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Szego-type properties in a non-commutative case

by WACEAW SzZYMANSKI (Krakéw)

Abstract. In the present paper we introduce two kinds of Szegi-type properties
(8,,8,) for a von Neumann algebra and for a positive functional on a O_"-algebra,.
These properties generalize the notion of the Szegé measure introduced in [3] for
function algebras to a non-abelian case. First we prove that a continuous functional
on a (O*-algebra A which vanishes on its, not necessarily symmetric, subalgebra B
is B— (S,). Next we construct a canonical decomposition of a von Neumann algebra
on K —(8,) and Szegd-singular parts. Finally we obtain a theorem which describes
a similar decomposition for a positive functional on a O*.algebra.

I. Introduction. Let X be a compact Hausdorff space, and let C(X)
denote the C*-algebra of all continuous, complex functions on X. If u
is a positive (regular, Borel) measure on X and B < C(X) is a function
algebra, then L?(u) stands for the Hilbert space of all square u-integrable
complex functions on X and H?(u, B) denotes the L*(u) closure of B.
In [3] Foiag and Suciu introduced the following definition: A positive
measure x4 on X is called a Szegé measure with respect to B if for every
measurable set ¥ < X

rel’(u) = H*(u, B) implies u(E) = 0.

Here x5 denotes the characteristic function of E.

In what follows we will denote by L*(u) the algebra of all u-essen-
tially bounded complex functions on X.

The present paper deals with a generalization of that Szego-type
propeity {o a non-commutative case. Looking for this generalization,
we find the following theorem due to Wiener [4]. Every (linear, bounded)
operaior T in the Hilbert space L*(u), which commutes with all opera-
tors of the form T;u = fu for some feL™(u) and for all weL2(u) is itself
of the form T, with some f,cL*(u). If T is an (orthogonal) projection,
then f, is a characteristic function of a measurable set.

Let P be the projection from L*(u) onto H*(u, B). Now we can
read the above Szeg6é property as follows:
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(A) u is a Szego measure with respect to B if and only if every pro-
jection Q which commutes with all operators Ty, feL™(u), and such that Q@ < P
is the zero operator.

This formulation will be a starting point for more general situations.

II. Szego-type properties. Let H be a complex Hilbert space. By
a subspace of H we always mean a closed subspace, all projections are
orthogonal and von Neumann algebras have the identity. If & is a subset
of L(H), then &’ denotes its commutant. If Z is a subset of H, we write
[#Z] for the subspace of H spanned by vectors Sz, where Se¢%, veZ.
I, stands for the identity operator in L(H). '

Let K be an arbitrary subspace of H and let P be the projection H
on K.

DEFINITION 1. A von Neumann algebra U in L(H) has the property
K —(8,) it for every projection @ ¢’ such that @ <P we have @ = 0.

Equivalently: % has the property K —(8,) if no non-zero subspace
of K reduces .

DEFINITION 2. A von Neumann algebra % in L(H) has the proprety
K —(8,) if for every projection @ e AN A’ such that Q < P we have @'= 0.
For brevity, we will write % is K —(8,) or (8,) instead of the formula-
tions: A has the property K —(8;) or (S,), respectively. The abbrevia-
tion U is K —(8;) (+ =1 or 2) derives from the following phrase: U has
the property Szegdé 1 or 2 with respect to K.

The above two definitions immediately imply what follows:

(1) If A is K—(8,), then A is K —(8,).

(2) A is K—(8,) if and only if A is K —(8,).

The converse of (1) is not true. Consider the following example:

ExAMPLE. Let A & L(H) be a factor. Then A is K —(8,) with an
arbitrary subspace K = H. But Y and A’ generate L(H) as a von Neumann
algebra ([1], p. 3). Hence, there is a projection P which belongs to A’
and does not belong to %A. Then A is PH —(8,), but A is not PH —(§,).

Let & = L(H) be an arbitrary subset and let E<L(H) be a projection.
We will denote by &5 the compression of & to E given by the formula

S = {ES\gg, Se&} = L(EH) (see [6]).

Here we have a list of more or less simple facts concerning two kinds
of Szegd properties:

(3) Let K =« K, < H be two subspaces. If W is K, —(8,) (resp. K,—
—(8,)), then W is K —(8,) (resp. K —(8,)).

(4) For a projection PeW' we have: A is PH —(8,)<P = 0.

