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ON TOPOLOGIES
GENERATING THE EFFROS BOREL STRUCTURE
AND ON THE EFFROS MEASURABILITY
OF THE BOUNDARY OPERATION

BY

B. S. SPAHN (WARSZAWA)

In this paper it is shown that for an analytic 0-dimensional space (1)
the boundary operation is measurable with respect to the Effros Borel
structure(?) if and only if the space is o-compact. However, this is not
the case for an analytic space in general. Some results about topologies
generating the Effros Borel structure are proved. The main result is an
example showing that, in a non-locally compact space, Fell’s topology
and the convergence topology can coincide.

1. Notation and basic definitions. All spaces in this paper are separable
metrizable; our terminology follows that in [4] and [6].

By &(X) we denote the family of all closed subsets of a given space X.
Analogously, &(X) means the family of all compact subsets of X. Further

F)={A€F(X): AnF =0} and )U(={4eFX): AnTU #0}.
Let us define the z-convergence in §(X) by
F,> F

if for every « € X\ F there exists a neighbourhood which eventually does
not intersect F' and, morcover, for ¢ € F' every neighbourhood of z inter-
sects F' eventually. The convergence topology t*° is defined by considering
& < F(X) as closed if for every net {F,}, 5 in & converging to F € F(X)
we have F e «/.

All sets (K> and )U(, where U is open and K is compact in X, give
a subbase of Fell’s topology ¥.

(!) X is an analytic space if there exists a continuous function mapping the
irrationals onto X (see [8]).

(3) The Effros Borel structure was defined first by Effros (see [5]). This structure
has extensively been studied by Christensen in [4] (see also [8]).
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Let d be a precompact metric on X. By 1%° we denote the topology

generated by the Hausdorff metric d* defined by

d*(A,B) = sup {d(a, B), d(4, b)}.
aed,beB

Obviously, this topology depends on the metric d. We consider also
the topology P which is the intersection of all topologies %", where d
is running over all precompact metrics on X compatible with the topology;
of course, ¥ depends only on the topology of X.

77 is the well-known Vietoris topology, where the sets of the form
(F> and )U(, F being closed and U open in X, form a subbase.

Definition. The Effros Borel structure (EBS) on §(X) is the o-al-
gebra generated by all sets of the form {4 e (X): A < F}.

2. Auxiliary results. One can easily prove the following two lemmas:
LEMMA 1. Let the topologies ¥, 7%, 2%, 1% ¥ on F(X) be defined as
above. Then the following relations hold:

o 5> ¥ F.

If X i8 a compact space, then all these topologies coincide.

LEMMA 2. Let (Z,d) be the compact d-completion of a precompact
space (X, d). Then the mapping y: F(X) —F(Z), defined by y(A) = 4%,
i8 a Borel isomorphism between F(X) and y (§F (X)) with respect to the Effros
Borel structure on &(X) and F(Z).

PrOPOSITION (cf. [4], p. 53). The topologies ©*°, P, ©*, ¥ generate
the EBS on §(X).

Proof. It is _easy to see that ¥ generates the EBS It follows from
Lemma 1 that 7¢° generates the EBS on §(Z). Since the mapping

p: (TY(X)’ Td.) - (8(2), 7‘?)’
defined in Lemma 2, is a homeomorphic embedding, we see that 7%° gener-
ates the EBS on §(X). An application of Lemma 1 completes the proof.

In the following we need 3 theorems due to Christensen (see [4],
p. 54, 58 and 72).

THEOREM 1. Let X be an analytic space and let & be a precompact
metric on X. Then (F(X), %) is an analytic space.

THEOREM 2. The space X is completely metrizable if and only if K(X)
equipped with the Vietoris topology is an analylic space.

THEOREM 3. Let X be an analylic space. The intersection operation
p: F(X) xF(X) - §F(X),
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given by p(A, B) = AnB, i3 measurable with respect to the EBS if and
only if X is o-compact.

Remark. It is easy to conclude Theorem 2 from Christensen’s
theorem which states that a compact-covering mapping preserves com-
pleteness. We are also able to give an easier proof of Theorem 3 and of
Theorem 3.8 in [4], p. 69, than that in [4], using a natural Borel isomorphic
embedding of {(X) into the function space RX with respect to the EBS
on &(X) and the compact-open topology on RX and expanding Theorem 3.7
in [4], p. 66.

Later on we shall use the following two well-known theorems (see,
e.g., [7]).

THEOREM 4. (§F(X), 7F) 48 a compact T,-space.

TeEOREM 6. If X is locally compact, then v* = <F.

