convergent, the theorem of T. Wazewski ([6], théoreme 3) im-
plies that

(8.31) Yat) >0(t), 9at)=>¢' (1), as n->too, tel.

We shall prove now that ¢(t), t e I’, is the solution of the equation
(8.1) and ¢(0) =0.
To this end we show that

(8.32) h(ta Yn(t), yall), ?/;z-(t)) ” <b, for teb,

since from (8.32), (8.31) and (8.7) follows, as m > + oo, the identity
(8.33) ¢'(t) =h(t, @(t), (1), ¢'(t)) for te0,

in an arbitrary presecribed interval 6, bounded and contained in the
interval I'.
We begin with the proof of inequality

(8.34)  [yat)—h{t, yu(®), yalt), a®)| <bu  for tedy(n).

In fact, using successively (8.2), (7.18), (4.2) and the definition (5.7)
of the constant a, we obtain

(8:35)  Jlyn(t) = (t, yalt), ya(t); yalt))]
= [B{t, 9a(t), 0, ) =B {t, ¥alt), yalt), ¥a(1))|

SN |lYa(t) —yn{ON +L * [yn(t) — @nall +L - ldn11 — dull
0 0 P ’ ) n P y
<N [R,,(q—%)+;& s(r)]—l—L R( )+2 L' <an for  tedy(n).
So (8.34) will be proved, if a, < b,. But from the equation (5.6)
if follows that Ss(t) is an increasing function in the interval é/n <t <7,
and S,,(a—) = R,.(é) + S 8’(r) because of (5.8), therefore R.,,(é) < S,,(2 . é)
n n n n n
So from the equation (5.1) and (5.6) we obtain

(8  M+N _ (8\ Cu.dn) M+N 0 On, é
R"(?a)_ 1— (ﬁ)+ 1-L S1-L Sul2 2]+ 1 L*S" n

which means, that the constants a, and b, defined by (5.7) and (8.6)
satisfy the desired inequality a, < b,.

This concludes the proof of (8.34).

Now the inequality

’ , é
(8.36)  [yn(t) —R(t, yn(t), yn(t), ya))| <Bu  for —<i<r,
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will be proved. In fact, from (8.2), (7.20) and (8.6) we obtain

(8.37) ‘ h(ty Yal(t), Yu(t), Yul?) )”

= Hh (t, Yn(?), yn(t— %) , y;(t — %)) —h(t, Yu(t), Yn(l), y;(t)) H

<N iyn(t)—yn(t—%)l +L-

)il — 3|

<N-Sn(2-é)+L-S;(2-é)-<bn for Es-<t<r,
n n n

which completes the proof of (8.36).

According to (8.36) and (8.34), the inequality (8.32) and the identity
(8.33) hold in the whole interval 6.

In addition ¢(0) = 0, since y,(0) =0 (n =1,2,3,...), which com-
pletes the proof of existence.

¢) We shall prove now the uniqueness of the solution. To this pur-
pose let us suppose that y(t), teI’, is the solution of (8.1) satisfying
the initial condition ¢ (0) = 0. Then we obtain

lp" (&) = @Ol = | {t, 2(2), @(8), @'(1) =R {t, w (1), (1), v'(D))]

< (M 4N) o) —p@)| +L- ') —p'()] for tel’,
and

838) o)~y < T lp(—p(0] for tel’,

which means that the function |@(t) —y(t)| satisfies the differential in-
equality (cf. Theorem B):

8.39)  Dlp(d)—yp(tll < o -

lp(t) —p (@) for tel.

The function £(t) =0, t eI’y is the unique solution (also the grea-
test solution) of the equation

M+N
1-—

(8.40) E(t) = £(t) for tel’,
satisfying the condition £(0) = 0, therefore (8.39), (8.40) and Theorem A
imply
lp(@)—p@I<&() =0 for tel,
whence ¢(t) = y(f) for t e I’, which completes the proof of uniqueness.

d) The error estimates (8.3) follow from (8.29), as p - + oco.
This completes the proof of Theorem 2.
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§ 9. Now we shall give another error estimate for y,(¢) in the inter-

val I'. It will be derived with the aid of differences yn(t)—yn(t— g)

and g/;(t)—y;(t—;(:), only one function %,(?) being involved.