(b) Let E be a projection, which belongs to A’ and let K be a subspace
of EH. Then Wy is K —(8,) if and only if A is K —(8,).
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(6) Under the assumptions of (5): if g is K —(S,), then WA is K —(8,).
The converse is false.

A few words are needed about (5) and (6). Let ¥ and K be as in (5).
I£QeW (Q AN resp.) and Q < E, then the projection @ = Qzy | L(EH)
belongs to (Ag)" (UxN(AL) resp.) (see [6]), which proves (6) and half of
(5). Now, if Qe(Ug)’ is a projection, then

-0

is also a projection and Q«W’, which proves (5).

It can happen that under the assumptions of (5) W is K —(8,) but
AL is not. To see that consider a factor A = L(H) and a projection EeU’,
E #0, E # Ig. As we saw above, A is EH —(S,), but E belongs to the
center of Az and F # 0; hence g is not EH —(S,)..

III. Szegs functionals. Suppose we are given a (*-algebra A with
unit and a positive (linear) functional f on A. It is well known (see [1],
p- 32) that there is a unique (up to a unitary isomorphism) triple (H,,
7., &) with the following properties:

a. H, is a Hilbert space,

b. m;: A—~L(H,) is a cyeclic *representation of 4 with the cyclic
vector &, i.e., H, = [m;(4) ],

c. for every acd, f(a) = (7/(a) &, &).

Let B be a closed (not necessarily symmetric) subalgebra of A.
We define the subspace K;(B) = [#;(B)&,].

DEFINITION 3. A positive functional f on a C*-algebra A with unit
is called B—(S;) (resp. B—(8,)) if the weak operator closure of 7,(A)
in L(H,) is K,(B)—(8,) (resp. K, (B)—(8,)).

A simple example is the following one: Consider an arbitrary pure
state f on a C*-algebra A. The *-representation ®; corresponding to it
is irreducible. Hence, either K,(B) = H or f is B—(8,), with an arbitrary
closed subalgebra B of A.

If 4 is a commutative C*-algebra with unit, then we can identify
it (by the Gelfand-Naimark theorem) with C(X), where X is a suitable
compact Hausdorff space. By the Riesz—Kakutani theorem for a positive
functional f on A there is a unique positive measure x on X such that
for each ueC(X) f(u) = [udu. In this case we have the following triple
(Hy, 7y, &) for f: H, = L*(u), m,(u)v = uvfor ued, vel?(u) and & = 1—
the constant function. Now we see that there is no difference between
the above two kinds of Szegi properties in the commutative case. The
Wiener theorem quoted in the introduction says namely that if % is the
algebra- of all operators T, with weL™®(u), then U = A'.
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It has been proved by Foiag and Suciu in [3] that if B is a function
algebra in C(X) and x is a complex regular, Borel measure on X which
is orthogonal to B, then y is a Szegd measure with respect to B. Our next
purpose is to prove a similar theorem in a non-commutative situation.
First we recall some theorems concerning the von Neumann envelope
of a C*-algebra. In what follows we refer to [1] and [2] for details and
basic definitions.

If A is a C*-algebra (with unit), we denote by @ the set of all positive
functionals on A. To every element f of @ there corresponds a triple

(Hy, my, &). The *-representation # = @z, of A in L(H,), where H,
1<Q
= @ H,, is called the universal *-representation of A. This representa-
1Q

tion is isometric, i.e., |w(a) = |la|| for acA. The weak operator closure A
of #(4) in L(H,) is called the von Neumann envelope of A. It is interesting
for us to see how functionals on A depend on functionals on A. This
dependence is the following one: For every continuous functional f on A
there is a unique ultraweakly continuous functional f on A such that
f(n(a)) = f(a) for all acA. If f is positive, then f is positive and normal.
Moreover, every positive normal functional p on A is a vector state, i.e.,
there is a £eH, such that for every Ted: p(T) = (T, £). It follows
also that every ultraweakly continuous functional on A is weakly con-
tinuous.

Let W =« L(H) be a von Neumann algebra and let p be a positive
normal functional on U. Then there exists a largest projection F e such
that p(F)= 0. The projection F = I;—F is called the support of p.
Moreover, for every Te¥

P(ET) = p(TE) = p(ETE) = p(T).

If f is a functional on % and T <Y, then we write T.f for the functional on A
of the form: (7.f)(8) = f(T'S) for 8.

