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Abstract. Let j be a continuous linear map from a Fréchet space E onto a nuclear Fréchet
space F and let f be a uniformly continuous map from a metric space X into F. It is shown that il
X is convex in the sense of Menger [7], then there exists a uniformly continuous map g: X —E
such that jg = f. The result is not true without the assumption of the convexiljr of X.

Let j be a continuous linear map from a Fréchet space E onto a Fréchet
space F. A well-known theorem of Bartle and Graves [1] says that for every
continuous map from a topological space X into F there exists continuous map
g: X = E such that jg =f The aim of this note is to consider the following
problem.

ProBLEM. Given a continuous linear map j from a Fréchet space E onto
a Fréchet space F and a uniformly continuous map f from a metric space
X into F. Does there exist a uniformly continuous map ¢g: X — E such that

jg=1"

In this note we give a negative answer to this problem and show that the
answer to this problem is positive if F is a nuclear Fréchet space and X is
convex in the sense of Menger [7].

1. Lifting a uniformly continuous map. A metric space (X, d) is said to be
convex [7] ilf every pair of points in X can be joined in X by an arc isometric
to a segment.of the real line R'.

1.1. THEOREM. Let j be a continuous linear map from a Fréchet space E onto
a nuclear Fréchet space F. Then for every uniformly continuous map f from
a convex metric space X into F there exists a uniformly continuous map g: X - E
such that jg = /.

Theorem 1.1 is an immediate consequence of Lemmas 1.2, 1.3, 1.4,

1.2. LEMMA. Let j: E— F be as in 1.1. Then for every continuous linear map
S from a normed space X into F there exists a continuous linear map g: X - E
such that jg =f.
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Proof Let S = {xe X: iix|| < 1}. Since F is a nuclear Fréchet space there
exists a compact absolutely convex set K, o K = f(S) such that the canonical
map i: F(K)— F(K,) is nuclear, where F(K) denotes the linear subspace of
F spanned by K equipped with the norm induced by K. By a theorem of Bartle
and Graves [1] there exists a comipact absolutely convex set L < E such that
Jj(Ly=K,. Let j=j | E(L): E(Ly= F(K,). Since h=1if: X - F(K,)1s a nuc-
lear map there exist sequences (a,) = X’ and (y,) < F(K,) such that

@
Y la < oo, sup{iy,l, neNj < o
n=1

and
hix) = ia"(x)y,, for every xe X.
n=1
Take a sequence (z,) © E(L) such that sup{jiz,ll, ne N} <oc and
j(z,) =y, for every neN. Setting
S(x) = i a,(x)z, for everyxelX
n=1

we get a continuous linear map g: X — E such that jg =f.

Adapting the terminology of Mankiewicz [4]-[6], let us say that a map
f from a metric space (X, ¢) into a Fréchet space F is a Lipschitz map iff for
evely continuous pseudonorm p on F there exists a constant K, > 0 such that

p(f(x)—f () < K,o(x,y) for every x, yeX.

1.3. LEMMA. Let j: E— F be as in 1.1. Then for every Lipschitz map f from
a metric space X into F there exists a Lipschitz map g: X — E such that jy = f.

Proof. Let L(X) denote the linear space spanned formally by X. Equip
L(X) with the norm

> Aixil| = sup{| . 4io(x)l: oeLip(X), loli < 1},
i=1 i=1

where Lip(X) denotes the Banach space of all Lipschitz functions on

X vanishing at a fixed point x, equipped with the Lipschitz norm.
Given a Lipschitz map f: X — F. Extending linearly f over L(X) we get

a continuous linear map f': L(X)— F. By 1.2 there exists a continuous linear

map g: L(X)— E such that jg' = f’. Whence the restriction g = g'|X satisfies

the required properties.

1.4. LEMMA. Let f be a uniformly continuous map from a convex metric space
(X, d) into a Fréchet space F. Then there exists a metric ¢ on X uniformly
equivalent to d such that f: (X, ¢)— F satisfies the Lipschitz condition.

Proof. Let (p,) be an increasing sequence of pseudonorms inducing the
topology of F. Since f is uniformly continuous there is a sequence of positive
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numbers (g,) such that

sup{p,(f (x)—f (): d(x,y) <e,; < 1.
Let us put

e(x, y) =d(x, y)+ Y, 27 "min{p,(f(x)—f(¥), 1} for x, ye X.
n=1

Obviously ¢ is uniformly equivalent to d on X. Let us check that
f: (X, 9) = F satisfies the Lipschitz condition.
Take neN and x, ye X. If d(x, y) <g,, then

Pa(f ()= () < 2"0(x, y).

