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1. Introduction

A linearly ordered topological space (abbreviated LOTS) is a triple
(X, 4, <), where (X, <) is a linearly ordered set and where A is the usual
open-interval topology of the order <. While LOTS seem to be well
behaved, their subspaces have provided many pathological examples
in general topology: the Sorgenfrey line and the spaces considered by
E. Michael in [19] and [20] are well-known spaces of this type. In this
paper, we investigate certain aspects of the topology of subspaces of
LOTS, namely paracompactness, metrizability, local compactness and
Nagami’s X'-space property. Our approach is based on Cech’s observation
that a space X can be embedded in a LOTS iff X is a generalized ordered
space (1).

We are interested in three general problems. First, which theorems
for LOTS are true for subspaces of LOTS, i.e., for generalized ordered
spaces ? A basic tool in the study of the first problem is the construction,
for a generalized ordered space X, of a LOTS X* which contains X as
a closed subspace. This leads us to our second problem: which topological
properties does X* inherit from X ? Our third problem is suggested by
the fact that the topology of any generalized ordered space can be obtained
by strengthening, in a prescribed manner, the open-interval topology
of the given linear ordering. It seems natural, therefore, to ask whether
a generalized ordered space X can be studied in terms of the weaker
open-interval topology on X.

The paper is organized as follows. In Section 2 we reproduce the
basic definitions and summarize the results of Frolik and Katétov. Section 3
contains technical lemmas which are used throughout the paper. Section 4
studies paracompactness in generalized ordered spaces, and in Section 5
we consider metrization and related problems. In Section 6 we present
some results dealing with local compactness and provide a partial answer
to a question of E. Michael concerning Nagami’s X-spaces. Section 7
contains a sequence of examples to which preceding sections refer.

Before beginning our study, let us agree on some terminology. Let
(X, <) be a linearly ordered set. A subset C of X is said to be conver in X

(1) This characterization apbears in the recent version of Cech’s Topological
Spaces edited by Z. Frolik and M. Katétov [8]. Professor Frolik ascribes the original
idea to E. Cech,
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if, whenever a,be¢C and a < b, then {reX: a <z < b} is a subset of C.
If there is no danger of confusion, we shall simply say that C is convex.
-An interval of X is a convex subset of X having two endpoints in X.
Intervals will be denoted by ]a, b, la, b], ete. If aeX, the set {reX:
< a} will be called an open half-line and will be denoted by ]<, af.
The sets ]<«,al, [a, > [ and Ja, > [ are defined analogously. The
usual open-interval topology of the linear ordering < will be denoted
by 4(<). Finally, the sets of real numbers, of integers, and of positive
integers (not necessarily with their usual topologies) will be denoted,
respectively, by R, Z, and N.

2. Characterization of generalized ordered spaces

The material found in (2.1) to (2.8) essentially appears in [9]. Because
of its fundamental nature, we repeat it here.

(2.1) DEFINITION. A generalized ordered space (abbreviated GO space)
is a triple (X, 7, <), where (X, <) is a linearly ordered set and where t
is a topology on X such that:

(a) A(<) = 7, where A(<) is the open-interval topology of <;

(b) every point of X has a local r-base consisting of (possibly de-
generate) intervals of X.

If (X, <) is a linearly ordered set and if r is a topology on X such
that (X, 7, <) is a GO space, then 7 is called a GO topology on X.

Where it will cause no confusion, we shall omit mention of 7 and <
and write simply “Let X be a GO space.”

(2.2) ExampLES. It is easily seen that the following general con-
struction always produces a GO space and that, in fact, any GO space
can be obtained from such a construction. Let (X, <) be a linearly ordered
set and let L, R, and I be disjoint subsets of X. Let v be the topology
on X having the following collection as a subbase:

[{o}: zel}u{]l<,2]: weL}u{{z, > [: #eR}VA(S).

This simple construction makes it clear that each of the following is
a GO space:

(a) any LOTS;

(b) the Sorgenfrey line (cf. 7.2) —let X =R =R and L =1 =@;

(c) the space (R, u, <) obtained from the real numbers with their
usual topology and order by making the irrationals discrete (cf. 7.3) —
let X = R, I = {irrationals} and L = R = @;

(d) the space (X, 4, <), where (X, <) is any linearly ordered set
and where ¢ is the discrete topology on X.
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It is well known that a subspace of a LOTS — even an open or a closed

subspace —need not be linearly orderable in its relative topology. However,
we have:

(2.3) PropositioN (Cech). Any subspace of a LOTS is a GO space.

The converse of .(2.3) is also true, but requires a little more work. We
begin by observing that a point of a GO space has a local base consisting of
intervals all having the same shape, in the sense of the next lemma.

(2.4) LEMmA (Cech). Let X be a GO space and let p e X. Suppose that p
i8 not an tisolated point of X and that [p, — [ is open in X. Then p has no
immediate successor in X, p is not the right endpoint of X and the collection
{[p, b[: beX and b > p} is a local base at p.

(2.5) DEFINITION (2). Let X = (X, 1, <) be a GO space. Let 1 = A()
be the usual order topology on X. Define a subset X* = (X, 7,<)* of
X %X Z by

X' =(Xx{0})U{z,n): [#, >[er\1 and n <0} U -
U {(x,m): ]« ,x]er\1 and m > 0}.

(2.6) Convention. Throughout this paper, (X, 1, <)* will be ordered
lexicographically and will carry the usual open-interval topology of
this lexicographic order.

(2.7) ProrosiTioN (Cech). Let X be a GO space. Then the function e:
X — X* defined by e(x) = (z,0) i8 an order-preserving homeomorphism
from X onto the subspace X x {0} of X*.

(2.8) Convention. Except in situations where clarity requires that
we distinguish between X and X x {0}, we shall use the map e of (2.7)
to identify X with a subspace of X*.

The equivalence of (a) and (c¢) in our next result was established
in [9].

(2.9) THEOREM. The following properties of a topological space (X, t)
are equivalent:

(a) there is a linear ordering < of X such that (X, 7, <) is a GO space;

(b) (X, 1) i3 a closed subspace of a LOTS,

(e) (X, 7) is a subspace of a LOTS; .

(d) (X, ) is a dense subspace of a compact LOTS.

(3) ‘It should be pointed out that our set X* is a (possibly proper) subset of
the linearly ordered set (T, <7) constructed in [9]. However, the proof that z — (z, 0)
is a homeomorphism is the same and the use of X* instead of T seems to be justified
by (2.11) and by the fact that if X is actually a LOTS in the given order, then X* = X
while T may be a much larger set. For example, let X be the set [0, 1]x {0, 1} and
let X have the lexicographic order and the usual open-interval topology.



8 On generalized ordered spaces

Proof. (a) — (b). Observe that every point of X*\ X has both an
immediate predecessor and an immediate successor in X*. Hence every
point of X*\ X is an isolated point of X*, so X is closed in X".

(b) = (c) is trivial.

(¢) = (d). Suppose (X, ) is a subspace of a- LOTS (Y, 4, <). Let
(Y*, v+, <*) be the order-compactification of ¥ and let Z be the closure
of X in ¥*. Topologizing Z as a subspace of Y+ we obtain a compact
GO space which contains X as a dense subspace. Since Z is compact,
Z is actually a LOTS (cf. (6.1)).

(d) — (a). This follows from (2.3).

In this paper we shall be primarily concerned with X as a subspace
of X*. However, the equivalence of (a) and (d) in (2.9) can also be used
to study GO spaces. For example:

(2.10) PrROPOSITION. Let X be a GO space. Then:
(a) X is separable iff X is hereditarily separable;

(b) X satisfies the countable chain condition (i.e., every disjoint collection
of open sets is countable) iff X is hereditarily Lindelof.

Proof. Statements (a) and (b) were proved for LOTS in [17]. Observe
that if the GO space X has a countable dense subset (respectively, satisfies
the countable chain condition), then so does any compactification of X.
In particular this is true of the compact LOTS found in (2.9).

Let us conclude this section with two remarks concerning our defi-
nition of X* (which differs slightly from the definition of a similar space
which is given in [9]). First, observe that if the topology of X coincides
with the usual open interval topology of the given order on X, then
X* = X. This is clear from the definition of X* in (2.5). Second, X" is,
in some sense, the smallest LOTS which contains X as a closed subspace.
This statement is made precise in Proposition (2.11), but since the pro-
position is not needed in later sections of the paper, we omit its proof
(which is straightforward but tedious).

