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1. Introduction. A simply connected nilpotent Lie group G is called
graded if its Lie algebra (% is endowed with a vector space decomposition

% = @ V, such that [V, V;] < ¥, ;. Then ® and correspondingly G admits a
1

one - parameter group of automorphisms J,, r > 0, called dilations. Let Q be
the homogeneous dimension of G that is the positive number defined by

re(f©0,x)dx = [f(x)dx, feL(G), r>0.
G G

A left -invariant differential operator L on G is called a Rockland
operator if it is homogeneous with respect to the dilations and for every
irreducible unitary representation n of G the operator n(L) is injective on the
space of C>-vectors. It is known, by Helfer and Nourrigat, that L is
hypoelliptic and as such it is essentially self-adjoint on C*(G) in I?(G).

Let L be a positive Rockland operator on G and let E(/) be the spectral
resolution of the identity for -a positive self-adjoint extension of L,

Lf = TldE(A)f, feDom(L).
0

If m is a bounded measurable function on R* we write m(L) for the
multiplier operator

mL)f = [m(WYdEQ)f, fe2(G)
0

which is bounded on I?(G).

Recently a Hormander-Myhlin-type multiplier theorem has been
proved by A. Hulanicki and E. M. Stein for the case when L is a
sublaplacian on a stratified group, cf. [3], and as remarked by A. Hulanicki
in [4] it can be generalized to Rockland operators on graded groups. It says
the following:
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THEOREM A. Let L be a positive Rockland operator on G. There exists
an integer N such that if me CN(R*) satisfies
lm||% = max sup|dm?P(l)| < oo,
0<j<N A>0
then for every p, 1 <p < oo, the operator m(L) extends to the bounded
operator on LF(G); moreover,

lim(L) fll, < Climli%NIfll,, felnL(G)

with a constant C = C(p) independent of m.

On the other hand, Kurtz and Wheeden [7], [8] have obtained
weighted multiplier theorems for classical multipliers on R".

The aim of this note is to prove a similar weighted multiplier theorem
for a positive Rockland operator. To state our main result let us remind the
following notions.

A topological space X equipped with a continuous pseudometric ¢ and
a measure u which, for a constant C, satisfies

#(By,(x)) < Cu(B,(x)), xeX, r>0,

is called a space of homogeneous type. Here B,(x) denotes the ball, B,(x)

=y e(x, y) <r}.
For a locally integrable function f on X we define the maximal function
Mf of f by
(1.1) Mf (x) = sugu(Br(x))‘l [ IfWldu).
r> B,(x)

We say that a weight function w(x), w(x) >0 on X, belongs to the
Muckenhoupt class A,(X) if for a constant C

[[w()du]-[[w(x)~1P"Vdpu]*~! < Cu(B), 1<p< oo,
B B

fw(x)du < Cu(B)-essinfw(x), p=1,

B xeB

for all balls B.

A. P. Calder6n [1] has extended the Muckenhoupt theory, cf. [2], from
the Euclidean to the general spaces of homogeneous type. In particular, the
following weighted I7-norm inequality for the maximal function (1.1) holds:
for 1l <p<

(1.2) [ Mf (0P w(x)du < C [1f (01" w(x) d
X X

with a constant C independent of f if and only if we A4,.
On the graded group G there exists a continuous positive function |-|
called a homogeneous norm such that |x|] =0 iff x=e, |x] =|x7Y, |xy| <
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y(Ix|+1y]) for a y =1, and |§,x] =r|x|, r >0. G endowed with the Haar
measure and the pseudometric generated by the homogeneous norm
d(x, y) = |y~ ' x| is of homogeneous type.
For a positive weight w denote w(E) = [w(x)dx, E =G, and
E

IS N = (JIf NP w(x)dx)'"?, 1 <p< 0.
G

Now we state our main result.

THeEOREM 1. Let L be a positive Rockland operator on G, 1 < p < oc and
we A,(G). There exists an integer N such that for a function me CN(R*) which
satisfies

lm||% = max sup|Am?(}) <
0<j<N i>0

we have: for p > 1

(1.3) Im(L) fllp.w < CllSf Nl pw
and for p=1
(14) w(ixeG: |m(L)f]| >l})<—,€llf|!1,w, 4 >0,

with a constant C = C(p) independent of f.

