CONTRACTORS AND FIXED POINTS

BY

S. L. SINGH* (RISHIKESH) AND J. H. M. WHITFIELD** (THUNDER BAY)

1. Introduction. With a view to providing a unified approach to solving general equations in abstract spaces by iterative methods, Altman [1] introduced the theory of contractors (cf. also [2] and its references). For example, in this manner the Banach contraction principle (BCP) and Krasnosel'skiĭ's fixed point theorem have been unified. Further recent results of Reddy and Subrahmaniam [14]–[16] unify Altman's contractor theorem (Theorem 2.3 below) and fixed point theorems of Matkowski [10], Krasnosel'skiĭ [8] and Czerwik [5]. However, some nice generalizations of the BCP and Nadler's multivalued contraction principle [11] (e.g., Theorems 2.1 and 2.2 below) cannot be obtained from [1], [2] or [15]–[17].

Herein, we prove, in Section 3, a general contractor theorem which includes Altman's Theorem 2.3 and several fixed point theorems and other results for contractive type single- and multivalued operators.

The Mann iteration scheme to approximate solutions of operator equations and fixed points of contractive operators has been widely studied (see, e.g., [3], [6], [9], [13], [19]). In Section 4 an iteration scheme is introduced which generalizes the Mann iteration and we show that if it converges, then it converges to a solution (Theorem 4.1).

2. Contractors. Consistent with [12], p. 620, we will use the following notation where \(Y \) is a Banach space:

\[
\text{CL}(Y) = \{ A \subseteq Y : A \neq \emptyset \text{ and is closed} \}.
\]

For \(A, B \in \text{CL}(Y) \) and \(\varepsilon > 0 \),

\[
N(\varepsilon, A) = \{ y \in Y : \| y - a \| < \varepsilon \text{ for some } a \in A \},
\]

\[
E_{A,B} = \{ \varepsilon > 0 : A \subseteq N(\varepsilon, B), B \subseteq N(\varepsilon, A) \},
\]

\[
H(A, B) = \begin{cases} \inf E_{A,B} & \text{if } E_{A,B} \neq \emptyset, \\ +\infty & \text{if } E_{A,B} = \emptyset, \end{cases}
\]

* This paper was prepared while this author was visiting the Lakehead University.
** This author's research supported in part by an NSERC (Canada) Grant.
and for $y \in Y$

$$D(y, A) = \inf \{ ||y - a||: a \in A \}. $$

H is called the generalized Hausdorff metric for $\text{CL}(Y)$.

The following is a Banach space version of Pal and Maiti’s result [14] (see also [19], p. 42):

Theorem 2.1. Let T be an operator on a Banach space Y such that, for any two elements $x, y \in Y$, at least one of the following is true:

\begin{align*}
(2.1) \quad ||x - Tx|| + ||y - Ty|| & \leq a ||x - y||, \quad 1 < a < 2; \\
(2.2) \quad ||x - Tx|| + ||y - Ty|| & \leq b (||x - Ty|| + ||y - Tx|| + ||x - y||), \quad 1/2 < b < 2/3; \\
(2.3) \quad ||Tx - Ty|| & \leq k \max \left\{ ||x - y||, ||x - Tx||, ||y - Ty||, \frac{||x - Ty|| + ||y - Tx||}{2} \right\}, \quad 0 < k < 1; \\
(2.4) \quad ||x - Tx|| + ||y - Ty|| + ||Tx - Ty|| & \leq c (||x - Tx|| + ||y - Ty||), \quad 1 < c < 3/2.
\end{align*}

Then T has a fixed point.

Theorem 2.2 (Čirić [4]). Let Y be a Banach space and $F: Y \to \text{CL}(Y)$ satisfy

$$H(Fx, Fy) \leq k \max \left\{ ||x - y||, D(x, Fx), D(y, Fy), \frac{D(x, Fy) + D(y, Fx)}{2} \right\}$$

for all $x, y \in Y$ and some $k \in (0, 1)$. Then F has a fixed point.

