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In this paper we shall define affine connexions in an almost contact
manifold and obtain some properties.

1. Introduction. Let us introduce in an odd dimensional (n = (2m +1)-
dimensional) real differential manifold of differentiability class C*, a vec-
tor-valued C* linear function F, a C* vector field 7' and a C* 1-form 4
satisfying

(1.1) A(T) =1,

(1.2a) A(X) =0 for arbitrary vector field X,
where

(1.2b) XZF(X),

(1.3) . T =0,

(1.4) X +X =TA(X) for arbitrary vector field X.

Then (F, T, A) is called an almost contact structure and the manifold
is called an almost contact manifold.

AGREEMENT (1.1). Equations containing X, Y,Z, U... will hold for
arbitrary vector fields X,Y,Z, U... '

2. The manifold V,. Let us introduce in the almost contact manifold
defined as above an affine connexion D satisfying

(2.1a) A(Y)D4xT+ (DxA)(Y)T = 0.

AGREEMENT (2.1). We shall mean by V, an almost conlact manifold
in which an affine connexion D satisfying (2.1a) has been introduced.
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THEOREM (2.1). Equation (2.1) implies

(2.1b) A(Y)DxT +(DxA)(Y)T =0,
(2.22) DT =0,

(2.2b) DxT =0,

(2.3a) DxT = A(DxT)T,

(2.3b) DT = A(DxT)T,

(2.4a) (DxA)(T) = —A(DxY) = —A((DxF)(Y)) = 0.
(2.4D) (DzA)(¥) = —A(DzY) = 0.

Proof. Barring (2.1a) and using (1.3), we obtain (2.2a). Barring
(2.2a) and using (1.4), we obtain (2.3a). Barring Y in (2.1a) and using
(1.2a), we obtain (2.4a). Barring X in (2.1a) we obtain (2.1b).

THEOREM (2.2). We have in V,

(2.5a) A(Y)divT+ (DpA)(Y) = 0,
where

(2.5b) divX € (01 vx),

(2.5¢) (VXI)(Y)E D, X,
(2.62) (DxF)(T) = 0,

(2.6b) (divF)(T) =0,

(2.7) divT = A(D,T).

Proof. Contracting (2.1a), we get (2.5a). From (1.3) we have
(DxF)(T)+DxT = 0. Using (2.2a) in this equation, we get (2.6a). Con-
tracting this equation, we get (2.6b). Putting 7 for Y in (2.5a) and using
(1.1), we get (2.7).

THEOREM (2.3). We also have in V,

(2.82) (DxA)(Z) = —A(Z)A(DxT),
(2.8b) (DxA)(Z)A(DyT) = A(Z)(Dx A)(DyT).
Proof. (2.8) follows from (2.1a) and (1.1).
We know that the curvature tensor K is the vector-valued tri-linear

function given by
def

(2.9) K(X’ Y,Z) = .Dx.DYz—.Dy.DXz—.D[X’Y]Z.
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THEOREM (2.4). We have in V,
(2.10) K(X,Y,T)= A(K(X, Y, T)T.
Proof. Using (2.9), (2.3a), (2.1a) and (1.1), we get
K(X,Y,T) = DyDyT—DyDyT—Dx 1T
= (DxT)A(DyT)+(DxA)(DyT)T +A(DgDyT)T —
—(DyT)A(DxT)—(Dy A)(DxT)T —A(DyDxT)T —
—A(Dx,y T)T = TA(K(X, Y, T)).
COROLLARY (2.1). We have in V,
(2.11) K(X,Y,T) =0,
(2.12) K(X,Y,T)A(D,T) = (D,T)A(K(X, ¥, T)).

Proof. Barring (2.10) and using (1.3), we get (2.11). (2.12) follows
from (2.10) and (2.3a).
THEOREM (2.5). Put

def

(2.13) Ric(Y, Z) = (CiK)(Y, Z).
Then ‘
(2.14) Rie(Y,T) = A(K(T, Y, T)).