If d(x, y) > ¢, then by the convexity of X there exist points xq, x,, ..., x, € X

1
such that x, = x, x, = y and d(x;, 1, x;) < Ed(x, y<eg,fori=0,1,..., k-1,

1
where k = |:‘—d(x, y):|+1.

Then we get
k

! S, 1
pn(f(xi-i-l)_j (xi)) < k < S—d(x’ y)+ 1»

n=0 n

2
8"

P(f()—f(¥) <

2d(x, ¥ <
&

e(x, y).

Thus f satisfies the Lipschitz condition with the Lipschitz constant
K, = max{2", 2/e,}.

This completes the proof of Lemma 1.4 and hence concludes the proof of
Theorem 1.1.

In the following we will show that Theorem 1.1 is not true if the convex
metric space X is replaced by s = R*. We need the following

1.5. DerINITION. Let & denote a class of Fréchet spaces. A Fréchet space
Ge% is said to have the LP(%) (resp. LLP(2), LUP(2)) iff for every
continuous linear map j from E e & onto F € & and for every continuous linear
map (resp. Lipschitz map, uniformly continuous map) f: G— F there exists
a continuous linear map (resp. Lipschitz map, uniformly continuous map)
g: G- E such that jg =/

1.6. THEOREM. Let .4~ denote the class of all nuclear Fréchet spaces. Then
the following conditions are equivalent:

(1) dim G < o,

(1) G has the LP(A),

(i) G has the LLP(.V"),

(iv) G has the LUP(.A").
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Proof. The equivalence between (i) and (i) has been proved by Gejler [3].
The implications (1)=>(ii1) and (i)=>(iv) follow immediately from 1.3 and 1.1
respectively.

(ii))=(ii) Let f* G — F be a continuous linear map. Take a Lipschitz map
g,: G- E such that jg, =f. By a theorem of Mankiewicz [5] the differential
g = (Dg,),, exists for some x,€G. Thus we have

J9 =Jj(Dygy)s, = DUjg1)y = (Df ), = 1.

(iv)=>(1i) Let f: G- F be a continuous linear map and .g,: G—E be
a uniformly continuous map such that jg, =f Using the argument of
Mankiewicz [4] one can take a Lipschitz map g,: G — E such that jy, = f. By
(ii1) = (i) there exists a continuous linear map ¢: G — E satisfying the condition
jg=/

Theorem 1.6 has a useful corollary

1.7. COROLLARY. Theorem 1.1 is not true without the assumption of the
convexity of X.

Proof. Take s = R™. Since dims = oo, by 1.6 there exists a continuous
linear map j from a nuclear Fréchet space E onto a nuclear Fréchet space
F and a continuous linear map f: s— F such that there is no continuous linear
map g: s— E with jg = f. By the implication (iv)=(ii) it now follows that there
is no uniformly continuous map ¢g: G— E such that jg =f.

2. Lifting locally uniformly continuous maps. A map f from a uniform space
X into a uniform s_ace Y is said to be locally uniformly continuous iff for every
x € X there exists a neighbourhood U(x) € X such that f|U(x) is uniformly
continuous. The following proposition shows that the class of locally uniformly
continuous maps is much more narow than the class of continuous maps.

2.1. PROPOSITION. A metric space X containing no isolated points is locally

compact if and only if every continuous function on X is locally uniformly
continuous.

Proof. Assume that X is not locally compact. Take x,& X and a basis of
neighbourhoods U,(x,) = {xe X: d(x, x,) <¢,} such that

(@) U,(x,) 1s not compact for every ne N, and

(b) There exists a sequence (x¥);=, = U,(x,)\U,-(x,) which contains no
converging subsequences.

Since X contains no isolated points there exists a sequence (y¥)
< U,(xo)\Uq-1(x,) such that

(2.2) lim o(x¥, y¥¥) =0 for every neN,

k— x>

(2.3) xk#yk  for every keN,
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It is easy to see that the set

A = (XREn=10 (Yn=1 Y (xg)

is closed in X. Define a map f: 4—R! by

I/n if x = x* for every keN,
S(x)=

(2.4) 2/n  if x = y* for every keN,

0 if x = x,

It is easy to see that f is continuous. By the classical Tietze theorem there exists
a continuous map f: X - R' such that f'|4 = /.