These theorems are proved for orbitally complete metric spaces (see [4] and [14]).

Definition 2.1 (Altman [1]). Let X and Y be Banach spaces, $P: D(P) \subset X \to Y$ be a nonlinear map with domain $D(P)$ and $\Gamma(x): Y \to X$ be a bounded linear operator associated with $x \in X$. The map P is said to have a contractor $\Gamma(x)$ if there is $k \in (0 < k < 1)$ such that

\begin{align*}
(2.5) \quad x + \Gamma(x) y & \in D(P) \quad \text{for } x \in D(P), \ y \in Y; \\
(2.6) \quad ||P(x + \Gamma(x) y) - Px - y|| & \leq k ||y|| \quad \text{for } x \in D(P), \ y \in Y.
\end{align*}

A contractor $\Gamma(x)$ is said to be regular if (2.6) is satisfied for all $y \in Y$ and $D(P) = \Gamma(x) Y$. The operator P is said to be closed on $D(P)$ if the graph of P is closed, i.e., if $x_n \in D(P)$, $x_n \to x$ and $Px_n \to y$, then $x \in D(P)$ and $y = Px$. In the case of a nonlinear multivalued operator $P: D(P) \to \text{CL}(Y)$, P is called closed on $D(P)$ if $x_n \to x$, $y_n \in Px_n$ and $y_n \to y$ imply $x \in D(P)$ and $y \in Px$ (see [17]).
The following existence theorem, due to Altman, is fundamental to the theory of contractors.

Theorem 2.3 ([1], p. 13). Suppose that the closed nonlinear operator \(P: D(P) \subseteq X \to Y \) has a bounded contractor \(\Gamma \) satisfying (2.5), (2.6) and

\[
\| \Gamma(x) \| \leq B \quad \text{for all } x \in D(P).
\]

Then the equation \(Px = y \) has a solution for each \(y \in Y \). When \(\Gamma \) is regular, (2.5) always holds and the solution is unique.

3. Multivalued mappings and general contractors. The following lemma (cf. [20]) will be used:

Lemma 3.1. Let \(A, B \in \text{CL}(Y) \) and \(a \in A \). Then for \(k \in (0, 1) \) and \(\lambda \in [0, 1) \) there exists \(b \in B \) such that

\[
\|a - b\| \leq k^{-\lambda} H(A, B).
\]

(Note that for \(k \in (0, 1) \) it is always possible to choose \(\lambda \in [0, 1) \) such that \(1 \leq k^{-\lambda} \leq 2 \).

Let \(X \) and \(Y \) be Banach spaces, \(P: D(P) \subseteq X \to \text{CL}(Y) \) and \(\Gamma(x): Y \to X \) be a bounded linear operator. For convenience, define \(t_i = t_i(x, y) \), \(i = 1, \ldots, 5 \), for \(x \in D(P), y \in Y \) as follows:

\[
\begin{align*}
t_1 &= (P(x + \Gamma(x))y, y + Px), \\
t_2 &= (y, y - Px), \\
t_3 &= (x, x - \Gamma(x)(P(x + \Gamma(x))y)), \\
t_4 &= (y, -Px), \\
t_5 &= (x, x - \Gamma(x)(-y + P(x + \Gamma(x))y)).
\end{align*}
\]

Theorem 3.1. Suppose \(P: D(P) \subseteq X \to \text{CL}(Y) \) satisfies the following: there exists a bounded linear operator \(\Gamma(x): Y \to X \) associated with \(x \in X \) such that

\[
\begin{align*}
\| \Gamma(x) \| &\leq B, \quad B > 0, \ x \in D(P); \\
x + \Gamma(x)y &\in D(P) \quad \text{whenever } x \in D(P), \ y \in Y.
\end{align*}
\]