To prove Theorem 1 we apply the technique of [8] based on the sharp
maximal function f* of Fefferman and Stein. However, our crucial estimate
contained in Theorem 2, similar to the key Lemma 1 in [8], is proved in a
quite different way: in absence of Fourier transform we use a result of
Hulanicki [4] (cf. also [5], [6]) which can be formulated as follows.

THeOREM B. Let L be a positive Rockland operator on G and let | > Q
be given. There exists an integer N such that if me CN(R*) satisfies

(1.5) Im|y = max sup|(l+4)"m?4)| < x,
O0<j<N i>0

then m(L) f = f »k where ke L} (G) and
(1.6) k()| < Climlly(1+|x))~"

with a constant C independent of m.

Note in particular that for a given d > 0 we can find such an N that for
a function m which satisfies (1.5) we have m(L) f = f*k and

(1.7) [ 1" 1k ()| dx < C|lmlly
G

with a constant C independent of m. _
Throughout this paper C will denote a positive constant not necessarily
the same for each occurrence.
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2. Preliminary results. Suppose L is a positive Rockland operator on
G, homogeneous of degree a, 6,L=r"L, r > 0. If a function m is such that
m(L)f = f+«k and kel!(G) then for a function m,(1) = m(rA) we have
m,(L) f = f=a,k where

o, k(x) =r=% k(6 _/u(x)).

Till the end of this section we assume that d >0 and Q <!/ <Q+1 are

fixed real numbers and an integer N is such that for a function me C¥(R")
which satisfies (1.5) in Theorem B, (1.6) and (1.7) are valid.
Let me C¥(R*). Choose a decomposition of the identity

§¢j(’1)=1’ A>0

where ¢;(1) = ¢(2/ 1) and ¢ is infinitely differentiable, non - negative function
supported in 1/2 < A < 2. Define m;(4) = m(4) ¢;(4). Then m;(L) f = f =k;,

M
kje L' (G). Put Kyy= Y k;, M=1,2,... As in [8], the following theorem
-M

shows how conditions on m can be interpreted as conditions on K.
TueoreM 2. Let me CN(R*) satisfy

(2.1) Im||% = max sup|dmP () < .
0<j<N 4>0

Then for 1 < p < oo and for |y| < R/2
(| IKn(xy™")—Kp(x)|Pdx)/? < C-R™U72P|y|=C
Ix| >R ’
with a constant C = C(p, I) independent -of M, R and y.
The proof of Theorem 2 requires several lemmas.
LemMma 1. Let me CN(RY) satisfy (2.1). Then for 1 <p < ©
(2.2) ( "‘ lk; (x)|Pdx)!/» < C-R~4-2/P ia~11-Q
|x| >R
with C = C(p, ) independent of j and R.
Proof. Define B;(4) =m;(27/4). Then B;(L)f =f=B;, B,el'(G),
Bj = az_jkj and
(§ PyPdx)?=( [  |k;(6,7.(0) (2790 dx)'"?
|x| >R Iézjla(x)l >R

= 21'Qa‘lp‘1(l-p)( j IB_,-(x)I"dx)”".

|x| >2~JlaR

But B; are supported in 1/2<A<2 and (21) implies ||Bjly<C
independently of j. Hence, by (1.6), |B;(x)| < C|x|~! independently of j. For
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the polar decomposition of x, i.e. x =4,x" with r = |x|, |x/ —-l we have
dx =r? 'drdo(x'), cf. [3]. Therefore

( I le—lde)llp = ( ? SQ- l-l’_’dS)l/p = (2-an R)—1+Q/p
|x|>2~JleR 2-ilag
and

(| [IBIPdx)'P < C(27i7 1+,

|x]>2~JlaR
This completes the proof of Lemma 1.

Let T' f = [exp(—t4)dE(4) f be the semi -group of operators generated
0

by L It is known, cf. [3], that T'f = fxh, where pel'(G) and
j|x|°'|Yh,(x)|”dx<oo for all >0, p>1,¢t>0 and Ye ®. Denote h = h,.