(2.11) ProPosITION. Let X be a GO space and suppose that h is an
order - preserving homeomorphism from X onto a closed subspace of a LOTS Y.
Let e: X — X* be the embedding defined in (2.7). Then there is an order-
preserving homeomerphism H from X* into Y such that the following
diagram commutes:

i

h\
Y
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(2.12) Remark., a) The reader might ask whether (2.11) could be
proved without the assumption that & is order-preserving. Example
7.1 provides a negative answer to this question.

b) It is natural to ask whether the correspondence X —> X* could
be made functional by properly defining a map f*: X* — ¥* corresponding
to an order-preserving continuous map f: X — Y. If we make the ad-
ditional assumption (and it seems reasonable to do so) that f* must extend f,
then the answer i8 negative as Example 7.5 shows.

3. Technical lemmas

In this section we develop certain technical results which will be
used repeatedly in subsequent sections.

(3.1) DEFINITION. Let X be a GO space and let § =< X be convex
in X. Define

I(8) = {xeS: ga, beS with a < z < b}.

Define a subset 8~ of X* by
8™ = {(&, k)eX*: wel(8)} U {(z, 0): zeSN\I(S)}.

(3.2) LEMMA. Let X be a GO space.

(@) If 8 < T are convex in X, then 8~ < T .

(b) If 8 is convex in X, then S~ is open in X iff 8 is open in X.

(¢) If J is convex in X* and if S < J, where 8 is convex in X, then
8" < J.

Proof. (a) Let (2,k)eS . If zeI(8), then zeI(T)so that (z, k)eT .
If 2¢I(8), then k = 0 so that (x, k)eT since zeT.

(b) Suppose S is open in X. Let (z, k)eS ™. If z is an isolated point
of X or if & # 0, then {(z, k)} is an open subset of X* which is contained
in 8”. Consider the case where z is not an isolated point of X and k = 0.
If z€I(8), choose a, beS such that a < # < b. If Ja, [ = 3, let p = (a, 0);
otherwise choose a’cJa, z[ and let p — (a’,0). In either case, peX*,
p < (x, 0) and ]p, (z, 0)] = 8~ . Similarly, choose g X"* such that ¢ > (z, 0)
and [(z,0),q[ =8 . Then (z,0)elp,q[ =8 . If x¢I(S), then either
reSc [z, > [ or xe8 = ]« ,2]. We consider only the first possibility.
Since § is open in X, either # has an immediate predecessor z’' in X (in
which case we let p = (2, 0)) or else the point p = (z, —1) is a point
of X*. Since, by assumption, z is not an isolated point of X, we may
choose points 2, and z,e8 with 2 < 2, < z,. Let ¢ = (2,, 0). Then (z, 0)
€lp, ¢[ = 8~. Therefore, 8§~ contains an X*-neighborhood of each of
its points, so 8~ is open in X*. The converse is clear since §° N X = 8.
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(c) Suppose S = J. Let (z,k)eS . If zeI(8), choose points a, beS
with a < 2 < b. Then (a, 0), (b, 0)eJ and (a, 0) < (2, k) < (b, 0). Since J
is a convex subset of X*, (z, k)eJ. If x¢I(8S), then k¥ = 0 so that S < J
implies (z, k)ed.

‘We now extend definition (3.1) to arbitrary subsets of X. It is well
known that any non-void subset G of X can be uniquely represented as
a union of its maximal convex subsets, which are called convex components
of G. This fact justifies the following definition.

(3.3) DEFINITION. Let X be a GO space. Let G < X. If G = 0, let
Q" =0. If G #0, let G = |J {8S;: ieI} be the (unique) representation
of G as a union of its convex components. Define @~ = |J {8; : ieI}.

(3.4) Remark. Suppose G is a non-empty subset of a GO space
(X, 7, <). Then (G, 74, <) is also a GO space (where 7; denotes the
relativized topology on G), so we can construct G* = (G, 1, <)*. If G~
is defined with respect to X", the following relationships are evident:

(a) @ < G* and G~ need not coincide with G* even if G is convex
in X.

(b) If @ is convex in X, then G* = X*; in general, @* may contain
points which do not belong to X*. (If X is a LOTS and if @ < X is not
a LOTS under the given order, then X* = X x {0} while @* must contain
points (z, k) with k& # 0.)

The following properties of the correspondence G — G~ ‘will be
frequently used.

(3.5) PROPOSITION. Let X be a GO space.

(a) f s Hc X, then G < H™.

(b) If G is open in X, then G~ is open in X",

(c) If # is a collection of convex subsets of X* and if 4 is a collection
of subsets of X which refines #, then so does the collection 9~ = {G : G<¥).

(d) If ¢ is a point-countable (respectively, point-finite) collection of
subsets of X, then ¥~ = {@ : Ge%} i3 a point-countable (respectively,
point-finite) collection of subsets of X*.

Proof. Sfatement (a) follows directly from (3.2) (a), and statement
(b) follows from the fact that if G is open in X, then so is every convex
component of @. Statement (c) is verified by observing that if G is contained
in a convex subset J of X*, then § c J for each convex component §
of G whence 8~ < J by (3.2) (c). Therefore @~ < J. Statement (d) follows
from the fact that if S, and 8, are convex subsets of X and if (z, k)¢S, N §; ,
then xeS; N S,.

(3.6) Remark. Observe that if § is convex in X and if (z, k)e X"\ 8",
then S cannot contain points on both sides of z, even though z itself
may be a point of § (in case k¥ 5 0). This fact will be used in the proof
of (4.4), below.
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In Section 6 we shall use the notion of a coherent collection of sets.

(3.7) DEFINITION. A collection ¥ of subsets of a set X is coherent if
whenever 2 is a proper, non-empty subcollection of ¥, the sets (2 and
U (¢\2) are not disjoint.

(3.8) DEFINITION. Let ¢ be a collection of subsets of a set X and
let peX. Then #(p, ¥) denotes {GF<%: p <G} and St(p, ¥) denotes ) ¥ (p, ¥).

The following two lemmas are known [6] and can be proved by
repeated application of Zorn’s lemma and (finite) induction, respectively.

(3.9) LEMMA. Let 4 be a non-emply collection of non-empty subsets of
a set X. Then:

(a) the family ¥ of maximal coherent subcollections of ¥ is monm-void,
and 9 = U ¥;

(b) if €, and €, are distinct elements of ¥, then €, "€, =D and
(U%)n(UJF) =0.

(3.10) LEMMA. Let % be a coherent collection of convex subsets of a linearly
ordered set X and let peX,= | J €. Then it is possible to define subsets
{z(n)} and {y(m)}, possibly finite, of X, such that:

(a) z(1) =p = y(1);

(b) if @(n+1) is defined, then z(n+1) < x(n), z(n+1)¢St (z(n), %)
and St (z(n+1), €) N St (z(n), €) + O;

(¢) if y(m+1) is defined, then y(m+1) > y(m), y(m-+1)¢St(y(m), %)
and St(y(m+1), €) N St{y(m), €) # O;

(d) X, = U {St{z(n), 6): x(n) is defined} U |J {St(y(m), €): y(m)
is defined}.

4. Paracompactness in GO spaces

We begin this section by summarizing some known results concerning
paracompactness in LOTS. First, any LOTS is hereditarily collectionwise
normal [26] and (hereditarily) (*) ecountably paracompact ([3] and [13]).
Therefore a subparacompact (*) LOTS is paracompact [8],.as i§ a meta-
compact (°) LOTS ([18] and [21]). Bennett [6] and Fedoréuk [11] improved

(®) The papers [3] and (13] actually prove that any LOTS is countably para-
compact. Heredilary countable paracompactness follows from the fact that any open
subspace of a LOTS is homeomorphic to a disjoint union (or topological sum) of
LOTS, namely the convex components of the subspace. This argument is used in [26].

(%) A space is subparacompact if every open cover has a o-locally finite closed
refinement. D. K. Burke [8] proved that subparacompactness i8 equivalent to the
property “Every open cover has a o-discrete closed refinement” and it is clear that
a collectionwise normal space with this latter property is paracompact.