Further, for \(x \in D(P), y \in Y \), at least one of the following holds:

\[
\begin{align*}
Ht_2 + Ht_3 &\leq a\|y\|, \quad 1 < a < 1 + B; \\
Ht_2 + Ht_3 &\leq b [Dt_4 + Dt_5 + \|y\|], \quad (1 + B)^{-1} < b < 1 - B(1 + 2B)^{-1}; \\
Ht_1 &\leq k \max \left\{\|y\|, Dt_2, Dt_3, \frac{Dt_4 + Dt_5}{2}\right\}, \quad 0 < k < 1, \ Bk^{-\lambda} < 1, \text{ where } \lambda \in [0, 1) \text{ is such that } k^{-\lambda} \leq 2; \\
Ht_1 + Ht_2 + Ht_3 &\leq c [Dt_4 + Dt_5], \quad 1/B < c < 1 + B/2.
\end{align*}
\]

Then there exists \(z \in D(P) \) such that \(0 \in Pz \).
Proof. Construct two sequences \(\{x_n\} \subseteq D(P) \) and \(\{y_n\} \subseteq Y \) as follows: Choose \(x_0 \in D(P) \) and \(y_0 \in Px_0 \). Set
\[
x_1 = x_0 - \Gamma(x_0)y_0 \in D(P)
\]
and note that \(0 \in Px_0 - y_0 \). By Lemma 3.1, choose \(y_1 \in Px_1 \) such that
\[
\|y_1\| \leq k^{-1} H(Px_1, Px_0 - y_0).
\]
Set \(x_2 = x_1 - \Gamma(x_1)y_1 \) and choose \(y_2 \in Px_2 \) such that
\[
\|y_2\| \leq k^{-1} H(Px_2, Px_1 - y_1).
\]
Having chosen \(x_n \) and \(y_n \in Px_n \), let \(x_{n+1} = x_n - \Gamma(x_n)y_n \) and choose \(y_{n+1} \in Px_{n+1} \) such that
\[
(3.7) \quad \|y_{n+1}\| \leq k^{-1} H(Px_{n+1}, Px_n - y_n).
\]

Now for \(x = x_n \) and \(y = -y_n \) we will consider each of the cases (3.3)–(3.6). Frequent use will be made of the fact that, for any \(u \in D(P) \) and any \(v \in A \in CL(Y) \),
\[
\|u - v\| \leq H(u, A).
\]

In case (3.3) we obtain
\[
H(-y_n, -y_n - Px_n) + H(x_n, x_n - \Gamma(x_n)Px_{n+1}) \leq a\|y_n\|,
\]
that is, \(\|y_n\| + B\|y_{n+1}\| \leq a\|y_n\| \). Therefore
\[
(3.3a) \quad \|y_{n+1}\| \leq q_1 \|y_n\|, \quad \text{where} \quad q_1 = \frac{a - 1}{B}.
\]

In case (3.4) we have
\[
\|y_n\| + B\|y_{n+1}\| \leq b [\|y_n + y_{n+1}\| + \|y_n\|].
\]
Thus
\[
(3.4a) \quad \|y_{n+1}\| \leq q_2 \|y_n\|, \quad \text{where} \quad q_2 = \frac{b(1 + B) - 1}{B(1 - b)}.
\]

In case (3.5) we obtain
\[
H(Px_{n+1}, -y_n + Px_n) \leq k \max \left\{ \|y_n\|, D(-y_n, y_n - Px_n), D(x_n, x_n - \Gamma(x_n)Px_{n+1}), \frac{D(-y_n, -Px_n) + D(x_n, x_n - \Gamma(x_n)(y + Px_{n+1}))}{2} \right\}
\]
\[
\leq k \max \left\{ \|y_n\|, B\|y_{n+1}\|, \frac{B}{2}\|y_n + y_{n+1}\| \right\}.
\]
Using (3.7), this yields

\[(3.5a) \quad \|y_{n+1}\| \leq q_3 \|y_n\|, \quad \text{where} \quad q_3 = \max \left\{ k^{1-\lambda}, \frac{Bk^{1-\lambda}}{2-Bk^{1-\lambda}} \right\}. \]