Proof. (2.14) follows from (2.13) and (2.10).
COROLLARY (2.2). We have in V,

(2.15) Ric(T,T) = 0.

Proof. (2.15) follows from (2.14) and (2.9).
THEOREM (2.6). Bianchi’s second identities wield in V,

(2.16) (DxT)A(K(Y,Z,T))+(DyT)A(K(Z, X, T))+
+(D;T)A(K (X, Y, T)) +T{(Dx4)(K(Y, Z, T))+

+(Dy4)(E(Z, X, T))+ (D, A)(E(X, ¥, T))} =0,
or

(2.17) A(DxT)A(K(Y,Z,T))+A(DyT)A(K(Z, X, T))+
+A(D,T)A(K(X, Y, T)+(DxA)(K(Y,Z,T)+
+(DyA)(K(Z, X, T))+(D,4)(K(X, Y, T)) =0,
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or

(2.18) A(DxT)K(Y,Z,T)+A(DyT)K(Z, X, T)+

+A(D,T)K(X,Y,T)+T{(DxA)K(Y,Z,T))+
+(DyA)K(Z, X, T))+ (D, A)(K(X, X, T))} =o0.

Proof. From (2.10) we have
(DE)(X,Y,T) = (D,T)A(K(X,Y,T)+T(D,A)K(X, Y, T)+

+TA((D,E)(X, ¥, T)).

Writing two other equations by the cyclic permutation of X, Y, Z,
adding the three equations and using Bianchi’s second identities, viz.

(DxK)(Y,Z,T)+(DyK)(Z, X, T)+ (D K)(X, Y, T)+
+K(8(X, Y),Z,T) +K(8(Y, %), X, T) +K(8(Z, X), ¥, T) =0,

and (2.10), we obtain (2.16). Substituting from (2.3a) in (2.16), we obtain
(2.17). Substituting from (2.10) in (2.17), we obtain (2.18).
THEOREM (2.7). We have in V,

(2.19) AK(X,Y,Z) = A(Z)A(K(X, Y, T)).
Proof. We have from (1.1) and (2\.1a)
(DyA)(Z) = —A(Z)A(DyT).
Consequently,
(DxDyA)(Z) = —(DxA)(Z)A(DyT)—A(Z)(Dx A)(DyT)—
—A(Z)A(DxDyT).
Using (2.8) in this equation, we get
(DxDyA)(Z) =2A(Z)A(DxT)A(DyT)—A(Z)A(DxDyT).
Consequently,
—AK(X,Y,Z)) = (DxDyA—DyDxA—Dx y A)(Z)
= —A(Z)A(K(X, Y, T)).
COROLLARY (2.3). We also have in V,
(2.20) AK(X,Y,Z) =0.
Proof. Barring Z in (2.19) and using (1.2a), we obtain (2.20).
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THEOREM (2.8). Let us put

def

(2.21) M(X, Y) = D§Y+DXY—DXI_’—D§ Y.
Then
(2.22) M(X,T)=0.

Proof. Putting 7 for Y in (2.21) and using (2.2) and (1.3), we get
(2.22).

We will not consider Nijenhuis tensor in this section. But related
to Nijenhuis tensor of an almost complex manifold there are three other
tensors in an almost contact manifold:

det

(2.23) P(X,Y) = (Dyd)(X)—(DxA4)(Y)+(DgA)(X)—(DxA)(Y),

def

(2.24) Q(X) = (D F)(X)— (Dx F)(T)—-DxT,

detf

(2.25) E(X) = (Dx4)(T)— (Dr 4)(X).

Here P is a scalar-valued bilinear function, @ is a vector-valued
linear function, and R is a 1-form.

THEOREM (2.9). In V,,P,Q and R assume the forms

(2.26) P(X, Y) = (Dgd)(X)—(Dzxd)(Y),
(2.27) Q(X) = (D F)(X)—-DxT,
(2.28) R(X) = —A(DxT)+A(X)divT.