(]) A space is metacompact if every open cover has an open, point-finite refine-
ment. This property is also called pointwise paracompactness or weak paracompactness.
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the latter result, proving that if a LOTS is metalindelof (i.e., every open
cover has an open point-countable refinement), then it is paracompact.
In a slightly different direction, one can prove that a perfectly normal
LOTS is paracompact; this result can be established using the fundamental
characterization of paracompactness in LOTS due to Gillman and
Henriksen [13]. We will give a different proof below.

Let us begin our study of paracompaetness in GO spaces with the
following observation.

(4.1) PROPOSITION. Any GO space is collectionwise normal and countably
paracompact.

Proof. If X is a GO space, then X is a subspace of the LOTS X*
which is hereditarily collectionwise normal and hereditarily countably
paracompact.

(4.2) THEOREM. Let X be a GO space. Then the following are equivalent:

(a) X is metalindelof;

(b) X* is paracompact;

() X is paracompact.

Proof. Trivially, (¢) implies (a), and (b) implies (c¢) since X is a closed
subspace of X*. We show that (a) implies (b). Suppose that X is a metalin-
delof GO space. In order to show that the LOTS X* is paracompact,
it suffices (by the Bennett-Fedorcuk result mentioned above) to show
that X* is metalindelof.

Let % be an open cover of X* by convex sets. Then ¥ = {UnX:
Ue%} is a relatively open cover of X. Let o be a relatively open, point-
countable cover of X which refines ¥. Let ¥" = {H : He#'} U {{(z, n)}:
(z, n) e X*\ X}. Then 7" is a collection of open subsets of X* which refines %,
is point-countable, and which covers X* (cf. (3.5)).

In [16] we showed that a LOTS with a G,-diagonal is metrizable,
and in Section 5 we will generalize this result to a certain class of GO spaces.
In arbitrary GO spaces, however, the existence of a G,-diagonal insures
little more than hereditary paracompactness, as Examples (7.2) and (7.3)
and our next theorem show. The theorem requires a lemma, a corollary
of which will be needed in Section 5.

(4.3) LEMMA. Suppose % is an open cover of a GO space X by convex
sets. Let E = {xcX: no element of % contains points on both sides of x}.
Then for each yeX there is an open neighborhood G (y) of y such that G(y) N
NE < {y}. .

Proof. For each ye¢ X, let U(y) be an element of  which contains y
and which has the property that if y¢E, then U(y) contains points on
both sides of y. Consider the following statements:

(a) U(y) contains a point z >y (then ly,2[ N E = B);

(b) U(y) contains a point < y (then Iz, y[ N E = 9).
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If neither (a) nor (b) is true, then U(y) = {y} and we may let G(y) = {y}.
If both (a) and (b) are true, let G(y)} = Jz, 2[. If (a), but not (b), is true,
let G(y) = [y, 2[, and if (b), but not (a), is true, let G(y) = Jz, ¥].

(4.4) COoROLLARY. Let X be a GO space. If X is Lindeldf, so is X*.

Proof. Let ¢ be an open cover of X* by convex sets. Then # = {@G N
N X: Ge%} is an open cover of X, so some countable subcollection ¥~
of # covers X. Let E = {zeX: no element of ¥ contains points on both
sides of z}. By (4.3), F is a closed discrete subspace of X. Since X is
Lindeléf, F must be countable. Let s# = {V : Ve¥}. By (3.5), # is
a collection of open subsets of X* which refines %. Furthermore, if
(@, k)e X*\ | 5, then x<E (cf. (3.6)). Hence X*\ (J # is a countable
set. Therefore, ¢ has a countable refinement, so X* is Lindelof.

(4.5) THEOREM. A GO space having a G,-diagonal is hereditarily
paracompact,

Proof. Suppose X is a GO space having a G,-diagonal. Since any
subspace of X is again a GO space with a G;-diagonal, it suffices to show
that -X is paracompact. Because a subparacompact collectionwise normal
space is paracompact (*), it suffices to show that X is subparacompact.
Burke [8] proved that the following condition is equivalent to subpara-
compactness in any space:

(*) ¥ % is an open cover of X, then there is a sequence (% (n)) of open
covers of X such that for each z ¢ X there is a set U ()% and an integer

n = n(z) such that St(z, Z(n)) = U(x).

We verify that X satisfies condition (*).

Let  be an open cover of X by convex sets. Let £ = {xeX: no
element of % contains points on both sides of x}. For each y<X, choose
U(y)e such that yeU(y) and such that if y¢FE, then U(y) contains
points on both sides of y. By (4.4), for each y X there is an open set G(y)
such that y<G(y) and such that G(y) N E < {y}. We may also require
that G(y) < U(y).

Since X has a G,-diagonal, there is a sequence (#’(n)) of open covers

of X such that for each z<X, (O St (#, # (n)) = {x}. We may assume
n=1

that s (n) = {H(n, x): xeX}, where each H(n,x) is a convex open set
containing # and where H(n+1,2) < H(n,z) for each z¢X and for
each n > 1.

Let #(n) = {G(x) " H(n,z): xeX} for each »>1. Clearly each
% (n) is an open cover of X. We verify that (#(n)) satisfies the condition
given in (*). Let yeX. If y¢E, there are points a <y << b such that
[a, 8] = U(y). Choose m > 1 such that neither ¢ nor b is a point of
St(y, # (m)). Since the elements of #(m) are convex sets, St(y, #(m)).
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< [a, b). Then, since #(m) refines # (m),
St(y, % (m)) < Sty, #(m)) < [a,b] = U(y)e%.

If yeE, then y¢G(x) whenever z 5* y because G(v) N E c {x}. Therefore,
St(y, #(1)) = G(y) n H(1,y) < G(y) = U(y)e%, as required.
Another sufficient condition for paracompactness in a GO space is

perfect normality. Our proof depends upon the following sequence of
lemmas.

(4.6) LEMMA. Suppose X is a perfect topological space (°). Suppose
there is a sequence (% (n)) of collections of open subsets of X with the property
that, given distinct points x,y of X, there is an integer m > 1 such that
zeSt(z, ¥(n)) < X\{y}. Then X has a G,-diagonal.

Proof. The proof of (4.6) parallels the proof of Theorem 1 in [5].

(4.7) LEMMA. Let X be a perfectly normal GO space having a left end-
point p and let % be an open cover of X by convex sets which contain p.
Then % has a point-countable open refinement.

Proof. Let r be the topology on X. If X has a right endpoint, then
.a single element of # suffices to cover X, so we assume that X has no
right endpoint. Let 8 = {z,: 0 <a< A} be a well-ordered increasing
cofinal subsets of X, where A is an initial ordinal. We may assume that

= p and that for each infinite limit ordinal u < A, either sup{z,:
0< a< u} =, or else the supremum of the set {z,: 0 <a< u} is an
interior gap (*) v, of (X, <). Then § is a closed subset of X.

Let L = {y< A: p is a limit ordinal and sup{z,: 0 < a< u} = a:,,}

Let S(L) = {z,: peL}. Then S(L) is closed in X, so there are open sets

V(1) 2 V(2)= ... in X with 8(L) = () V(n). Let ueL. If [z,, — [
n=1
is open, define f(n, u) = u for each n> 1. If [x,, — [ is not open in X,
define f(g, u) to be the first ordinal a such that a < x and Jz,, z,] < V(n).
For n > 0, define a collection # (%) of relatively open subsets of § as
follows:

#°(0) = {{z,}: a¢L or (aeL and [z,, > [ is open in X)}
and for » > 1, let

W(n) = {1, Tusa[ N 8: peLl and [z,, ~[ is npt open}.

(%) A topological space X is perfect if every closed subset of X is a G5 in X.

(") An interior gap of a linearly ordered set (X, <) is a pair (4, B) of non-void
convex subsets of X such that:

(i) AVB = X;

(ii) if aed and beB, then a < b;

(iii) A has no last element and B has no first element. If (4, B) is an interior
gap of X and z<X, we write # < (4, B) (respectively z > (4, B)) to mean that ze¢4
(respectively, z¢B).
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It is easily verified that the family {# (n): n > 0} satisfies the hypotheses
of Lemma (4.6). Since (8, rg) is perfectly normal, it follows that (8, 7g)
has a @,-diagonal. By (4.5), (8, tg) is paracompact.