Finally, in case (3.6) we have

\[
k^{1-\lambda} (\|y_n\| + B \|y_{n+1}\|) + \|y_{n+1}\|
\leq k^{1-\lambda} [Ht_1(x_n, -y_n) + Ht_2(x_n, -y_n) + Ht_3(x_n, -y_n)]
\leq k^{1-\lambda} c [0 + B \|y_n + y_{n+1}\|],
\]

whence

\[(3.6a) \quad \|y_{n+1}\| \leq q_4 \|y_n\|, \quad \text{where} \quad q_4 = \frac{Bc - 1}{k^{1-\lambda} - Bc + B}. \]

By (3.3a)-(3.6a), \(\|y_{n+1}\| \leq q \|y_n\|\) for all \(n\), where \(q = \max \{q_1, q_2, q_3, q_4\}\) < 1. Hence, since \(x_{n+1} = x_n - \Gamma (x_n) y_n\), \(\{x_n\}\) is a Cauchy sequence and \(x_n \to z\) and \(y_n \to 0\). Consequently, \(0 \in P_z\), since \(P\) is closed.

Several contractor theorems follow as corollaries to Theorem 3.1.

Corollary 3.1. If \(P\) and \(\Gamma(x)\) are as above and satisfy (3.1), (3.2) and

\[(3.8) \quad Ht_1 \leq k \max \left\{ \|y\|, D_{t_2}, D_{t_3}, \frac{D_{t_4} + D_{t_5}}{2} \right\} \]

for \(x \in D(P), y \in Y\) and some \(k \in (0, 1)\) such that \(Bk^{1-\lambda} < 1\) for \(\lambda \in [0, 1)\), then there exists \(z \in D(P)\) such that \(0 \in P_z\).

Note that in Theorem 3.1 and Corollary 3.1, if all members of \(C L(Y)\) are compact, then one may choose \(\lambda = 0\). Moreover, the conclusion of Corollary 3.1 remains true if (3.8) is replaced by

\[(3.9) \quad Ht_1 \leq \alpha \|y\| + \beta D_{t_2} + \gamma D_{t_3} + \delta (D_{t_4} + D_{t_5}) \]

for \(x \in D(P), y \in Y\) and nonnegative numbers \(\alpha, \beta, \gamma, \delta\) with \(0 < k = \alpha + \beta + \gamma + 2\delta < 1\). In fact, we obtain the following

Corollary 3.2. If \(P\) and \(\Gamma(x)\) are as above and satisfy (3.1), (3.2) and (3.9) for \(x \in D(P), y \in Y\) and \(\alpha, \beta, \gamma, \delta \geq 0\) such that

\(k = \alpha + \beta + \gamma + 2\delta < 1\) \quad and \quad \((\alpha + \beta + B(\gamma + 2\delta))k^{-\lambda} < 1\)

for some \(\lambda \in [0, 1)\), then there exists \(z \in D(P)\) such that \(0 \in P_z\).

Corollary 3.2 with \(\beta = \gamma = \delta = 0\) yields a multivalued version of Altman's Theorem 2.3. Also, the main result of Reddy and Subrahmanyan ([17], Theorem 3.1) with \(n = 1\) is obtained by setting \(\delta = 0\).

If the hypotheses (3.1)-(3.6) of Theorem 3.1 are satisfied, we may say that \(\Gamma(x)\) is a general contractor for \(P\) and that Theorem 3.1 is a multivalued
contractor theorem. Similarly, for P and $\Gamma(x)$ satisfying the hypotheses of the next corollary, $\Gamma(x)$ may be called a general contractor of the single-valued mapping P and the result a general contractor analog of Theorem 3.1.

