ANNALES
POLONICI MATHEMATICI

XL (1983)

The tangent space and the arcwise tangent space
to a differential space

by Wactaw WierzBick1 (Warszawa)

Abstract. The concept of a differential space was introduced by R. Sikorski in 1967, [4].
We due to the same author the notion of the tangent space regarded as the linear space
of all derivations of the differential structure at the point. This linear space is equivalent in
a natural manner to the so-called Zariski’s tangent space (cf. Serre [3] and also Pustelnik [2]).
In the more classical differential geometry the tangent space is often meant as the linear space
of all tangent vectors to smooth curves passing through the point considered. In the present
paper this analogy is investigated.

1. Terminology and basic notations. Let C be a differential structure on M.
Following R. Sikorski [4], its topology, i.e. the weakest topology'on M [or
which each of functions of C is continuous, will be denoted by 7. The set
of all real functions defined and infinitely differentiable on whole Cartesian
space R" will be denoted by E,. This is the so-called natural differential
-structure of R". In particular, E, (shortly E) stands for the natural differential
structure of the set R of all real numbers.

For any set C of real functions on M we define sc C as the set of all
functions of the form w(a,(-),..., #,(-)), where a,,...,a, are of C, w is of
E, and s is an arbitrary natural number. Following R. Sikorski, let us denote
by C, the set of all locally C-functions on the set 4, 4 < M. Then
scC = C = C,, iff C is a differential structure on M (cf. MacLane [1]).

For a differential space (M, C) the tangent space to (M, C) at the point p
will be denoted by (M, C),.

2. Non-standard differential structure on R.

LemMa 1. Let C, be a set of real continuous functions a, defined on R
such that for every pe R there exists & > O satisfying the conditions:

(i) a,|(p—9; p+5) is one-to-one;
(i) both «,|(p—&; p+6) and (a,|(p—8; p+6))”" have derivatives of all
orders.

Then the function idg belongs to the smallest differential structure C
containing C,, and ¢ coincides. with the natural topology of R.
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Proof. Let peR and é > 0 satisfy (i) and (ii). Let a,[(p—9; p+d)]
= (a; b), a < b. Then a,(p)e(a; b).

There exists a function ¢ € E separating the point a«,(p) in the interval
(a; b), ie. such that

1 for ye(ay; by),
0 for yeR—{a,;b,),

where a < a, < a, < b, < b, < b. Let

8.0 = o) (2, )(p—6;p+8) ' (») for ye(a;b),
Y =0 for ye R—(a;b).

It is easy to check that f,e E and
B, () = (2,l(p—8:p+8) "' (»)  for ye(ay; by).

o (y) ={

This implies that g,0a,esc C, = C, and in view of the equalities

(B,0,)(x) = (a,/(p—38;p+9)) "(2,(x)) = x  for xea, " [(@; by)],

ie.,

idg [4 = p,0a,|A, where A = a, '[(a,; by)],

we get

idge Gy = C.

The weakest topology on R in which idg and all the functions which
are continuous in the usual sense are continuous, coincides, of course, with
the natural topology of R. This completes the proof.

LEMMA 2. Let C, be a family of real functions y, defined and continuous
in the usual sense on R, and suppose that for every pe R

(iti) the functions y,|(—oco; p) and y,|(p; +o0) are one-to-one. differenti-
able. and both (y,|(—; p))-l and (y,|(p; + o))  are infinitely differentiable.

Then, a function o belongs to the smallest differential structure C

containing C, if and only if for every peR there exist a neighbourhood
A€t of p and a function Y€ E, such that

(1) ?z(x) = y(x,7,(x) for xeA.

Proof. The functions a,, a,(x) = y,(x—1) for xe R, satisfy conditions
(i) and (ii). Therefore, by Lemma 1, 7, is the natural topology of R.

Let «ae C and peR. Thus there exist points p;# p, i=1,...,n,
a neighbourhood B of p and a function ¢ € E,,, such that

a(x) = q)(y,,l(x), cees P (%), y(x)) for xeB.
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We may assume that B = (p—4J;p+4), where 0 < < |p—pl, i=1,...,n
The points py, ..., p, lie outside B. Therefore the functions y, |B are smooth,
i =1,...,n. Hence it follows that we have some functions 4,,...,4, of E,
class such that 4;(x) = y,,(x) for x in some neighbourhood of p, i =1,...,n.
Setting ¥ (x, y) = @(A;(x), ..., 4,(x), y) for x, ye R* we get (1), where 4 is
a neighbourhood of p.

THEOREM 1. Let C, be a family of real functions y, defined on R,
continuous in the usual sense; assume that (iil) is satisfied, left-hand side as
well as right-hand side derivatives y,_(p) and v, (p) of the function y, exist
at p, and y,_(p) # v,+(p) for peR. If C is the smallest differential structure
on R containing C,, then for every peR the tangent space (R, C), to (R, C)
at p is two-dimensional.

Prool. Let peR. For every aeC there exist a neighbourhood A4e 1
of p and a function ¥ € E, such that (1) holds. Hence it follows that the
equalities e, (p) (y,) = y,-(p) and e,(p) (¥,) = v,+(p) well define two vectors
e,(p) and e,(p) tangent to (R, C) at p. To prove that e¢,(p) and e,(p) are
linearly independent, we take a,, a, € R such that

) a,ei(p)+aze,(p) = 0.