Since % is an open cover of (8, 7g), there is a collection # = () #(n)
n=1

of closed subsets of (S, rg) which refines % and which is o-discrete in
(8, 75). Sinece § is closed in X, # is also o-discrete in X. Since X is col-

(=2}
lectionwise normal, there is a collection | J ¥ (n) of open subsets of X
n=1

which covers 8, refines #, and is o-discrete in X. Define a collection

Y(0) = {12,y o [:0<a< A} U {Jv,,z,[: p< A is a limit ordinal
=]

which is not in L}. Then [ ¥ (n) is a point-countable open cover of X

n=0
which refines #%.

(4.8) THEOREM. A perfectly mormal GO space i8 paracompact.

Proof. Let X be a perfectly normal GO space and let  be an open
cover of X by convex sets. By (4.2), it suffices to show that # has a point-
countable open refinement.

Consider first the special case where % is a coherent collection.
By (3.10) there is a countable subset ¢ of X such that X = | ) {St(z, %):
xeC}. Therefore, it suffices to show that whenever xz¢C, it is possible
fo find a point-countable collection ¥ (x) of open subsets of X which
covers St(z, ) and which refines #. But this is certainly possible, as
Lemma (4.7) and its obvious left-handed analogue show when applied
to the spaces RSt(z, #) = St(z, %) N [x, — [ and LSt(z, %) = St(z, %) N
N 1<, z], respectively. '

Now consider the general case. Let {#,: ae A} be the family of maximal
coherent subcollections of . Let X, = U %, and topologize X, as a sub-
space of X. Each X, is an open subset of X and distinet X/ ’s are disjoint.
Furthermore, #, is a coherent open cover of the perfectly normal GO
space X,. Using the first part of the proof, we find point-countable
collections ¥, of open subsets of X, which cover X, and which refine
«,. Since each X, is open in X, the collection ¥" = () {¥",: aed} is an
open cover of X which refines  and which is point-countable because
distinet X ’s are disjoint. '

(4.9) Remark. One might reasonably ask whether (4.8) could be
derived from the corresponding result for LOTS (*) using the embedding
X - X% ie., whether X* must be perfectly normal whenever X is.
Example 7.2 provides a negative answer to this question.

(®) That a perfectly normal LOTS is paracompact seems to be part of the
folklore of LOTS; it was first pointed out to the author by Mary Ellen Rudin.
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The final theorem in this section provides yet another sufficient
condition for paracompactness in a GO space.

(4.10) THEOREM. Suppose that (X, <) 8 a linearly ordered sei. Let
A = A(<). Then the following are equivalent:

(a) (X, A) i8 hereditarily paracompact;

(b) whenever T is a GO topology on (X, <), the space (X, t) i3 heredi-
tarily paracompact;

(c) whenever T8 a GO topology on (X, <), the space (X, 1) is paracompact.

Proof. We show that (a) implies (b) and that (c) implies (a).

(a) — (b). It suffices to show that if # is any collection of convex
r-open sets, then there is a collection of (relatively) open subsets of
X, = |U% which covers X, and which is o¢-locally finite with respect
to the topology 7, = 7y, on X,.

Let E = {x<X: no element of % contains points on both sides of z}.
By (4.4) — applied to the GO space X,— the collection & = {{m}: a:eE}
is discrete in (X,, 7,). Since X, is collectionwise normal, there is a col-
lection ¥ (0) = {V(x): 2¢E} of v,-open sets which refines #, is discrete
in X, and for which z eV (z) for each z¢F. Lot X,= X, ¥ (0). Then X,
i8 74-closed. If zeX,, then x¢F so there is a A-open convex set W (x)
containing « and which is contained in some element of . Let #° = {W (z)n
NX,: zeX,}. Then # is an open cover of the space (X,, Ax) which is

paracompact by assumption. Hence there is a cover | ) Z(n) of X,
n=1

which refines #° and which is o-discrete in the space (X, 4 x,)- Since
’x, € tx,y U F(n) in o-discrete in (X,, rx ), whence also in (X,, 7x)
n=1

since X, is closed in (X, rx ). Since (X,, rx ) is collectionwise normal,
we may expand each FeZ (n) to an open set V(n, F) of (X4, 7,) in such
a way that the collection ¥"(n) = {V(n, F); Fe# (n)} is still discrete in

(X0, 7o) and refines %. Then ¥ = | ) ¥ (n) is a o-discrete open cover

n=0
of (X,, 7,) which refines #, as required to show that (a) implies (b).

(c) = (a). To show that (X, 4) is hereditarily paracompact, it suffices
to show that if S is a convex open subset of X, then (8, Ag) is paracompact
(because every open subspace of (X, A) is homeomorphic to a disjoint
union of such spaces).

Let 8 be a convex open subset of (X, ). By (c¢), the space (X, 1)
is paracompact. Therefore, if S is also A-closed, the subspace (8, ig) is
paracompact. If 8 is not A-closed, then S has at least one endpoint in X
which does not belong to 8, say p = sup(S) and peX\ 8. If § has no
infimum in X, or if § contains a first element, let v be the topology on
X having the collection AU{{p}} as a base. If § has an infimum ¢ in X
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and if ¢¢8, let = be the topology on X generated by AU{{p}, {g}}. In either
cage, S is a 7-closed subspace of the GO space (X, 7, <). By (¢), (X, 7)
is paracompact. Therefore, so is (8, tg). But 7o = 1, 80 (8, 45) is para-
compact, as required to show that (c¢) implies (a).

We conclude this section by remarking that simple examples show
‘that the conditions given in (4.5), (4.8) and (4.10) are not necessary
conditions for paracompactness in a GO space. See Example 7.4.

5. Metrizability and related properties in GO spaces

The reader is no doubt familiar with the following classical metri-
zation theorems:

(A) Bing’s theorem [7]: A regular space is metrizable iff it is collection-
wise normal and developable (°);

(B) Bing-Nagata-Smirnov theorem [24]: A regular space is metri-
zable iff it has a o-locally finite base. R
In the class of LOTS, both of these results can be sharpened.

(A') G. Creede [10] proved that a semi-stratifiable (1°) LOTS is
metrizable.

(B') V. V. Fedoréuk [12] proved that a LOTS having a o-locally
countable base is metrizable.

In [16], the author improved Creede’s theorem by showing that-

(A”) A LOTS having a G,-diagonal is metrizable.

In this section, we shall prove (A') and (B') for GO spaces and we
shall investigate a class of GO spaces for which (A") is true. (Examples
7.2 and 7.3 make it clear that (A") is false for arbitrary GO spaces.) Our
generalization of (A") will be obtained using the notion of a quasi-develop-
able space which was introduced by E. E. Grace and studied by H. R.
Bennett [5]. The concept has a certain independent interest because of
its relation to the existence of a ¢-point-finite base, and we include some
results on quasi-developable GO spaces at the end of this section.

Let us begin by reviewing the definition of quasi-developability and
by stating a basic result on quasi-developable spaces.

(5.1) DEFINITION. A space X is quast - developable if there is a countable
family ¥ of collections of open subsets of X with the property that if U

(®) Defined in (5.1).

(*9) A space X im semi-stratifiable if each open subset U of X can be written
a8 U = | J{U(n): n > 1}, where each U (n)is closed in X, in such a way thatif U= V
are open, then U (n) € V(n) for each n. If X is metrizable, developable, semi- metri-
zable or stratifiable, then X is semi-stratifiable. Any semi-stratifiable space is perfect
and has a G»-diagonal. These spaces were first defined by E. Michael and have been
extensively studied by G. Creede ([10] and [11]).

Dissertationes Mathematicae LXXXIX BU 2
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is open and if pe U, then peSt(p, ¥9) < U for some ¥ ¢¥. If, in addition,
each element of ¥ covers the space X, then X is developable.

(5.2) THEOREM ([5]). A regular space is developable iff it is quosi-
developable and perfect (°).

(5.3) THEOREM. A gemi-Sstratifiable (1°) GO 8p¢ice i8 metrizable.

Proof. Let X be a semi-stratifiable GO space. Then X is perfect,.
80 by (5.2) it suffices to show that X is quasi-developable.

Being a perfect GO space, X is first countable (1) and so is semi-
metrizable [11]. By a theorem of R. W. Heath [15], there is a function G:
N x X' - {open subsets of X} such that if peX

(i) G(1,p) 2 G(2,p) =2 ...is a local base at p;

(ii) if {g(n)> is a sequence of points of X such that peG (n, q(n))
for each n > 1, then {q(n))> converges to p.