3. Measurability of the boundary operation. Using the preceding
results we now study the measurability of the boundary operation

Fr: §(X) - F(X), where FrA = AnX\A4 is the boundary of A e F(X).
Christensen noticed in [4], p. 74, the following fact, which generalizes
a classical result on measurability of the boundary operation in compact
spaces (see [8], § 43/8):

THEOREM 6. If X t¢8 a o-compact space, then the boundary operation
Fr: F(X) - F(X) is measurable with respect to the EBS.

Christensen has conjectured that for an analytic space X the bound-
ary operation is measurable if and only if X is o-compact. The following
theorem allows us to construct a counterexample to this hypothesis (cf.
Example 1). However, we shall show in Theorem 8 that the hypothesis
holds if the space is 0-dimensional.

THEOREM 7. If the space X admits a metrizable compactification Z
such that for every point z € Z\ X there exists a base {U,(2)}x., at this point
with U,(2)nX connected for all natural m, then the boundary operation
Fr: F(X) >F(X) 8 measurable with respect to the EBS.

Proof. Let y: F(X) - F(Z) be the mapping defined in Lemma 2
and let F be an arbitrary closed subset of X. For the generator {4 € F(X):
A c F} of the EBS we have

Fri{d e§(X): A c F} = {4 e §(X): Fred c F}.

(For the boundary operation with respect to the subset M we use the
symbol Fr,.) We prove the equation

(1) {4 eF(X):Frxd c F} = 9(F(X)n{4 e F(Z): Frz4 < F?}.



264 B. S. SPAHN

It follows from Theorem 6 that the set on the left-hand side in (1)
is measurable with respect to the Borel structure on ¢ (F (X )) generated
by the EBS on §(Z). Then, using Lemma 2, we can complete the proof.

Of course, FZ 5> FryA% > Fry(A?nX) = FrxA, whence Fryd c F.
Thus the set on the left-hand side of (1) contains the set on the right-hand
side. To show the other inclusion, let 4 be a closed subset of X such that
FryA c F. Suppose that there exists a point » e Fr, 42\FZ?. If x ¢ A,
then & is an interior point of 4% in Z, which is impossible. Suppose now
that # ¢ A. Then # €e Z\X and there exists an element U of the base
{U,(x)}., such that

(2) UnA #0 and UnFrxd =0.
By the definition of the point # we have
(3) Un(X\Intyd) # 9.

Now conditions (2) and (3) contradict the connectedness of UnX.

From Theorem 7 we obtain the following

Example 1. There exists an F,-subset X of the Euclidean plane R*
such that

(a) X is mot o-compact;

(b) X i8 mot complete;

(c) the boundary operation Frx ts measurable with respeot to the EBS.

Proof. Let
X =[0,1]x(0,1]U([0,1/2]nP x {0})U([1/2,1]nQ x {0}),

where P are the irrationals and @ are the rationals.
THEOREM 8. Let X be a 0-dimensional analytioc space. Then the follow-
ing conditions are equivalent:

(i) X 8 o-compact.

(ii) The boundary operation Frx: F(X) — F(X) i3 measurable with
respect to the EBS.

(iii) The set 2 of closed-open subsets of X belongs to the EBS.

Proof. (i) = (ii) is a consequence of Theorem 6. (ii) = (iii) is imme-
diate. To prove (iii) = (i), let (Z, d) be the closure of X embedded in the
Cantor set. It follows from Theorem 6 and Lemma 1 that the superposition
Fryoy: §(X) — F(Z) is measurable with respect to the EBS. By Theorem 1,
# is an analytic set. Now it is sufficient to show that

Frop(?) = K(Z\X).

Then R(Z\X), as the image of an analytic set, is also analytic and
it follows from Theorem 2 that Z\ X is complete metrizable. Hence X
i8 o-compact.
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The inclusion Fryoy(?) c K(Z\X) is obvious. To show the converse
inclusion, let K € K(Z\ X). There exists a sequence {8,}>> , of finite sub-
sets of X such that

a‘
8, > K.

Moreover, we may assume that 8,n8, =@ for n #m. Let
8, = {#},..., o }. For all n>1 and for all i <k, we find a closed-open
subset of Z\ U? such that the following conditions are satisfied:

oy € Ug;

diam(U?}) < 1/n;

U'nU; =0 if n #m or © #j.

Obviously, U*nX? = U}, whence

00 k2n

Fry (U U (07"nX)) = @.

n=] i=1

If we put

-] kzn

4 = U U(Uf“ﬁx),

n=1 f=]

then 4 €2 and Fr,(4) = K.