Corollary 3.3. If $P: D(P) \subseteq X \rightarrow Y$ satisfies (3.1), (3.2) and, for $x \in D(P)$, $y \in Y$, at least one of the following

\begin{align*}
(3.10) \quad \|P x\| + \|\Gamma(x)(P(x + \Gamma(x)y))\| & \leq a \|y\|, \quad 1 < a < 1 + B; \\
(3.11) \quad \|P x\| + \|\Gamma(x)(P(x + \Gamma(x)y))\| & \leq b \left(\|y + P x\| + \|\Gamma(x)(-y + P(x + \Gamma(x)y))\| + \|y\|\right), \\
& \quad (1 + B)^{-1} < b < 1 - B (1 + 2B)^{-1}; \\
\end{align*}

\begin{align*}
(3.12) \quad \|t_1\| \leq k \max \left\{\|y\|, \|P x\|, \|\Gamma(x)P(x + \Gamma(x)y)\|, \\
\frac{\|y + P x\| + \|\Gamma(x)(-y + P(x + \Gamma(x)y))\|}{2}\right\}, & \quad 0 < k < 1, \ kb < 1,
\end{align*}

where $\|t_1\| = \|P(x + \Gamma(x)y) - y - P x\|;$

\begin{align*}
(3.13) \quad \|P x\| + \|\Gamma(x)(P(x + \Gamma(x)y))\| & + \|t_1\| \\
& \leq c \left(\|y + P x\| + \|\Gamma(x)(-y + P(x + \Gamma(x)y))\|\right), & 1/B < c < 1 + B/2.
\end{align*}

then $P x = 0$ has a solution in $D(P)$.

Proof. (3.3)–(3.6) reduce to (3.10)–(3.13) in the single-valued case.

Corollary 3.4. Suppose $P: D(P) \subseteq X \rightarrow Y$ is closed and satisfies (3.1), (3.2) and (3.12). Then $P x = 0$ has a solution in $D(P)$. Further, the solution is unique when Γ is regular and $B \leq 1$.

Proof. A solution exists, so we need to show the uniqueness. Let $\alpha, \ beta$ be two solutions of $P x = 0$. Then $\ beta = \alpha + \Gamma(x)y$ for some $y \in Y$. It suffices to show that $y = 0$. If $y \neq 0$, then

$$\|\beta - \alpha\| \leq B \|y\|$$

and

$$\|y\| = \|P \beta - P \alpha - y\| = \|P(x + \Gamma(\alpha)y) - P \alpha - y\|$$

$$\leq k \max \left\{\|y\|, 0, 0, \frac{\|y\| + \|\Gamma(\alpha)(-y)\|}{2}\right\}.$$
we see by the above proof that it is not necessary that $B \leq 1$. Further, if P is single-valued and Γ is regular in Corollary 3.2, then the solution is unique provided $\delta(1 + B) < 1 - x$.

Now a fixed point theorem is derived from Theorem 3.1 which unifies several fixed point theorems including Theorems 2.1 and 2.2.

Corollary 3.5. Let $F: Y \to \text{CL}(Y)$ satisfy, for $x, y \in Y$, at least one of the following:

\[
H(x, Fx) + H(y, Fy) \leq a\|x - y\|, \quad 1 < a < 2;
\]

\[
H(x, Fx) + H(y, Fy) \leq b \left[D(x, Fy) + D(y, Fx) + \|x - y\| \right],
\]

\[
1/2 < b < 2/3;
\]

\[
H(Fx, Fy) \leq k \max \left\{ \|x - y\|, D(x, Fx), D(y, Fy), \frac{D(x, Fy) + D(y, Fx)}{2} \right\}, \quad 0 < k < 1;
\]

\[
H(x, Fx) + H(y, Fy) + H(Fx, Fy) \leq c \left[D(x, Fy) + D(y, Fx) \right],
\]

\[
1 < c < 3/2.
\]

Then F has a fixed point.

Proof. Setting $\Gamma(x) = I$, the identity on $X = Y$, and $Px = x - Fx$ in Theorem 3.1, it is seen that $\{x_n\}$ converges to a fixed point of F.

Clearly, Theorem 2.2 is included in the above corollary, and setting $Fx = \{Tx\}$, for $T: Y \to Y$ we obtain Theorem 2.1. Further, setting $\Gamma(x) = I$, $X = Y$ and $Px = x - Fx$ in Corollary 3.1, a variant of fixed point theorems for multivalued operators due to Nadler [11] and Iseki [7] is obtained.