THEOREM 3. Let us suppose that the right-hand member h(t,u,v,w)
of the equation (8.1) satisfies assumptions H, and that the function ya(t)
is constructed for some n with the aid of equations (8.2) in the interval I'.

Assume in addition that

}

< 5(t)7

sio-sfe-2)

(9.1) .

‘ p o é
yn(t)—yn(t_%)lgﬂ(t) for  —<t<a,

e(l) and n(t) betng given.

Under these assumptions the error estimates for ya(t) are provided by
9.2) lya(t) —@ ()] < 2(2),
: ) =@’ @I <z'(t) jor 0<t<a.

Here x(t) is the solution of the linear equation

M+N N-e(t)+L-n(t)

(93) o)== @ e

0
fm’ -_b

L<t<a,
"
o . o é b
salisfying the initial condition ”’(ﬁ) = l,,(?—?’), and z(t) = l(t) for t € A,(n).

The function la(t) satisfies the linear mon-homogeneous equation

M{N

(9.4) ity = gy 4 2o

1—-L

for tel’,

and the initial condition 1,(0) = 0, the function Dy(t) being defined by

P-(M+N)

08) D - (F s L

+K)t+2'L ﬁ for tel.

Proof. Let us observe first that
lyo(t) —1- yp(0)| < a(?),
) — Yo Ol <Tft)  for tel’ (p=mn).

The proof of (9.6) in the interval I’ is similar to that of (7.1); it is suffi-
cient to place ly(t) and Dy(t) in the formula (7.3)-(7.11) instead of Ra(t)
and Cr(t) respectively.

(9.6)



Difference method of solving differential equation 147

With the aid of (9.6) the following inequalities can be obtained in
the first interval 4,(n):

[lyo(t) — Y]] < 1u(t)
[yp(t) —ya(Nl < Ta(t)  for tedyg) (p=g=>mn).
The proof of (9.7) for e A,(q) is similar to that of (8.8); it is suffi-
cient to place l4(t) and Dy(t) in the formula (8.11)-(8.17) instead: of R,(f)
and C,(t) respectively.
From (9.7) we obtain the following inequalities, as p >+ oo and ¢ = n,

[yn(t) —@ ()l < W(?),
lyn(t) —¢' (O <Wa(t) for tedi(n),
whence relations (9.2) hold for te 4,(n).

We shall now prove that (9.2) hold also in the interval é/n <1 < a.
In fact, if ¢ is in the interval é/n < t < a, then by (8.1) and (9.1) we obtain

(9.7)

(9.8)

)~/ < 1t 30, vl 2, it 2)) B, 90, a0, vt \| +
+ "h(ty Yn(t), ¥a(1), ?/;z(t)) —h (ta @(8), (1), ?I(t))"
o !, , 0
S
(L N) Jyalt) —p (O 4L lyl)— /(0

NP M+N _ N-e(t)+L- ()
99) ()=’ OIl < T lyald) —p O + ——5 T,
for d/n <t < a. Thus, the function |[ya(f) —@(t)|| satisfies the differential
inequality (cf. Theorem B):

S MAN N-e(t)+L- (1)
(9.10)  Dulyal) =g (O < T 7 “lym) —p (Ol + =5 -7,
for d/n <t < a, the function =x(t) satisfies equation (9.3), and initial
values for ¢ = §/n fulfil condition

é é é
) —o(3)] =<(2)
because of (9.8). Hence Theorem A implies

and

(9.11) ) —p@l <o) for <t<a.

In addition, from (9.9), (9.11) and (9.3) we obtain

I~ < 2 ity — gy - L0 L1

1—-L
,,,M—l—N. N-e(@)+L-n(t)
ST x(t) + T =z'(t),

Tor §/n <t < a, which completes the proof of Theorem 3.
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