Clearly, we may also assume that:

(iii) each G(n, p) is convex in X;

(iv) if [p, = [ is open in X, then G(n,p) < (p, » [ and if <, p]
is open in X, then G(n,p) < 1<« ,p).

Let 9(n) = {G(n, p): peX}. Since every semi-stratifiable space has
a @;-diagonal, we may assume that

(v) for each peX, ﬁ St (p, ¥(n)) = {p}.
n=1

Let v be the topology of X and let 2 be the open interval topology
of the given order on X. Define four subsets of X as follows:

A = {zeX: {z}er};

B = {zxeX\A: [x,<« [eT\ 1};

C ={zeX\NA: ]« ,x]er\ A};

D = X\(AUBUU).

Observe that if peB, then no sequence of points of ]« , p[ can
converge to p, so there is an integer M (p) such that p¢{_ {G(n, q): ¢ < p}
whenever 7 > M (p). Furthermore, if geB and ¢ > p, then p¢lp, > [
2 G(n, q) for'each n>1 (by (iv)). Therefore, p¢(J{G(n, q): ge B\ {p}}
whenever n > M (p). Similarly, if peC there is an integer N (p) such that
p¢U{@(n, @): ¢eC\{p}} whenever n > N(p).

Define four subcollections of each collection ¥(n) by

%1(n) = {G(n, a): acd},

g,(n) = {G(n, b): beB},

Ga(n) = {G(n, ¢): ceCly

%,(n) = {G(n, d): deD}.

(11) If a point p of a GO space X is a Gy in X, then p has a countable local base
in X. Therefore, a perfeet GO space must be first countable.
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We claim that the family ¥ = {%,(n): 1 <i< 4 and n>1} is a quasi-
development for X. For suppose U is open in X and peU. If peA, it
follows from (iv) that G(n,p) = {p} and that if q #* p is also a point
of A, then p¢G(n,q) for each n > 1. Hence peSt(p, %,(1)) = {p} < T.
If p B, then whenever » > M (p) and geB\ {p}, we know that p ¢G(n, q),
whence St(p, ,(n)) = G(n, p). By (i), the sets G(n, p) form a local base
at p, so for n sufficiently large, peSt(p, %,(n)) = G(n,p) < U. The case
where peC is similar. Suppose peD. If p is not an endpoint of X, there
are points z, yeX such that pelr,y[ < U. By (v) and (i), there is an
integer N such that neither # nor y is a point of St(p, ¥(N)) = St(p, %,(N)).
Since the latter set is a convex subset of X which contains p but does not
contain either = or y, we have peSt(p, 4,(N)) < Jr,y[ = U. The case
where peD is an endpoint of X is only slightly different. Therefore, ¥
is a quasi-development for the space X.

We turn now to the Fedoréuk metrization theorem.

(5.4) THEOREM. A GO space with a c-locally countable base is metri-
zable.

Proof. Let X be a GO space having a o¢-locally countable base
# =) #(n). By (B') above, it suffices to show that the LOTS X"
n=1

also has a o-locally countable base.

For each n>1, let A(n) = {reX: HGe#(n) with xeG < [z, - [}
and let B(n) = {reX: HGe#(n) with xeG < ]« , 2]}. Let yeX. Since
#(n) is locally countable, there is an open subset J(n,%) of X which
meets at most countably many elements of #(n). We may assume that
each J (n, ¥) is an interval in X. We claim that the set J (n, y)n(A (n)uB(n))
is countable. For each zeJ(n,y)NA(n), choose G(r)e#(n) such that
zeG(x) = [z, —[. Observe that if  and 2’ are distinct elements of J (n, y) N
NA(n), say with z < 2’, then zeG(2)\[z', >[ < G(2)\G(x’'). Hence
G(x) # G(2'), so the correspondence X — G'(z) is one-to-one frem the
set J(m,y)NA(n) into the set {GFe#(n): GNJ(n, y)'i @}. Since the
latter set is countable, so is J(n, y) NA(n). Similarly, J(n,y) NB(n) is
countable.

Define collections € (n) = {G™ : Ge#(n)} U{{ z, k)}: (@, k) e X*\ X and
zed(n)UB(n)}. We claim that each #(n) is loca.lly countable in X*.
To verify this, let (y, m)eX”*. If m 0, then {(y, m)} is a neighborhood
of (y, m) in X* which meets an element G~ of €(n) only if ye@eZ(n)
(cf. (3.1)). Since y is a point of at most countably many elements of
%#(n), the set {(y, m)} meets only countably many elements of €(n).
If m =0, let J = J(n,y) . Then J is a neighborhood of (y, 0) in X*.
Since J NG~ # @ only if J(n,y)NG # @, it suffices to show that J
contains only countably many points (z, k)e X*\ X with zeA (n)UB(n).
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But this is certainly the case, because {xeA(n)UB(n): (z,k)eJ\ X}

c J(n,y)N(A(n)UB(n)) and the latter set is cou.ntable Therefore,
% (n) is locally countable in X*.

o0
To complete the proof, let us show that ¥ = (J ¥(n) is a base for
n=1

the topology of X*. Let (z, k)elI, where I is a convex open subset of X*.
If ¥ # 0, then zeA(n)UB(n) for some n>1 whence {(z, k)}¢#(n) and
{(z, k)} < I. If k = 0, then the set I N X is a neighborhood of z in X.
Since # is a base for X, there is an integer n > 1 and a set G'e#(n) such
that £¢G@ < I nX. Since I is convex in X*, it follows from (3.5) that
(xz, 0)eG” < I. Since G~ «¥(n), € is a base for X"

Our next proposition is an immediate consequence of the proof of
(5.4). However, it can be established without reference to the Fedorfuk
metrization theorem.

(5.5) PROPOSITION. Let X be a GO space. If X is metrizable, so is X"

Proof. Let # =) #(n) be a o-locally finite base for X. Define
n=1

A(n) and B(n) as in the proof of (5.4) and define

€(n,m) = {G GeZB(n)}o{{(@, k)}: (2, k)eX"\ X, zeA(n)UB(n)
and [k| < m).

If the intervals J (n, ) in the proof of (5.4) are chosen to meet only finitely
many elements of ﬂ(n), then the rest of the proof of (5.4) shows that

the collection ¥ = U %(n,m) is a o-locally finite base for X~

m,n=1

(5.6) CorROLLARY. Let X be a GO space. If X 18 separable memzable,
then so is X*.

Proof. This follows immediately from (5.5) and (4.4), which asserts
that if X is Lindelof, then so is X",

(6.7) Remark. Example 7.2 shows that a GO space X may be either
hereditarily Lindelof or separable and yet the associated LOTS X* may
be neither. Corollary (5.6) shows, by way of contrast, that if X is second
countable, then so is X*.

Let us turn our attention to GO spaces which have a G,-diagonal.
In [16] we proved that a LOTS with a G,-diagonal is metrizable. We
present another proof here which is simultaneously more direct and
applicable to a wider class of spaces, namely the p-embedded subspaces
of LOTS.

(6.8) DEFINITION ([1] and [11]). Suppose X is (homeomorphic to)
a subspace of a topological space Y. Then X is said to be p-embedded
in Y if there is a sequence (Z(n)) of covers of (the image of) X by open
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subsets of Y such that if z¢X, then (St(z, #(n)) = X. The sequence
n=1

{%(n)) i8 called a pluming of X in Y. ‘

Clearly, if X is either an open subset of Y, or a G;-subset of Y, then X
is p-embedded in Y. Spaces which are p-embedded in some compact
Hausdorff space were introduced by A. V. Arhangel’skii [1] under the
name of p-spaces and have been extensively studied.

(5.9) THEOREM. Let (Y, 4, <) be a LOTS and let X be a p-embedded
subspace of Y. Let T be the relative topology on X. If (X, t) has a G;-diagonal,
then (X, t) 18 melrizable.

Proof. Let <#(n)> be a pluming of X in Y. Since (X, 7) has a G,-
diagonal, there is a sequence {%(n)) of relatively open covers of X such

that for each zeX, ﬂSt(w, % (n)) = {=}. For each zeX and »n>1,

we inductively choose convex (in Y) open subsets V (%, ) of ¥ such that:
(i V(n,z) contains z;
(ii) V(n, ) nX is contained in some element of ¥(n);
(iii) V (», x) is conthined in some element of #(n);
(iv) if n> 2, then V(n,x) < V(n—1,2).
Let ¥ (n) ={V(n,u): zeX}. For each zeX, St(z, ¥ (n)) = St(z,

%(n)) so that (0% St (x, ¥"(n)) = X. Furthermore, St(z, ¥"(n))NnX < St(z,
g (n)) so "

a:efjl St(z, ¥ (n)) = (51 [X nSt(z, ¥ (n))] = (ojl St(z, (n)) = {«},
i.e.,

ﬂ St(a: ¥ (n)) = {=}.