4. Some results on the topologies generating the EBS. Several facts
about topologies generating the EBS are contained in Lemma 1, Propo-
sition 1 and Theorems 4 and 5. Here we obtain further results, answering
some questions from [4]. It is easy to show that ¥ equals 7% if and only
if X is compact and, similarly, that v* equals z° if and only if X is compact.
The relation between Fell’s topology ¥ and the convergence topology
7* is much more complicated. F. Topsge has conjectured (see [4], p. 53)
that ¥ equals +* if and only if the space is locally compact. This hypothesis.
is not true as we show in the following example.

Example 2. Let
X = {O}U U Xwn

n=1
where X, = {1/n+1[n*m}3%_, 18 a subset of the reals. Then X i8 not locally
compact but ¥ = 1°.

Proof. The inclusion 7* > ¥ follows from Lemma 1. Suppose now
that o is a subset of §(X) which is convergence closed but not closed in
Fell’s topology =¥, i.e.,

(4) oA = A"
and
() Aes "\ for some A € F(X).
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Let A be fixed. Then either 0 € A or 0 # A. Suppose that 0 € 4;
let AN{0} = {=,, @5, ...}, X\A = {y;,¥,, ...} and let

7, = ooy U X,.

fi=t

For every i > 1 let us fix a set P; such that

Py €Yy ey Y 0)B (0 ..o ) (n)U(.

The existence of P, follows from (5). Obviously, P; - A, which contra-
dicts (4).
If, conversely, 0 ¢ 4, then

for some natural ¢. The subspace topology on (_J X,, is discrete and, of course,
n=1

the topologies v and 7° do not depend on the metric of the given space.

Hence we may assume simply that A = X, or 4 = {1+1/m}¥_, for 4

infinite or k-element, respectively. If A has k elements, then we change

the notation and write

X, =4 ={1+1m}., and X, = {1/2+1/dm}n_,U{l+1/m}y.,.

This observation guarantees that the following construction works
also if A is finite.
Fix 1 > 1 and let

#, ={Pes: P> {1+1/m};,., and P |J X,}.

n=1

It follows from (6) that the set # defined by

(6) 7=,

j=2
satisfies

{(7) For any compact K = X\A we can find a Pe# such that
PnK = 0.

Now we construct a sequence {P;}®, such that P, > A(l) as 1 — o
for some A(l) e F(X). Then condition (4) implies that A(l) e & and,
moreover, A(l) > A as | - oo (A(k) = A if A has k elements). Hence
A e o/, which contradicts (5) and completes the proof.

Suppose, conversely, that such a sequence does not exist. Then by
induction we construct a sequence of finite sets K, « X,, n > 2, such
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that
1
(8) PnUK, #9 for all Pe2;.

n=2
Let n = 2. Suppose that K, does not exist. Let X, = {z,, 2,, ...}
and fix r > 1. We can find P, € 2, such that P,.n{z,, ..., z,} =@. By the
definition of #,, P, = X,UX, for all r. Notice that X,UX, is a locally
compact space and a closed-open subset of X. That is why we can use
Theorems 4 and 5. By Theorem 4 there exists a convergent subsequence
{P, }s=1 of the sequence {P}72,:

P, = F as 8 > oo for some F € F(X).
Of course, A > F > {1+1/m}},.,. Now Theorem 5 implies that

2
P, —~F ass—>oco.

This is a contradiction if we set {P;};2, = {P,};=, and A(l) = F.
Suppose now that the sets K,,..., K, have been defined. Let

n
Py =(PeP: PAnUK; =0} and X, ={a}",2}", ..}
i=1

If K, ., does not exist, then we construct a sequence {P,}> , < &, .,
such that for all » we have P,n{z**, ..., 2"} =@. We use the local
compactness of X,u ... UX, ., and, as previously, we choose a subse-
quence {P, };>, such that

(9) y % F and P, > F as 8 > oo for some F e§(X).

Obviously, from (9) and (5) it follows that F € o and, in particular,
Fed,,,. By the definition of &, , we have

n
P, nlJE; =0 for all s,

j=2
whence
n
Fn U K, =0.
j=2
Using these two facts and (9), we can conclude that 4 > F o
{1+1/m},,_,. This gives a contradiction, since we can take {P}z, = {P; };2,
and A(l) = F. Hence the set K, , exists, and so the induction is com-

pleted.
The set

K = K,u{0}

nw=l

4 — Colloquium Mathematicum XLIII.2
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is a compact subset of X and, therefore, conditions (6) and (8) contradict (7).
This completes the proof of Example 2.