- From (2.2){2.4) it follows that f’ is not uniformly continuous on U (x,) for
any neN. This proves the proposition.

Let us note that 2.1 may not be true if X contains isolated points.

2.5. ExaMPLE. Let B be an inlinite dimensional Banach space. For every
neN, take a sequence (x¥) c B satisfying the conditions

(2.6) |xk =1/n  for every keN.
2.7 fixk—xll >e, >0 for every k,leN.

Let X = (x),=1 v (0)
It is easy to see that every continuous function on X is uniformly
continuous, however, X 1s not locally compact.

2.8. Definition. A Fréchet space G is said to have the LLUP iff for every
continuous linear map j from a Fréchet space E onto a Fréchet space F and, for
every locally uniformly, uniformly continuous map f: G- F there exists
a locally uniformly continuous map g: G— E such that jg = f.

Let us prove the following

2.9. THEOREM. If G has the LLUP, then G is a Montel-Fréchet space
admiting a continuous norm.

Proof. Let G, = G\(0). By £(G,) we denote the Fréchet space of all
functions 4: G,— R! satisfying the condition
Pald) = ) A(x)p,(x) < oo for every neN,
xeGq

where (p,) denotes an increasing sequence of pseudonorms inducing the
topology of G. Define a map j: £(G,)— G by

A=Y ix)x
xeGo
Since G has the LLUP, there exists a locally uniformly continuous map
r: G—2(G,) such that

(2.10) jr=idg.
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Assume to the contrary that G is not a Montel-Fréchet space. Take
a bounded sequence (x,) = G which contains no converging subsequences and
a countable set S < G, such that

r(x,) < Z(s) ¢ Z(G,).

Since #(S) i1s separable, by a theorem of Gejler [3] there exists
a Montel-Frechet space F and a continuous linear map ¢y from F onto #(S).
Take a locally uniformly continuous map r,: G — F such that gr, = nr, where
. L (Gy)— ZL(S) 1s the restriction map. Let U be a neighbourhood of zero in
G such that r,|JU is uniformly continuous.

Let (P,), (Q,) be increasing sequences of pseudonorms inducing the
topologies of G and F respectively such that

U,={xeG: P(x)<1}cU [or every neN
and
Q,(ry(x)—r(y) <1 whenever x, yeU and P,(x—y)<1.

If x, yeU and P,(x—y) = | then there are points a, = x, a,,....a, =y
such that P (a;+;—a) <1 for i=0,..., k=1, where k=[P, (x—y]+1.
Whence we have

k1
2.1 Q.(r,(x)—r, (y)) < Z Q,(r\(aj+)—r, (a)) < k
i=0

S P,(x=y)+1 < 2P (x—y).

Since (x,) contains no converging subsequences, there exists ¢ > 0 such
that (ex,) = U\U,, for some nye N. Whence from (2.11) we get

Q,.(r (ex,)—r(0)) < 2P,(ex,) = 2¢P,(x,) for every ke N

and for every n > n,.

Since (x,) is bounded in G we infer that (r,(ex,)) is bounded, and hence
precompact, in F. Thus

1 1 1
(;jyr.(sm) - (;.inr(sxk)> - (;jr(sx@) = (%)

is precompact in F. This contradiction shows that G is a Montel-Fréchet space.
Now let us assume that G does not admit a continuous norm. By
a theorem of Bessaga and Pelczynski [2], G has a subspace isomorphic to
s =R*. Since G has the LLUP we infer that s does so.
Let j be a continuous linear map from a nuclear Fréchet space E onto
a nuclear Fréchet space F and f: s— F be a continuous linear map. Take a lo-
cally uniformly continuous map g: s— E such that jg = f. Select an n,e N such

that g, = ¢ls": §'— E is uniformly continuous, where s =0x ... x0x [] R.

n=no+1
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By the implication (iv)=>(ii) of Theorem 1.6 there exists a continuous linear
map h,: s'— F such that jli; = f|s". Let h,: R"™ x0— E be a continuous linear
map such that jh, =[|R" x0. Whence h=h, @h,: s> E is a continuous
linear map satisfying the condition jh = /. By Theorem 1.6 we get dims < «.
a contradiction.

Thus G admits a continuous norm and the theorem is proved.

Remark. The proof of Theorem 2.9 is similar to the proof of Theorem 2.1
of Gejler [3].

The following problem is still open:

Prosiem. Let G be a Fréchet space which has the LLUP. Is it true that
dimG < x?
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