Let #(n) ={VnX: Ve¥ (n)}. Because (X, ) is collectionwise
normal (4.1), the theorem will be proved if we show that (s# (n)) is a deve-
lopment for (X, 7). Let  be a point of a basic r-open set J N X, where J
is an open interval or a half line in Y. Consider the case where J is an
open interval in Y, say J = ]a, b[. (Observe that the points @ and b need

not be points of X.) Since (M) St(z, ¥(n)) = {«}, there is an integer «
n=1

such that neither a nor b is a point of St(z, ¥"(n)). Because St(z, ¥ (n))
is a convex subset of Y containing wela, b[ but containing neither a
nor b, we conclude that St(x, ¥"(n)) = la, b[. Then St(z, #(n)) = St(z,
¥ (n))NX < Ja, b nX as required.

The case where J is a half line in Y is analogous and even simpler.
Hence (s (n)) is a development for (X, 7).

\
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The author does not know of any class of GO spaces which is larger
that the class of p-embeddable subspaces of LOTS and for which the
G,-diagonal metrization theorem is true.

We conclude Section 5 with a few results on quasi-developable GO
spaces. The next proposition is known.

(5.10) ProposITION. A LOTS is quasi-developable iff it has a o-point
finite base.

A proof appears in [6]. We generalize (5.10) to the class of GO spaces
as follows: '

(6.11) PropoSITION. Let X be a GO space. Then the following are
equivalent: .

(a) X hag a a-point finite base;

(b) X* is quasi- developable;

(e) X s quasi-developable.

Proof. That (b) implies (a) follows from (5.10) and the fact that
if X* has a o-point finite base, then so do its subspaces. A result of C. E.
Aull [2], which says that any space with a o-point finite base is quasi-
developable, shows that (a) implies (c). We show that (¢) implies (b).
Let (¥(n)> be a quasi-development for X. We may assume that each
@(n) is a collection of convex subsets of X. Define #(0) = {{(=, k)}:
(#, k)eX* and k 5 0}. For > 1, let #(n) = {G : Ge¥(n)}. Each #(n)
is a collection of open subsets of X*, and it follows easily from (3.5) that
{#(n): n > 0} is a quasi-development for X*.

(5.12) COROLLARY. A quasi-developable GO space is hereditarily
paracompact.

Proof. Apply (4.2) and (5.11) (a).

Our final result in Section 5 gives a simple characterization of quasi-
developable LOTS. It is reminiscent of the G@,-diagonal metrization
theorem for LOTS.

(5.13) ProposiTiION. A LOTS Y is8 quasi-developable iff there is
a sequence (¥4 (n)> of collections of open subsets of Y such that if p +# q
are points of Y, there i8 an integer m > 1 with the property that peSt (p,
g (n)) = X\{q}.

Proof. To prove the non-trivial half of (5.13), suppose {(¥(n)) exists.
We may suppose that each %(n) is a collection of convex subsets of Y.
For each pair m, n > 1, define 5 (m, n) = {GNG': Ge¥(m) and G’ ¢%(n)},
We will show that {s#(m,n): m,n > 1} is a quasi-development for Y,

Suppose pe U, where U is open in Y. If p is not an endpoint of Y,
there are points a,beY with pela, b[ € U. By hypothesis, there are
integers m’ and »’ such that peSt(p, ¥(m')) = X\ {a} and peSt(p,
% (n')) = X\ {b}. Then St(p, # (m’, n’)) is a convex subset of ¥ containing p
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but neither a nor b, so St(p, #(m’,n')) = la, b[ = U. As usual, the case
where p is an endpoint of Y is even easier.

(5.14) Remark. (a) Because of the similarity of (5.13) to the G-
diagonal metrization theorem, the reader might conjecture that (5.13)
could be proved for p-embedded subspaces of LOTS. This is, in fact,
true, but the proof is more involved.

(b) Let us point out that, in spite of (5.12) and (5.13), a quasi- develop-
able GO space need not have a G,-diagonal, as Example (7.3) shows.

6. Local compactness and the Z-space property in GO spaces

The present section is divided into three parts. We begin by showing
that if a GO space X is locally compact, then so is X*. We then establish
a result (6.5) which should be useful in studying normality in the product
of two locally compact GO spaces. We conclude with some results con-
cerning Nagami’s X-spaces [22], showing that a locally compact GO
space is a X-space and that a GO space X is a X-space iff X* is a X-space.

Let us begin with an easy lemma.

(6.1) LemMMA. If a GO space (X, 7, <) is either compact or connected,
then v = (). .

Proof. Suppose first that (X, z) is compact. Then the function
Ix: (X, 1) > (X, 4(<)) defined by Ix(z) = & is a continuous, one-to-one
mapping from the compact space (X, 7) to the Hausdorff space (X, 1(<))
and so is a homeomorphism. It follows that v = A(K).

Next suppose that (X, r) is connected. For contradiction, suppose
that X*\ X #@. Let (z, k)e X"\ X. Then the sets 4 = X n]<, (z, k)]
and B = X nNn[(z, k), >[ are disjoint closed non-empty subsets of X
which cover X; this is impossible since X is connected. Therefore,
X*=2X, s0 1 = A).

(6.2) Remark. In contrast to (6.1), a GO space may be either locally
compact or locally connected without being a LOTS under any order.
For example, consider X = ]0, 1[U {2} topologized as a subspace of R
with the usual topology.

(6.3) ProposITION. If X 48 @ locally compact GO space, then X is
open in X*.

" Proof. In this proof, we shall distinguish between X and X x {0},
which is a subset of X*. Let us begin by showing that if # < y are points
of X such that [z, y] is compact (as a subspace of X), then, in X*, [(z, 0),
(¥, 0)] = X X {0}. For contradiction, suppose there is a point (2, k) e X*\ X
having (z, 0) < (2, k) < (¥, 0). We consider the case where &k < 0. Then
# <2<y and 2 has no immediate predecessor in X. Furthermore, the
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set [z, — [ is open in X so the set J = [z, 2[ = [, y]\ [2, — [ i8 compact.
But this is impossible because, by (6.1), 7, = A(< ;), s0 (J, 7,, < ,) is
a compact LOTS and must, therefore, have a final point. The case where
k > 0 is similar. Therefore, [(z, 0), (¥, 0)] = X x {0}.

Now suppose (z,0)eX x {0}. Since (X, r) is locally compact, there
is an interval I in X which is a neighborhood of 2z in X and whose closure
in X is compact. Letting z and y be the endpoints of the closure in X
of I, we have = < 2z <y. Furthermore, even though the set K = [z, ]
may be strictly larger than the closure of I in X, K is still compact. From
the first part of the proof, [(z, 0), (¥, 0)] = X X {0}. By (3.5), the set I~
is a neighborhood of (2, 0) in X* and I~ < [(z, 0), (y, 0)]. Therefore X x {0}
is open in X*, as required.

(6.4) CorROLLARY. Let X be a GO space. If X i3 locally compact, then
so is X*, and conversely.

Proof. Let peX*. If pe X*\ X, then {p} is a compact neighborhood
of p. If peX, then there is a neighborhood U of p in X whose closure
in X is compact. Since X is open in X*, U must also be a neighborhood
of p in X* whose closure in X* is compact. Therefore, X is locally compact.

The converse follows directly from (2.9), since a closed subspace of
a locally compact space is locally compact.

Historically, local compactness in LOTS has been studied in con-
nection with the theory of product spaces (e.g., [4] and [14]). Our next
result should be useful in studying products of locally compact GO spaces,
especially in the light of Hayashi’s important paper [14].

(6.5) PROPOSITION. Let X and Y be locally compact GO spaces. Then
X x Y is normal iff X*x Y* is normal.

Proof. <: If X*x ¥Y* is normal, then so is X x Y since X x Y is
a closed subspace of X" x Y*.