Proof. Substituting from (2.4a), (2.6a), (1.1) and (2.5a) in (2.23)
through (2.25), we obtain (2.26) through (2.28).

THEOREM (2.10). We have in V,

(2.29) P(X,T) = A(DxT) = A(DpF)(X))—-A4(Q(X)),
(2.30) P(X,T) = —A(DxT)+A(X)divT = R(X),
(2.31) P(X,Y) =0, |

(2.32a) P(X,Y) = (DxA)(Y)+A(X)A(Y)divT,
(2.32b) P(X,Y)+P(X,Y) = (Dx4)(Y)—(Dy4)(X),
(2.33) Q(T) = R(T) = 0.

Proof. Putting 7 for Y in (2.26) and using (1.3) and (2.27), we
obtain (2.29). Barring X in (2.29) and using (2.7) and (2.28), we get (2.30).
Barring X in (2.26) and using (2.4) and (2.5a), we get (2.32a). (2.31) and
(2.32b) follow from (2.32a). Putting 7 for X in (2.27) and (2.28), we
get (2.33).
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3. Manifold W,. Let us now introduce in the almost contact man-
ifold an affine connexion D satisfying (2.1a), viz.

(3.1) A(Y)DxT+T(DxA)(Y) =0,
and
(3.2) (DxF)(Y)+ (Dy F)(X) = 0.

AGREEMENT (3.1). An almost contact manifold in which an affine
connexion D satisfying (3.1) and (3.2) has been introduced will be denoted
by Wn"

In consequence of (1.2b), equation (3.2) is equivalent to

Note (3.1). It may be noted that all the results of section 2 hold
also in W,. In addition, we have the following results:

THEOREM (3.1). Equations (3.1) and (3.2) imply

(3.5) DyX+DyX = TA(DyX)+Dy X —Dy X,
(3.6) Dy X+Dy X +DpX—DyX = TA(D3X),
(3.7) D, X =Dy X,

(3.8) Dy X +DpX = TA(DpX).

Proof. Barring (3.3) and using (1.4), we obtain (3.4). Barring Y
in (3.3) and using (1.4) and (3.4), we obtain (3.5). Barring (3.5) throughout
and using (1.4) and (2.4), we get (3.6). Putting T for X in (3.3) and using
(1.3) and (2.2a), we get (3.7). Similarly, putting T for X in (3.4) and
using (1.4) and (2.3a), we obtain (3.8).

THEOREM (3.2). We have in W,

(3.92) M(X,Y) =2(DxY—DyY) =2(D3Y —DzY),
(3.9Db) M(X,Y) = —2(DxF)(Y) = 2(DzF)(Y).

Proof. Equation (3.5) can be written as

D3Y—-DyY-DzY+D,Y = 0.

Using this equation in (2.21), we obtain (3.9a). Using (1.2b) in (3.9a),
we get (3.9b).
COROLLARY (3.1). M s skew-symmetric in W,.
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Proof. The statement follows from (3.9a) and (3.2).
We consider the vector-valued bilinear function N defined by

def

(3.10a) NX,)E MX, Y)-M(Y, X).

We, therefore, have the following
THEOREM (3.3). We have in W,

(3.10b) N(X,Y) = —4(D4xF)(Y) = 4(DxF)(Y) = 2M(X, Y),
(3.11) A(N(X,Y)) = A(M(X, Y)) = 0.

Proof. (3.10b) follows from (3.10a) and (3.9b). Using (1.2a) in (3.10b),
we get (3.11).
THEOREM (3.4). We also have in W,

(3.12) M(T,Y) =0,
(3.13a) MX,Y)+M(X,Y) =0,
(3.13Db) M(X,Y)=MX,Y),
(3.14) N(X,T) =0,
(3.15a) NX,Y)+N(X,Y) =0,
(3.15b) N(X,Y)=N(X,Y).

Proof. Putting T for X in (3.9b) and (3.10b), we get (3.12) and

(3.14). From (3.9a), we have M(X,Y) = 2(D3x Y —DxY). But from (3.6)
and (1.4) we have .