Lemma 2. Let 1 < p < oc. Then
(23) L(p, d, y) = (f[Ix*(h(xy™ ) = k()" dx)"”* < Cyi
G

with a constant C = C(p, d) independent of y.
Proof. It suffices to show (2.3) for |y] <1 only. Recall, [3], that for
yl <1

(2.4) e Vil < Iyl < e iyl

for positive constants b, c¢,, c,, where ||| means the Euclidean norm on 6.
Write y~! = expsY, |Y| = 1. Then

L(p, d, y) = ([|[IxI* Ya(xexptY)dt|" dx)"/?
G o

< [(J|Ix Yh(xexptY)| dx)"/Pdt.
0G

But
x| < C(xexptY|?+[exp(—tY)),
sup || [1* Yhl|, < 0
l¥|=1

and in virtue of (2.4) we get
L(p, d, y) < C(s||[1* Yh|| ,+slexpsY|*||Y kil ,)
< C(YHLHE Yhll,+1yl* 41 YAll,) < Clyl.
Lemma 3. Let BeCM(R*), suppB<(1/2,2) and B(L)f = f=*B,
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Be I} (G). Denote B'(4) = B(A)expA. Then
(2.5) ( [ I1B(xy~")—B(x)|Pdx)""* < CR™|)(IBlln
|x] >R

with a constant C = C(p, d) independent of R, y and P.
Proof. Let f/(L)f = f*B', Bel'(G). Then B= B *h and we have

( | IB(xy Y)—B(x)Pdx)"» <R ( [ |Ixl*(B(xy~!)—B(x))|’ dx)'”

|x| >R |x| >R

< R([|[1X B @ xy™) = (= 0)de )™

GG

<R [IB @[] 1 (h(z™" xy™")=h(z™* ) )" dz.
G G

But |x|/ < C(lz]°+|z" "' x|Y) and using notations of Lemma 2 we get

( [ IBGxy™Y—B(IPdx)"” < CR™ [|B' ()| (IzI* L(p, 0, y) + L(p, d, y))dz.
|x] =R G
In virtue of Lemma 2 and Theorem B we obtain (2.5).
LemMma 4. Suppose me CN(R™") satisfies (2.1). Then for 1 <p < ©
([ lkixy™h—k;(x)IPdx)!/? < CR™4(279a)@Qlp=d* 1]y
|x|ZR
with a constant C = C(p, d) independent of R, y and j.

Proof. As before define g;(4) = m;(2774), B;(4) = B;(A)expA. We then
have B;(L)f = f*B;, Bje L'(G), a,-;k; = B;, and (2.1) implies ||Blly < C,
IBlIx < C independently of j. For a function k, by homogeneity we have

(| lk(xy™)—k(x)?dx)'®

Ix|>R
=g @ |a,.k(x5s1,,,(y"))—a,k(x)|pdx)”p.
|x|>Rsl/a
Putting s = 27/ we obtain, in virtue of Lemma 3,
([ Ikjxy™Y)—k;(x)|?dx)'®

|x| 2R
=27i@- o ( |B;(x5, aly™")—B;(x)|"dx)"”
|x|=R2~Jla
< Cz—j(Q-Q/p)/aR—d(z-j/a)—d 2~ ila |y|_
This completes the proof of Lemma 4.
Proof of Theorem 2. Denote
LG, R y)=( [ lkjlxy™Y)—k;(x)”dx)".

|x| 2R
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By Lemma 1, for |y| < R/2, we get
1,(j, R, y) < CR™U~@p i1~ Qla,
By Lemma 4, putting d = /—Q/p, we obtain
I,(j, R, y) < CR™{-2n (2 i@+ 11}y,
Suppose 207" < |y| < 279, Then
( | IKu(xy™H)—Kp(x)Pdx)'”

|x|ZR

<2 1,0, R.y)
J

sCR-("Q/‘”( Z 21(1—Q)la+|y| Z 2-1‘(Q+1-l)/a)
2ila <|y| 2laz|y|

< CR—(I—Q/p) |y|l-Q_

This completes the proof of Theorem 2.