Flachsmeyer [7] has given an example of a g-compact space with
7F # 7°. This result can slightly be improved by Example 3. We shall
use this construction in Theorem 9.

Example 3. Let Y = XPX, where X 18 the space defined in Exam-
ple 2. Then Fell’s topology ¥ and the convergence topology v* do not coinoide.

Proof. Let
Y = {0}u{l/n+1/n2m}, s, V{2}U{L/n 41 [n2m 4-2}, ;.
The set

o = {{0, 2}, {1/m+1/nm, 1/n+1/n*m+2}, ..} = F(X)
is closed in 7°. We show that {0} e . Let
{0} €)Uy(Nn ... n) U, (Nn<KD,
where U, is open in Y and K is compact in Y. There exists a k such that
Uin...n0, o {0}u{l/n+1|/n*m}pse> .
Since K is compact, the set
(2Yu{1/m®*m+1/n+ 20 INK
is infinite, however, the set
({L/n+1 namypsi® ) NK

is finite. Now, it is easily seen that every neighbourhood in 7¥ of the
set {0} contains an element of .

THEOREM 9. If a space X contains two poinis without any compact
netghbourhood, then the topologies v¥ and t° do not coincide.

For the proof it is enough to note that X contains the space Y defined
in Example 3 as a closed subset.

Remark. It seems to be undecided if there exists a space X with
only one point without a compact neighbourhood such that the topolo-
gies 77 and 7° on §(X) are unequal. If one can give a negative answer to
this question, then ¥ equals 7* if and only if the space contains at most
one point without a compact neighbourhood. (P 1182)

The topologies ¥ and +* are non-Hausdorff when X is not locally
compact. (Moreover, they are Hausdorff if and only if X is locally compact.)
Christensen supposed (see [4], p. 76) that it might be that the intersection
topology ** gives & Hausdorff topology on {(X) with reasonable properties
also for a non-locally compact space. We shall see that this is not the
case.
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THEOREM 10. The following conditions are equivalent for the space X :
(i) X 18 locally compact;

(i) (§(X), r°) is Hausdorff;

(iii) (F(X), *) is metrizable.

Proof. (i) = (iii). Let Z, = XuU{z,} be the one-point Alexandroff
compactification of X and let d, be a compatible metric on Z,. We show
that ©? = 7%, where d, is the metric on X induced by d,. Let d be an
arbitrary precompact metric on X. Now it is sufficient to show that if
a sequence {F,}2, c §F(X) converges to F € F(X) relatively to d, then
{F,}2, converges to F relatively to d,.

If z, € F%, then we can use Lemma 1, sinece we may assume that for
some &> 0 and for every < > 1 the set F, is contained in the compact
set Z,\Kg (2, ¢). If, conversely, z, € F%0, then

(10  for every & > 0 there exists an index 4, such that
F‘-nKEo(ZQ’ 8) =ﬂ fOl‘ i}io.

By Lemma 1 we have
&
(11) FNE; (2, ¢) > FNEgz (2, ¢).
d‘ . d.

From (10) and (11) we obtain FZ — F%, whence ¥, — F.

Implication (iii) = (ii) is clear. To show (ii) = (i), let d be a precompact
metric on X and let (Z, d) be the d-completion of X. Suppose that there
is a point », without any compact neighbourhood and let z € Z\ X. Let us
choose neighbourhoods U and V of x, and 2z, respectively, open in Z and
such that U?nVZ = @. We choose a sequence {2,}>, =« XnU converg-
ing to 2. Let {U,};2, be a base at the point ,. We may assume that
U? c U for all i > 1. For every i > 1 let us fix a sequence {y.}>, c U,
such that

(12) v 4 y* a8 k — oo for some y* e Z\X.
If d; is a metric on the quotient space Z/{z, y°}, then

&
(13) Bl V) > @), eF(X)  as k- oo,

Now, let 2 be a neighbourhood of the point {z,};_, in the intersection
topology r”. Notice that

(14) for every ¢ > 1 there exists an index k, such that {z,}>_,U{y; JEP.

From (12)-(14) and from the definition of y§ it follows that

B Vik)} S @) Vimed 88 5 — oo,



260 B. S. SPAHN

whence
. P « .
{mn};: 1Y {y;c‘} g {wn}”=1 U{mo} as 1 — 00,

Thus arbitrary neighbourhoods # and 2’ of the points {z,}°, and
{z, )., U{w,} both contain a point of the form {z,}> ,uU{yi}. Hence the
intersection topology r? is non-Hausdorff.
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