The following theorem is called the polar decomposition of a functional.

(B) Let W < L(H) be a von Neumann algebra and let f be an ultra-
weakly continuous functional on U. Then there is a positive, normal func-
tional p on W and a partial isometry UeW such that

1° f=U. p,

2°p = U*.f

3° llpll = lIfll and the support of p is emactly the final projection UU™.

Moreover, if p’ is a normal positive functional on W and U’ «Wis a partial
tsometry such that f = U'-p', p' = U'*. f and the projection U U'* is
majorized by the support of p’, then p =p" and U = U'.

Let A Dbe a C*-algebra, let f be a continuous functio_pal on A and
let f be the unique ultraweakly continuous functional on A which corre-
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sponds to f. Let f = U.p be the polar decomposition of f. We define
If] (a) = p(=(a)) for acA. |f| is a positive functional on 4. Now we are
able to formulate the following theorem:

THEOREM 1. Let A be a C*-algebra with the unit ¢ and B its closed
subalgebra containing e. If f is a continuous functional on A which vanishes
on B, then |f| is B—(S,).

" Before proving this theorem we prove a simple lemma, which estab-
lishes the correspondence between functionals on A which have prop-
erties B—(8;) (¢ =1,2) and suitable functionals on A.

LeMMA 1. Let B < A be as in Theorem 1. Let 7 be the universal repre-
sentation of A. Then for every functional f positive on A we have: f is B — (8;)
if and only if f is m(B)—(8,), i =1, 2.

Proof. Let (Hy, mf &) be the triple corresponding to f. We can
consider H, as a subspace of H and =, as a subrepresentation of = given
by the formula w/(a) = @(a) |z, for all acd. f is a vector state, ie., f(T)
= (T¢&, &) for some &£¢H and for all TeA. It follows from the proof of
12.1.3 in [1] that we can put £ = &,. Moreover, H, = [%,(4) §;] = [#(A4) &]

[AE,], because the weak and strong operator closures of a*-operator
alg(zbra, with identity are the same. If we defin_e o(T) =1T| "y for each
TeA, then the triple (H;, o, &) corresponds to f. It is clear that K,(B)
= Ky (n(B)). Because commutants of A | Hy and =,(4) in L(H,) are equal,
the proof is finished.

Proof of Theorem 1. We preserve the notation of the theorem.
The polar decomposition f = U.p and the definition of |f| imply that

i?l — p. As we observed in Lemma 1, it sufficies to prove that p is #(B) —
(Sa) Let p be of the form p(T) = (T§, &) with some &e¢H. If we denote
= [4¢&], 7, (T) = T|H , TeA, then the triple (Hp,y 7y, &) corresponds
to p. Denote by E the pr0]eetlon H, on H,. It is clear that Eed’. From
the polar decomposition theorem and the assumptlon flg = 0 it follows
for beB that

= fl=(d)) = U.p(a(®d)) = p(Un(d)) = (Un(b)¢, §).

By the continuitije obtain (Uz, £) = Oforallze K = [#(B) £]. Take a pro-
jection Qedzn(Ag) such that QH, = K. We must show that @ = 0.
To prove this we define a positive functional ¢ on Az by the formula
q(TIH ) =p(T) =(T§, §) = (T[H &, £). It is well defined because eH .
Moreox er, the operator U, = U1H is a partial isometry in H,, because
UeAd and E<A'. From the definition of ¢ follows

4(T1g, UsUs) = p(TUU*) = p(T) = q(Tly,) for all Ted,
because UU” is the support of p. Finally we get

q(Q) = (U, U3Q) = (U, UsQ¢&, &) = (UQUs &, &) = (UQU, &, £) =0,
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because Ujedg, @ is central in Ay, QH, < K and (Ue, &) = 0 for scK.
But ¢(Q) = (Q¢, &) = Q&% and hence @& = 0.

The vector &, cyclic for Ay, separates (Ag)’; thus Q = 0 and the
proof is complete.

PROBLEM. Is Theorem 1 true if we put (8,;) instead of (S,)?

IV. Szegé singularity. Let % be a von Neumann algebra in L(H)
and let K < H be a subspace.

DerFINITION 4. A von Neumann algebra U < L(H) iy called K-Szegé
singular if every projection E U’ such that Ay is KNEH — (8,) is the zero
operator.