3. Proof of Theorem 1. For 1 <p < oo define

M, f(x) = (M(fIP(x)'"?
and for a locally integrable function f on G, let f* be defined by

f*(x) =sup(B|™" glf (x) —fsl dx),

xeB
where B is a ball and f = |B| ! _f f(x)dx. |B| means the Haar measure of B.
B
Denote Ty, f =f*«Ky, M=1,2,...

The following lemma is obtained in the same manner as, in [8], (3.1) is
derived from Lemma 1. We include its proof here for reader’s convenience.

LEMMA 5. Under the assumptions of Theorem 2, for 1 < p < oc, we have
(Tu )*(x) < CM, f(x)

with a constant C = C(p) independent of f and M.

Proof. Fix xeG and let B be a ball centered at x and of radius 6.
Write

f=ﬁ+iﬁ

where fo = fxa,, f;= f"X4; and
Ao={yeG: |y 'x| <8}, A;={yeG: 25<|y 'x <2*1§).
Thus

[*Ky =f:)*KM+ z fi*Ky.
i=o
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By Theorem A we get |lg * K |, < Cllgll, with a C independent of M, and so
IBI™! [Ifo*Kuldy < (IBI™* [|fo* Kul”dy)'/?
B B

< C(BI™' [IfIPdy)'?

B
< CM,(f)(x)

with a C independent of M. For any j,
Si*Ku(y) = fij+ Ky () + [ f;(2) [Kp (27 )= Kpe (27 X)) dz
G

= c;+¢&;(y).
Assume for a moment that
(3.1 le; (W < C2C~D M, (f)(x)

for every ye B with a C independent of j and M. Since
(f*Kpm)s = (fo*Kp)p+) i+ (€)s,
j j
we then have

|B|_l£|f*KM(.V)_(f*KM)BI dy
< 2(ﬁ,*1<,,),+|3|-‘£|§(fj*Ku(y)—cj)—g(ej)sldy
< 2CM,(f)(x)+|B|™? ,{ |§ sj(y)—§(ej)al dy
<2CM,(f )(X)+2Zj:(lsjl)a
<2CM,(f)(x) + zc(}; 227 ) M, (f)(x)

< CM,(f)(x).

To complete the proof we verify (3.1). By Holder’s inequality, Theorem 2 and
an obvious change of variable for ye B we obtain

le; (VI < ] If@NKp(z" y)—Kp(z™ ! x)| dz

2s<|z— x| <2i+1;

< ( ] If@IPdz)'"P( [ |Kp(z"'y)—Kp(z™ ' x)|7 d2)'7
|z~ x| <2i* 15 2s<|z— 14|

SC*YPM,(fH(( | |Kn (™" %)™ ") — Kpg (w)|” du)**

208 <|u|
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< C(2j+ 1 5)Q/p(2j 5)-(1-Q/p) P Lt - M,,(f) (x)
< C@)2 7'M, (N (x).

This completes the proof of Lemma S.

We say that a weight function w satisfies the A condition, we A, if
there exist positive constants C and 6 such that for every ball B = G and

a subset E in B
J
v ¢ (lﬂ) .
w(B) |B|
We refer to [1] and [2] for results concerning A, and A, conditions. which

we use below. In particular, if we A, then we A, and weA,_, for some
¢ > 0. To prove Theorem 1 we need also two known results.

Lemma 6, [1]. If O<r <p and we A,,(G) then

M, fllp0 < CllAllpw

with a constant C independent of f.
Lemma 7, [9]. If 1 <p < oo and we A, (G) then

1 Mg < CILS *llp,w

with a constant C independent of f.

Let we A,. Choose 1 <r < p such that we 4,,. Using Lemmas 5, 6, 7
we obtain

I Tae Sllpw < CITaa 1) *llpw < CUIM (Nl < ClIS Nl

with constants independent of M and f. Consequently, applying Fatou’s
lemma for p > 1 we obtain

lim (L) fllpw < Cllf llp0-

This completes the proof of the first part of Theorem.

The case p =1, i.e. the weak -type (1,1) result, can be obtained in the
same way as in [8] the weak -type estimate is proved. We use an abstract
version of the Calderon-Zygmund decomposition lemma for a homogeneous
space and we apply our estimate contained in Theorem 2.
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