DY +DzxY =DyY—DyY or DzY—D3Y =D;Y—-DxY.

Hence, using (3.9a) again, we get M(X,Y) = 2(DxY —DxY)
- —M(X, ) |

Barring X in (3.13a) and using (1.4) and (3.12), we get (3.13b). (3.15)
follows from (3.10a) and (3.13).

THEOREM (3.5). The following equations hold also in W, :

(3.16) J7'[(X9Y) = M(X, Y) = M(X, 7) = —-M(X,Y),

(3.17) NZX,Y)=N(X,Y)=N(ZX,7) = —-N(X, ).

Proof. In consequence of (3.9b), (2.2a), (1.4), (1.3), (2.4a) and (1.2a),
we have

M(X,Y) = —2(DxF)(Y) = —2(DxY —DyxY) = 2(Dy Y —D47Y)
= —2(DxF)(Y).



224 R. S. MISHRA

Hence, in consequence of (3.9b) and (3.13),

M(X,Y) = —2(DxF)(Y)=MX,Y)=MX,Y)=-M(ZX,7).

(3.17) follows from (3.16) and (3.10b).
Note (3.2). Since in W, there is

(3.18) (DpF)(X) =0,
equations (2.27) and (2.29) assume the forms

(3.19) Q(X) = —DxT,

(3.20) P(X,T) = A(DxT) = —A(Q(X)).

4. Manifold P,. In this section we shall introduce in an almost contact
manifold an affine connexion D satisfying (2.1a), viz.

(4.1) A(Y)DxT+T(DxA)(Y) =0
and
(4.2) (DxF)(Y)+(DzF)(Y) = 0.

AGREEMENT (4.1). An almost contact manifold in which an affine
connexion D satisfying (4.1) and (4.2) have been introduced will be denoted
by P,.

Note (4.1). All the results of section 2 hold also in P,. In addition,
we have the following results:

THEOREM (4.1). Equations (4.1) and (4.2) imply

(4.3a) DyY+D5Y = D, Y +D3Y,

which s equivalent to

(4.3Db) DyY+TA(D3Y) = DY +DxY+Dz7Y,
or to

(4.3¢) (DxF)(Y) = (DxF)(Y),

or to

(4.3d) (DxF)(Y) = —(DxF)(Y).

Proof. Using (1.2b) in (4.2), we get (4.3a). In consequence of (1.4),
equation (4.3a) assumes form (4.3b). In consequence of (1.2a), equation
(4.3b) assumes form (4.3c¢c). Barring (4.3c) and using (2.4), we obtain
(4.3d).
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THEOREM (4.2). Equations (4.1) and (4.2) imply

(4.4) DzY+DxY +DyY = D3 Y+TA(DyY),
(4.5) DX =D, X,
(4.6) DX +DpX = TA(D,X).

Proof. Putting 7 for X in (4.3a) and using (1.3), we get (4.5) Barring
(4.5) and using (1.4), we get (4.6). Barring X in (4.3b) and using (1.4)
and (4.6), we get (4.4).

Note (4.2). It may be noted that the result of a repeated operation
of barring different vectors yields a closed cycle of only two equations
(4.3) and (4.4).

Note (4.3). Equations (4.3) and (4.4) of P, are the same as equa-
tions (3.5) and (3.6) of W,.

THEOREM (4.3). The following equations hold in P,:

(4.72) M(X,Y) = 2(DxF)(Y) = —2(DxF)(Y),
(4.7Db) M(X,Y) =2(DzY—DzY) =2(DyY —DxY),
(4.8a) M(X,Y)=MZX,Y) = MX,Y)=—-MX,7T),
(4.8b) M(X,7)=MZX,Y),

(4.9) A(M(X,Y)) =0,

(4.10) . M(X,T) = M(T,Y) = 0.