=: Suppose X X Y is normal. Let 4 and B be disjoint closed subsets
of X* XY Let Z, = XxY, Z, =(X*\X)x Y, Z; = XX (Y*\Y) and
Z, = (X*\ X)X (Y*\ Y). By (6.3), X is open. in X* and Y is open in ¥".
Hence each set Z; (1 <i<4) is open in X*x Y*. Let 4, = ANnZ; and
B, = BnZ, for 1 <i< 4. Then A, and B, are relatively closed subsets
of Z; and are disjoint. Now Z,, bemg the product of two discrete spaces,
is certainly a normal space, and Z, is normal by hypothesis. The spaces
Z, and Z, are each products of a discrete space and a GO space and so
are normal (alternatively, apply (6.10), proved independently below).
Hence there are disjoint relatively open subsets U; and V, of Z; which
contain A; and B, respectively, for 1 <:i< 4. Let U = U,vU,vU,v U,
and let V = V,uV,uV,uV,. Since each Z, is open in X* x ¥*, U and V
are open in X*x Y*, and clearly A < U, B< V and UnV = . Hence
X*x Y* is normal.
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It might be interesting to know whether (6.5) can be proved without
assuming local compactness. .

In [22], Nagami introduced a class of spaces, called X-spaces, which
have particular relevance to product theory. Nagami proved that if X
is a countable union of closed subspaces each of which is a X'-space, then
X is also a 2'-space, and that any (countably) compact space is a 2'-space.
E. Michael pointed out that a paracompact, locally compact space is
a X-space. He then asked whether an arbitrary locally compact Hausdorff
space must be a X-space. The author observed that an example due to
D. K. Burke [8] provides a negative answer to Michael’s question (12).
However, Burke’s space is not normal and the question “Must a normal
locally compact Hausdorff space be a X-space ?”’ is still open. Proposition
(6.8) below provides an affirmative answer to this question in the special
case where X is a GO space.

The following definition is equivalent to the one given by Nagami
in [22].

(6.6) DEFINITION. A X-network for a space X is a o-locally finite

closed cover # = | J #(n) of X such that for each zeX,

n=1

(a) the set C(x) = ) L(x, F) is countably compact (cf. (3.8));

(b) & contains an outer network for C(z) in X, i.e., if U is an open
subset of X which contains C(x), then there is a set FeF such that
Czycs FcU.

A space which has a X-network is called a X-space ().

Our next lemma will be used in (6.8). '

(6.7) LEMMA. Let A" be the family of all compact convex subsets of a GO
space X, and let € be a maximal coherent subcollection of X. If pel ) ¥,
then St(p, X') = St(p, ¢) = |U¥.

Proof. Let Y = | J¥. It is clear that & (p, ¢¥) = ¥ (p, #) and that
&(p, X) is a coherent subcollection of . Since € is a maximal coherent
subcollection of #° and since St(p, #) N(|UJ %) # 9, it follows from (3.9)
that % (p, ¥') < ¢. Hence % (p,*) = ¥(p,¥). Therefore, St(p, *)
= St(p, ¥), so it suffices to show that Y < St(p, ¥). We verify that
Ynp, - [ < St(p, ¥). If YNn[p, > [ & St(p, ¥), choose geY such that

(12) Burke shows in [8] that his example is a locally compact Hausdorff space
which is metacompact but not subparacompact. If this space were a X-space, then,
in the notation of (6.6), each set 0(x) would be metacompact and countably compact,
whence compact. By a result of E. Michael (cf. footnote (12)), Burke’'s space would
then have to be subparacompact.

{(13) If each set C(x) is compact, then X is called a strong X-space. E. Michael
proved that a regular Z'-space is a strong L-space iff it is subparacompact. It follows
from (4.1) that a GO space is a strong X-space iff it is a paracompact X-space.
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q > p, q¢St(p, ¢) and St(q, €) NSt(p, ¥) #* B. (This is possible by (3.10).)
Let zeSt(g, ¥) NSt(p, ¢). Choose I,Je¢€¢ such that {p,z}<I and
{g, z} = J. Then K =IuUJ is an element of ¥, 80 geK < St(p, X)
= St(p, ¥), contrary to our choice of ¢q. Therefore, ¥ n[p, — [ = St(p, ¥).
The proof that Y n] <, p] < St(p, ¥) is analogous.

(6.8) PROPOSITION. Every locally compact GO space is a X-space.

Proof. Let X be the collection of all compaet convex subsets of
the locally compact GO space X, and let p e X. We show first that St(p, X)
is open in X. Suppose ¢eSt(p, ), and let I be a compact convex set
which is a neighborhood of g. Since ¢eSt(p, '), there is a JeX  such
that {p,q} < J. Then K = IuJe¥ and qeI < K < St(p, ). Hence
St(p, &) contains a neighborhood of each of its points, so St(p, &) is
open in X.

Let ¥ = {¥(a): aeA} be the family of all maximal eoherent sub-
collections of 5¢". For each aeA, choose p(a)e | € (a). By (6.7), St(p(a), X)
= St(p(a), €(a)) = | %(a). Therefore, {St(p(a), ¥(a)): acA} is a disjoint
open cover of X, so each set St(p(a), ¥ (a)) is both open and closed in X.
Since a disjoint union (topological sum) of X'-spaces is again a X-space,
it suffices to show that each subspace St(p(a),%(a)) of X is a
Z'-space. _

Fix aecd. Let p = p(a) and € = ¥(a). Let 8§ = St(p, €)Nn[p, - [
and T = St(p,¥)Nn]<«,p). Then S and T are closed subsets of X.

Let us show that S is a X'-space. It will suffice to show that 8§ is
a countable union of closed subspaces, each of which is a X-space. There
are two cases to consider. First suppose that S contains a countable
cofinal subset, i.e., a countable set D = § with the property that for
each ze&8, there is an element deD with z < d. Since D < St(p, ¥), for
each deD we may choose a compact convex set K (d)e ¥ (p, ¥) which
contains d. Then 8 < | J{K(d): deD}, so 8 is o-compact, as required.
Second, consider the case where no countable subset of S is cofinal. We
claim that 8 itself is then countably compact. Let E be a countably
infinite subset of 8. Since F cannot be cofinal in S, there is a point xeS
such that ¥ c ]« , #]. Since xS, there is a K ¢ #(p, ¢) which contains .
Since K is convex, F < K. Because K is compact, some point of K n[p, — [
is a limit point of the set E. Therefore, any infinite subset of § has a limit
point in 8, so 8 is countably compact. Therefore, S is a X-space.

A similar argument shows that 7' is also a-ZX-space. Since St(p, ¥)
= SUT, it follows that St(p,¥) is a X-space, and the proof is com-
plete.

As one application of (6.8), we state a result which follows immedia-
tely from (6.8) and two theorems of Nagami (Theorem 5 of [23] and
Theorem 2.7 of {22]) which imply that if X is a collectionwise normal
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X-gpace and Y is a o-space (**) such that X x Y is normal, then X x Y
is collectionwise normal.

(6.9) CoroLLARY. The product of a locally compact GO space and
a melrizable space i8 collectionwise normal.

Next we show that if a GO space X is a X-space, then so is X*, and
conversely. Our proof requires two lemmas.

(6.10) LEMMA. Let X be a GO space and let N > 0 be fixed. For each
subset F of X, let F¥ = {(2, k)eX*: v F and |k| < N}. If F is closed in X,
then F¥ is closed in X*, and if F is a locally finite collection of subsets of X,
the collection F¥ = {F# FeF)} 18 locally finite in X*.

Proof. Both statements follow from the fact that if § = X is convex
in X and if 8" nF#* « @, then SNF = @.

(6.11) LEMMA. Let X be a GO space and let N > 0. Let C be a countably
compact subspace of X and define C¥ as in (6.10). Then C¥ is a countably
compact subspace of X*.

Proof. Let E = {(x;, k;): j = 1} be a countably infinite subset of C¥.
We show that some point of C¥ is a limit point of E.

Since |k;] < N for each j, the set C° = {z;: j > 1} is an infinite subset
of C. Therefore, some point yeC is a limit point of C’. Let us show that
the point (y, 0), which is certainly a point of ¥, is a limit point of E.
Because y is a limit point of C’, ¥ is not an isolated point of X and either (i)
every X -neighborhood of y contains points to the right of ¥ and Jy, 2[ NC’
# 0 whenever z >y, or else (ii) every X -neighborhood of ¥ contains
points to the left of ¥ and Jz, y[ NC’' # @ whenever z < y. We assume
that (i) holds. Let U be any neighborhood of (¥, 0) in X*. Then there is
a point (y’, m')eX* such that (y', m’) > (v, 0) and [(y,0), (', m')[ < U.
Since ]< ,y] is not open in X, it is not possible that y = y’. Hence
y<y'. Choose z;¢]y, y'[ NC'. Then (x;, k;)e EN[(y, 0), (y',m')[ = EnT.
Therefore (y, 0) is a limit point of E, as required.