4. **Approximation of solutions.** In the single-valued general contractor theorem (Corollary 3.3) $\{x_n\}$, defined by $x_{n+1} = x_n - \Gamma(x_n)Px_n$, converges to a solution. This scheme was used by Altman in Theorem 2.3. We now introduce another scheme for a multivalued operator $P: D(P) \subseteq X \to \text{CL}(Y)$ (resp. single-valued operator $P: D(P) \subseteq X \to Y$), as follows:

\[
x_0 \in X;
\]

\[
x_{n+1} = x_n - \alpha_n \Gamma(x_n) y_n, \quad y_n \in P(x_n) \quad \text{(resp. } y_n = Px_n);\]

\[
0 \leq \alpha_n \leq 1, \quad \lim \alpha_n = \alpha > 0.
\]

We denote the sequence $\{x_n\}$ defined above by $M(\Gamma(x_0), \alpha_n, P)$.

For $X = Y$, $T: Y \to Y$, defining $Px = x - Tx$ and $\Gamma(x) = I$, we see that (4.2) is equivalent to

\[
x_{n+1} = (1 - \alpha_n)x_n + \alpha_n Tx_n,
\]
which is the Mann iterative process (see, e.g., [6], [18], [19]). A sequence \(\{x_n\} \) satisfying (4.1), (4.2') and (4.3) will be denoted by \(M(x_0, \alpha_n, T) \).

Recently, Kuhfittig [9] has studied the Mann iterative process for certain classes of multivalued operators; in fact, point-compact operators. In Corollary 4.1 we will consider point-closed operators satisfying a very general contractive type condition which may include operators studied in [9].

Theorem 4.1. Under the hypotheses of Theorem 3.1, \(M(\Gamma(x_0), \alpha_n, P) \) converges to a solution provided it converges, \(\Gamma(x) : Y \to X \) is invertible and \(\Gamma(x) \) is continuous.

Proof. Theorem 3.1 guarantees that \(P \) has a solution. Assume that the sequence \(M(\Gamma(x_0), \alpha_n, P) \) converges to \(z \). Then, since \(\lim \alpha_n = \alpha > 0 \) and \(\Gamma(x_n) \) has a bounded inverse, the equality

\[
\|x_{n+1} - x_n\| = \alpha_n \|\Gamma(x_n) y_n\|
\]

implies \(y_n \to 0 \). Thus \(0 \in Pz \), since \(P \) is closed.

Evidently, not all the hypotheses are needed in the proof of Theorem 4.1. In fact, if \(P \) is any closed operator (single-valued or multivalued) on \(D(P) \) and if \(M(\Gamma(x_0), \alpha_n, P) \) converges to \(z \), then \(0 \in Pz \) provided \(\Gamma(x) \) has a bounded inverse. This suggests that, while considering a special case of Theorem 4.1, one needs to require only those conditions which ensure that \(P \) is closed. Therefore we have the following:

Let \(X = Y \) be a normed space and \(C \subseteq X \) be closed and convex and \(F : C \to \text{CL}(C) \). Defining \(Px = x - Fx \) and \(\Gamma(x) = I \) and replacing (4.2) by

\[
(4.2'') \quad x_{n+1} = (1 - \alpha_n) x_n + \alpha_n p_n, \quad p_n \in Fx_n,
\]

a sequence defined by (4.1), (4.2'') and (4.3) will be denoted by \(M(p_0, \alpha_n, F) \).