The following theorem gives a characterization of Szegd-singular
algebras:

THEOREM 2. The following assertions are egquivalent:
1° A is K-Szegé singular,
2° Every projection E ¢ W’ such that g is EE — (8,) is the zero operator,

3° Ewvery projection E W’ such that Ay is EK — (8,) is the zero operator.

4° Every projection EeW' such that g is KNEH — (8,) is the zero oper-
ator.

5° K = H.

Proof. We will prove this theorem by following the schema: 3°=
=>2°=>5°=>3% 4°=1°=>5%=4° Observe first that implications 3°= 2°
and 4°=1° are trivial consequences of remarks (1), (2). Now we prove
2°=5° Assume K 7 H. Then there is a vector ¢ HOK, @ # 0. The
subspace H, = [UAw] is non-zero, because I; A, and H, reduces A. Denote
by E, the pr0]ect10n Hon H,. E, belongs to A'. We want to show that

QIEO is EJ (8,), or equlva.lently, A is EoK —(8;), by (5). Take a pro-

jection @ ¢’ such that QH < E,K. Then there is a sequence Y, of vectors
in K such that Qz = lim E,y,. Hence

n—-oo

(Qz, 2) = (lim Eyy,, 2) = lim (Eyy,, ®) = lim(y,, E,s) = lim(y,, 2) = 0,
Nn—00 n—o0o n—00 n—>60

because E,# = and e HOK. It follows that Qz = 0 and @ IH = 0,

but Q < E,; hence @ = 0. The proof of 1°=5° is very similar to the above,

so we omit it. The proofs of 5°=3° and 5°=4° are identical, so we carry

out them together: Take a projection E ¢’ such that Ay is EH — (8,). This

means that the center of Ay contains only the zero operator. Thus £ = 0
and the proof is finished.

Some simple observations are now at hand:
) If A is K-Szegé singular, then A is HOK —(8,).
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(8) If K< K, < H are two subspaces and U is K-Szego singular,
then W is K,-Szego singular.

Let f be a positive functional on a C-*algebra A and let (H,, =,, &)
be the triple corresponding to f. Let B be a closed subalgebra of A.

DEFINITION 5. A positive functional f on a C*-algebra A with unit
is called B-Szegé singular if the weak closure of 7, (A) in L(H;) is K/{B)-
Szegd singular.

V. Decomposition theorems. Consider an arbitrary von Neumann
algebra % < L(H) and a subspace K of H. We will construct a decompo-
sition of A on (8,) and Szego-singular parts.

If # is a family of projections in L(H), then the supremum of £
always exists and equals the projection H on the subspace spanned by
Pz, where Pe?, xv<H. If the family 2 is directed, i.e., for P, Qe?, PvQ 2
(where Pv@Q stands for the projection H onto [PH +QH]), and strongly
closed, then the supremum of 2 belongs to 2.

Our decomposition theorem is the following one:

THEOREM 3. For every von Newmann algebra N < L(H) and every
subspace K of H there is a largest projection EoeW such that Wis By K — (8,)
and W, g, (Ig—E,) K Szego singular. This decomposition is unique
in the following sense: if F is a projection which belongs to N’ such that N
is FK —(8;) and W, _py is (Iy—F)K Szegs singular, then F = Hy. More-
over, B, = Iy—E, is the largest projection commuting with A and such
that E,H < K.

Proof. Let B denote the projection H on K. Define a family of
projections as follows:

P = {PeW', P is.a projection, P < R}.
It is clear that £ is strongly closed. Moreover, if P, Qe%, then PvQe?
(see [6]). Hence, the supremum E, of # belongs to 2. Observe first that
if Pe®, then U, is PK-Szego singular. Indeed, PK = PK = PRH = PH.
Put E,=Iy—E,. We now verify that A is E,K = KOE,H—(8,). If @
is a projection, @ ¢A’ and QH < KO E,H, then, in particular, Q¢ and
hence @ < E,, because E, is the supremum of #. But @ < I;—E,, which
proves that @ = 0. Let ¥ be a projection which belongs to %’ and is such
that % is EK —(8,). Denote by F the projection onto EE,H. F belongs
to A, because F = E—-EA(Iy;—E,) (see [6], p. 18). Here, if P and ¢
are two projections, P A{) denotes the projection on PHNQH. Moreover,
EE,H c EK, because E,H < K. Hence Fe¥!'’ and FH Cﬁ, but YU is
EEK (S,). It follows that F — 0 and EE, = 0. Thus E < E,. We have

just proved that every projection E U’ such that U is EK — (8,) is major-
ized by E,.
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Finally, if Pe® and @ is a projection, Q e’ and @ < P, then Qe#.
This observation proves the uniqueness of the decomposition (see [5],
(A)), and the proof is complete.