(6.12) THEOREM. Let X be a GO space. If X is a X-space, then so is X*,
and conversely.

Proof. Suppose X is a X'-space. Let ¥ = U Z (n) be a X-network

n=1
for X. We may suppose that each #(n) covers X, is closed under finite

intersections, and that for each weX, C(z,n+1) = () &(x, F(n+1)
< C(w, n) = N L, F (n)). o

For N>1, let Y(N) = {(z, k)eX*; |k| < N}. Then X* = (J ¥ (¥)
N1

and each Y (XN) is closed in X*. Therefore it suffices to show that each
Y(N) is a 2-space [22].

() A space X is a o-space if there is a o-locally finite collection & of closed
subsets of X with the property that if U is an open subset of X and if p e U, then
peF ¢ U for some Fe#F, Clearly & metrizable space is & o- space,
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Let N > 1 be fixed, and define collections #F¥(m) = {F¥*: Fe# (m)}
as in (6.10). Then each F¥(m) is a locally finite closed cover of Y (N).

We will show that F# = U Fi#(m) is a Z-network for Y (N). For

peY(N) and for m > 1, let K(p, = M &(p,F* (m)) and let K(p)
=N L (p,F*). If p is the point (z, j) of Y (N), then K(p, m) = C(x, m)*
and K(p) = C(z)*. By (6.11) K(p) is countably compact. Furthermore,
K (p, m)eF ¥ (m) since C(z, m)eF (m), so it suffices to show that {K(p, m):
m > 1} is a.n outer network for K (p).

Suppose that U is an open subset of X* which contains K (p). Then
U 2 C{z) so there is an integer m’ such that C(z, m) < U whenever m > m'.
For contradiction, suppose that K(p,m) &£ U for each m > 1. Then
each set K (p, m)\ U is infinite, so we may choose a sequence of distinct
points (z,,, k,,)eK(p, m)\ U. Because 2, ¢C(z, m) = U whenever m > m/,
k, # 0 whenever m > m'.

Let B = C(x)V{z,: m>m'}. Because C(z) is countably compact
and because every open subset W of X which contains C(z) also contains
all but finitely many points x,, the set B is also countably compact.
By (6.11), so is B¥. Since points (y, j) of B¥ with j # 0 are isolated in X*,
the set E = C(x)*u{(z,,,j): m>m' and j =0 or j =k,} is a closed
subset of B¥. Hence E is also countably compact. But then so is E\ U
= {(,,, k,,): m = m'} which is impossible since E\ U is an infinite discrete
set. This contradiction establishes that for some m > 1. K(p, m) <
as required.

The converse assertion is trivial, since any closed subspace of a 2'-space
is again a X-space [22].

7. Examples

In this section we present several examples which have been referred
to in earlier parts of the paper. The spaces of (7.2) and (7.3) are perhaps
the most interesting examples of GO spaces.

(7.1) ExaMPLE. Let X be the set [0, 2], where 2 is the first uncount-
able ordinal, and let < be the usual ordering of X. Let = be the topology
on X obtained from the usual order topology by isolating every countable
limit ordinal. Then (X, 7, <) is certainly a GO space.

Let Z be the set ([0, 2[x Z)u{(£, 0)} and let (<) be the lexico-
graphic ordering on Z. Let 4 be the open-interval topology of (<). Let
f be any one-to-one function from [0, £[ onto [0, [ X Z (such functions
exist since the sets have the same cardinality). Define h: X - Z by
R/{0, Q[ = f and h(£2) = (£, 0). Then % is a homeomorphism from (X, 7)
onto (Z, 2). However, since X*\ X +« @, there is no one-to-one function
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H: X* — Z which makes the mapping diagram in (2.11) commute. This
example provides a negative answer to the first question in (2.12).

- This space (X, r,<) has several other interesting properties which
we list. Compact subsets of X are finite and X is not a X-space. However,
X is a P-space in the sense of Morita [24]. It is easily seen that X is Lin-
deléf and hereditarily paracompact, as is any finite power X" of X. N. Nob-
le [25] proved that X™o, the countable product of copies of X, is Lindelof.

(7.2) The Sorgenfrey line. Let R have its usual order <. Let o be the
topology on R having a base consisting of sets of the form [a, b[. The
space (R, o), called the Sorgenfrey line, is a separable GO space. By (2.10),
the Sorgenfrey line is hereditarily separable and hereditarily Lindeldf.
Furthermore, (R, ¢) has a G,-diagonal and yet is not metrizable and
does not have a o-point finite base (**). (Cf. (5.14).) It follows from (5.9)
that (R, o) cannot be p-embedded in any LOTS; in particular, R is not
a G,-subset of the LOTS (R, o, <)* which shows that the latter space
is not perfect —and hence not separable — even though (R, o) is both.

(7.3) Yet another line. Let < be the usual ordering of R and let u
be the topology on R obtained from the usual topology by isolating each
irrational. (This GO space has important uses in the study of normality
in product spaces — cf. [19] and [20].) Clearly (R, i) has a G,-diagonal
and is not metrizable or even perfect (°). Furthermore, (R, x) has a ¢-point
finite base, so (R, u) is quasi-developable. By (5.11), so is the LOTS
(R, u, <)*. Since this latter space cannot be metrizable, we see that
a LOTS can be quasi-developable without having a @,-diagonal, as
claimed in (5.14). This space also shows that a space with a o-point finite
base need not have a uniform base (*°).

(7.4) ExaMPLE. There are hereditarily paracompact GO spaces which
do not satisfy the hypotheses of (4.5), (4.8) or (4.10) (which asserted,
respectively, that the existence of a @G,-diagonal, perfect normality, and
hereditary paracompactness of the weaker open-interval topology are
each sufficient conditions for hereditary paracompactness in a GO space).

(a) Let X be the unit square with the lexicographic order topology.
Being a paracompact first countable LOTS, X is hereditarily paracom-
pact ("). Yet X, being non-metrizable, cannot have a @,-diagonal.

(15) In faet, (R, o) does not even have a point-countable base.

(18) A base & for a space X is uniform if whenever ¢ is an infinite subcollection
of # each of whose elements contains a point p of X, then ¥ is a local base at p. It
is known that a regular space X has a uniform base iff X is developable and meta-
compact. Hence a regular space with a uniform base has a o-point finite base, but
the converse is true only in perfect spaces.

(17) Sketch of proof: Using the characterization of paracompactness in LOTS
given in [13], show that any convex subspace of a first countable paracompact LOTS
is paracompact. Then argue as in footnote ().
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(b) The space, of (7.3) is hereditarily paracompact by (5.12) but is
not perfectly normal. The same is true for the lexicographic square in
(a), above.

(c) Let Y be the set of countable ordinals with the usual order and
discrete topology. Then Y is metrizable, while the countable ordinals
with the usual topology are not even paracompact.

(7.5) ExaMPLE. The correspondence X — X* is not functorial (cf.
(2.12) (b)). Let X be the set R with its usual order. Let v be the topology
on X obtained from the usual topology by making the set ] <« , 0] open.
Let Y = R\ {1} have its usual topology and order. Define f: X - ¥
and g: ¥ > X by '

if y<0
T if z<0, Y y="

T) = =10 fo<y<i1
f(@) sil i 0<a, 9(y) . y<1,
y—1 if 1<y.

Then f and g are order-preserving continuous maps, and gof = 1.
Suppose that there were a way to define f* and g¢* so that * became
functorial and so that g* extended g. Then g*of* = (gof*) = (Ix)" = Ix..
By (1.5), Y* =Y and (0,1)eX*\ X. Since f*(0,1)eY" = Y, we have
g* (f*(0,1))eg*[Y] = g[Y] < X because g* is assumed to extend g.
Therefore, g*of*(0, 1) cannot be (0, 1), contradicting g*of* = Ix..
Observe that, for the spaces X and Y of this example, our spaces X*
and Y* coincide with the extensions of X and Y which are defined in [9].
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