Corollary 4.1. Suppose that \(M(p_0, \alpha_n, F) \) converges to \(z \in C \). If, for \(x, y \in M(p_0, \alpha_n, F) \cup \{z\} \), one of the following holds:

\[
(4.4) \quad H(x, Fx) + H(y, Fy) \leq a \|x - y\|, \quad 1 < a < 2;
\]

\[
(4.5) \quad H(x, Fx) + H(y, Fy) \leq b [D(x, Fx) + D(y, Fy) + \|x - y\|],
\]

\[1/2 < b < 2/3;\]

\[
(4.6) \quad H(Fx, Fy) \leq k \max \{t \|x - y\|, D(x, Fx) + D(y, Fy),
\]

\[D(x, Fx) + D(y, Fx)\}, \quad 0 < k < 1, \quad t > 0;
\]

\[
(4.7) \quad H(x, Fx) + H(y, Fy) + H(Fx, Fy)
\]

\[\leq c [D(x, Fy) + D(y, Fx)], \quad 1 < c < 3/2,
\]

then \(z \) is a fixed point of \(F \).

Proof. Since \(\{\alpha_n\} \) is bounded away from zero and \(x_n \to z \), it follows
from (4.2'') that
\[\|x_n - p_n\| \to 0 \quad \text{and} \quad \|p_n - z\| \to 0. \]

Now suppose that (4.4) holds for the pair \(x = x_n, y = z \). Then
\[(4.4a) \]
\[\|x_n - p_n\| + D(z, Fz) \leq H(x_n, Fx_n) + H(z, Fz) \]
\[\leq a\|x_n - z\|. \]

Similarly, if (4.5)–(4.7) are true, then correspondingly we obtain
\[(4.5a) \]
\[\|x_n - p_n\| + D(z, Fz) \leq b\left[\|x_n - z\| + D(z, Fz) + \|z - p_n\| + \|x_n - z\|\right], \]
\[(4.6a) \]
\[D(z, Fz) \leq \|z - p_n\| + H(Fx_n, Fz) \]
\[\leq \|z - p_n\| + k \max\{t \|x_n - z\|, D(x_n, Fx_n) + D(z, Fz), D(x_n, Fz) + D(z, Fx_n)\}, \]
\[\leq \|z - p_n\| + k \max\{t \|x_n - z\|, \|x_n - p_n\| + D(z, Fz), 2\|x_n - z\| + D(z, Fz) + \|z - p_n\|\}, \]
\[(4.7a) \]
\[\|x_n - p_n\| + 2D(z, Fz) \]
\[\leq H(x_n, Fx_n) + H(z, Fz) + H(z, Fz) + H(Fx_n, Fz) + \|z - p_n\| \]
\[\leq c\left[D(x_n, Fz) + D(z, Fx_n)\right] + \|z - p_n\| \]
\[\leq c\left[\|x_n - z\| + D(z, Fz) + \|z - p_n\|\right] + \|z - p_n\|. \]

Letting \(n \to \infty \) in (4.4a)–(4.7a) we obtain \(D(z, fz) = 0 \), so \(z \in Fz \).

Finally, the following is a variant of a result of Rhoades ([19], Theorems 1 and 2):

Corollary 4.2. Let \(C \) be a closed, convex subset of a normed space, \(T: C \to C \) and \(M(x_0, \alpha_n, T) \) converge to \(z \in C \). If, for \(x, y \in M(x_0, \alpha_n, T) \cup \{z\} \), one of (2.1), (2.2), (2.4) and
\[\|Tx - Ty\| \leq k \max\{t \|x - y\|, \|x - Tx\| + \|y - Ty\|, \|x - Ty\| + \|y - Tx\|\}, \]
\[0 < k < 1, \ t > 0, \]
holds, then \(z \) is a fixed point of \(T \).

Proof. Write \(Fx = \{Tx\}, x \in C \). Then
\[M(x_0, \alpha_n, T) = M(p_0, \alpha_n, F) \]
and the result follows from Corollary 4.1.
REFERENCES

DEPARTMENT OF MATHEMATICS
L. M. S. GOVERNMENT POSTGRADUATE COLLEGE
RISHIKESH, INDIA

DEPARTMENT OF MATHEMATICAL SCIENCES
LAKEHEAD UNIVERSITY
THUNDER BAY, ONTARIO
CANADA

Reçu par la Rédaction le 5. 8. 1985