Let us point out that Szego-singularity characterizes in some sense
all subspaces of H which reduce U and which are contained in K.

Now we have a decomposition theorem for functionales on C*-al-
gebras:

THEOREM 4. Let A be a C*-algebra with the unit e, let B be its closed
subalgebra containing e and let f be a positive functional on A. Then there
are two positive functionals f,, f; on A such that:

1. fo i8 B—(8,),

2. fy is8 B-8zego singular,

3. f =fo+fi and the decomposition is unique relative to 1, 2,

4. fo 18 the supremum of all B —(8,) functionals g on A such that g < f.

Proof. Let (H;, n;, &) be the triple corresponding to f. Let U be
the weak operator closure of =,(A) in L(H;). Define K = [n;(B) &l
Using Theorem 3, we obtain a largest projection F,eW’ such that 9 is
BoK —(8)). Put fo(a) = (w(a) By, &) for acd and my(a) = 7(a) |gyu,
acA. Tt is obvious that the triple (E,H,, n,, Ey&;) corresponds to f,.
In this case E,K = [n,(B)E,&]; hence f, is B—(8;), which proves 1.
Let us define fy(a) = (#,(a)(I —Eo) &, &) for each acA. We- write I for
the identity in H,. A short consideration similar to the above assures
us that f; is B-Szegé singular.

It is clear that f = fy+f;. It remains to prove 4. Since we are in
a cyclic situation, for a positive functional g on A4 such that g < f there
is a unique self-adjoint operator T e’ such that 0 < T < I and, for all
acd, g(a) = (n;(a)T&, T&) (see [1], p. 35). It is not difficult to deter-
mine the triple corresponding to g. It is the following one: H, = [7,(A)T&;],
7,(a) = mg(a)|y, for all aeA, bacause H, reduces m;(4), and the cyclic
vector is T&;. Denote by E, the projection on H,. It is an element of A’
and E H; = _ﬁ = H,; hence E, is the projection on the closure of the
range of 7. Assume that g is B—(8;). We will prove that E,E, = 0,
where E, = I —F,. From this equality it follows that K, < E,. But in
order that E,E, = 0 it is necessary and sufficient to have E,T =0
(see [6]) and further, it suffices to show that E,T¢, = 0, because &; sep-
arates 9’. The assumption ¢ is B—(8,;) implies that every projection
PeW such that PH <« TK = [n(B)T&;] is a zero operator. The operator
TE,T is self-adjoint and belongs to A’. Hence the projection ¥ onto the
closure of its range also belongs to A’. (see [6]). Now we have FH,
=TE,TH;< TE,H;, < TK, and hence F' =0 by our assumption. It
follows that TE,T = 0. Finally we obtain

“ElTEsz = (E1T'5;a E1T'5f) = (TElef, &) =0.
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Hence E,T¢; = 0 and E, < E,. Let h be a positive functional on 4 defined
by the subrepresentation =, and vector K,£. % has the form h(a)
= (=,(a)E &, &). Our last task is to prove that g<h < f,.

We break off our proof in order to make the following simple obser-
vation.

Let f be a positive functional on a C*-algebra A with the triple
(H;, g, &). Then every Temi(A)’, T = T*, defines the following positive
functional on A: fp(a) = (m;(a)T&;, TE). Let T, 8 be two self-adjoint
positive operators in L(H,) which belong to =, (4)". Assume T8 = S8T.
Then 0< 8<T implies fg<fp. Indeed, let aeA:

(fr—Js)(a*a) = (“j(a*a) fp (TZ—SZ)&}) = [l“f(a)(lm—sz)*ffllz =0

because under our assumption 7%—8%> 0.

We now return to the proof of Theorem 4. The preceding part of it
shows that 0 < T < E,< E,. T commutes with E, and E, commutes
with E,. Applying the above observation, we finish the proof.

We remark that this theorem implies the Foiag and Suciu theorem [3]

concerning the decomposition of a positive measure on Szegd and Szego-
singular parts.
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