Proof. Using (4.3a) in (2.21), we obtain (4.7b). In consequence
of (1.2b), (4.7b) assumes form (4.7a). Putting T for X and Y in (4.7a)
and using (1.3) and (2.2a), we get (4.10). Equation (4.9) follows from
(4.7a) and (1.2a).

Barring X and Y in (4.7b) and using (1.4), (4.5), (2.2a) and (1.3),
we get

M(X,Y) = M(X,Y) =2(DyY—D,Y).

Hence

M(X,Y)=2(DgY—DyY) = —M(X,Y) =2(DyY —D,Y)

Hence we have (4.8a) and (4.8b).
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COROLLARY (4.1). We have in P,
(4.11) N(X, Y) =2{(DzF)(Y)— (DgF)(X)}

= 2{(Dy F)(X)— (DxF)(Y)},

(4.12a) N(X,Y)=N(X,Y) =N(X, Y) = —N(X,7Y),

(4.12D) N(X,Y) = N(X, T),
(4.13) A(N(X,Y) =0,
(4.14) N(X,T) = N(T, ¥) = 0.

Proof. Using (3.10a) in (4.7) through (4.10), we get (4.11) through
(4.14).

Note (4.4). It may be noted that (4.11) of P, is not the same as
equation (3.10b) of W,, whereas other equations of theorem (4.3) and
corollary (4.1) hold also in P, and W,.

Note (4.5). Since in P, there is

(4.15) (Dp F)(X) =0,
equations (2.27) and (2.29) assume the forms

(4.16) Q(X) = —DxT,

(4.17) P(X,T) = A(DzT) = —A4(Q(X)),
respectively.

5. Appendix. We prove the following
THEOREM (5.1). Let D be an arbitrary connexion satisfying
(5.1) A(X)DyT+ (Dy A)(X)T = 0.

We can always find a conmexion B such that Bx Y is a linear com-
bination of DxY and different vectors obtained by barring X, Y and Dy,
and that Bx Y satisfies

(5.2) (BxF)(Y)+(Dy F)(X) =0,
(5.3) BxT = 0.
Then BxY 18 given by

(54) BxY — a(DxY—DxY)+8(DgY—DxY)+y(Dx T +DY)+
+8(DxY +Dz Y).
Proof. Equation (5.2) is equivalent to

(5.5) BxY+ByX = By Y +ByX.
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Let us put
ByY = aDxY + 8D Y +yDxY +0D3Y +6Dx Y +¢DzY +

(5.6)

Then, using (5.1), (1.3) and (2.2a), we have
(6.7) ByxY = aDxY +pD%Y —yDxY+yA(DxY)T— 6Dz Y +

+TA(D3Y)6+6D5Y +9DzY —oDz Y —cD3z ¥,

BxY = aDy Y+ Dz Y +yD5xY +6D5xY —0Dx Y+ 6A(Dx Y)T—

(5.8)

—@¢D3 Y +9A(DxY)T —oDxY —oDxY.
Using (5.7) and (5.8) in (5.5), we get
a(Dx Y +DyX)+B(Dz¥ +DyX)—y(Dx Y + Dy X)+
+yTA(DxY+Dy X)—6(DxY+DyX)+ TA(DxY+Ds X)+

+6(DxY +DyX)+¢(Dx¥ +DyX)—o(Dx Y +Dy X)—o(D5 ¥ + Dy X)

= a(DxY+DyX)+p(DzxY+DyX)+y(DxY +DypX)+ 8(DgY +
+D7X)—6(Dx Y +Dy X)+6TA(Dx Y +Dy X)—p(Dz Y+ D3 X) +
+¢TA(D5sY+D3X)—o(DxY +DyX)—0o(DzY +D3 X).

By comparison, we get ¢ = —a, 6 = —f, 0 =y and ¢ = 4. Sub-
stituting these equations in (5.6), we get (5.4).
From (5.4) and (2.2) we get

ByT = aDzT+pDgT+yDxT+ 6DzT = 0.

Regu par la Rédaction le 4. 5. 1971