There exists, by Lemma 2, a function « € C being one-to-one on some neigh-
bourhood A4 of p such that both «|A4 and (x| A4)™! are infinitely differentiable.
From (2) it follows that

aje(p)(@)+aze;(p)(@) =0 and  a,e(p)(v,)+aze2(p)(vp) = 0.

We have e,(p)(a) = e,(p)(2) = «’(p) # 0. Thus a,+a, = 0 and a,7,_(p)+
+a,7,+(p) = 0. Hence a, = a, = 0. Consequently, dim (R, C), > 2.

Now, for every ae C we set e;,(a) = ¥;;(p, y,(p)), where y satisfies (1)
and y;; denotes the partial derivative of y with respect to i-th variable.
It is easy to check that e,,, e,, are vectors tangent to (R, C) at p, and for
every vector v of (R, C), we have v = v(idy)e,,+v(y,)e,,. Then the vector
space (R, C), is two-dimensional.

ExamPLE 1. Let C be the smallest differential structure on R containing

the set of all functions x — |x—p|, where peR. By Theorem 1 we have
dim (R, C), = 2 for peR.

3. Arcwise tangent space. Let I be an open interval of R and (M, C)
be a differential space. We consider I together with its natural differential
structure E;. Every smooth mapping y: (I, E;) = (M, C) will be called a
smooth run in (M, C). If tyel and y(t,) = p, we say that the run y is
passing through p at the moment t,. We define the velocity 7(t,) of y at the
moment ¢, as the vector of (M, C),,; such that y (o) (@) = (x0y) (t,) for aeC,
where * denotes the derivative. The subspace of (M, C), generated by all
velocities y(,) such that the run y is passing through p at the moment ¢,
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will be called the arcwise tangent space to (M,C) at p and denoted by
(M, C);.

If (M,C) is a differentiable manifold, then (M, C), = (M, C), and
dim (M, C), = dim (M, 1¢).

The example that follows show that the differential dimension,
dim (M, C),, of a differential space at the point can differ from its
topological dimension.

ExaMPLE 2. Let C,, be the least differential structure on R containing
the function x > (x— p)?, where p, q are constants and q > 1. Then, for any
run y in (R, C,,) passing through p at ¢, we have the function
t > (y(t)—p)’, differentiable at t,. Hence

P (to) (x b (x=p)) = - (¥(te)=p)* "7 (to) = 0.
From the fact that T, is the natural topology of R it follows that
7(to) (@) = 0 for a of C,,. Then y(t,) = 0. Therefore,
dim (R, C, ), = 0;

however, the topological dimension of the space considered is equal to 1.
LeEMMA 3. Let pe R and let C be a differential structure on R such that

(C,) every open interval with center p contains a neighbourhood of p
open in 1.

If a function A of class C is such that Dinli’s derivatives: A_(p), A~ (p),
A, (p) and A7 (p) satisfy the condition

(ivV A~ (p) <0< Ai(p)or A7 (p) <O < 2A_(p),
then every smooth run y in (R, C) passing through p at the moment t,
satisfies the condition
3) 7(to) (4) = 0.

Proof. We may assume t, = 0. Suppose that leC satisfies (iv). Of
course, —AeC and (—4)-(p) = —17(p), (—A). (p) = —A* (p). Therefore, we
may assume that, e.g., the first of inequalities in (iv) is satisfied. Let ¢ > 0
and A7 (p) < —¢ <0 < ¢ < 4, (p). Hence there exists & > O such that

(2()=A@)/(x—p) < —c  for xe(p—4;p)

and

(AX)—A@)/(x—p) > ¢ for xe(p;p+9).
Thus
4 (A(x)—A(@))/Ix—pl > ¢, when 0 < |x—p| < 4.

Let us take a smooth run in (R, C) passing through p at the moment 0.
First, we consider the case when there exists n > 0 such that y(t) = y(0)
for te(—n;0) or y() = y(0) for ze(0;n). Then, A(y(1) = A(y(0) for
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te(—n;0)u (0; n). Hence, (Aoy)(0) = 0. Now, in the opposite case, for
every n > 0 we have non-empty sets

Ay = {t;te(—n;0) and y(r) # y(0)},
A} = {t;te(0; n) and (1) # 7(0)}.

According to (C,) the interval (p—J; p+0J) contains a neighbourhood
of p open in 7.. By the continuity of y, there exists # > 0 such that

(—m;m) <y '[(p—0; p+9)].

Thus A7 VA <y '[(p—3d;p+9)]. In other words, [y(t)—p|l < & for
te A, v A, . Hence, by (4), we have

M) =A(r(©)
[y (©)—7(0)
Suppose that (Aoy)(0) > 0. Then there exists ' €(0; n) such that
(Ar@)—-A(r@))r >0 when 0 < | < 7.

©)

>c forted; UA,.

This implies

Ap)-A(©) EO-yO) _

[y (©)—y(O) t
Therefore, by (5), we get |y(1)—y(0)|/t > 0 for te A, U A, which is impos-
sible because the sets A, and A,” are non-empty. Similarly we show that

the assumption (10y) (0) < 0 leads to a contradiction. Hence (10y) (0) = 0.
Thus (3) holds. This completes the proof.

LEMMA 4. If peR and C is a set of real functions on R such that

(a) condition (C,) holds, |

(b) there exists a function A€ C such that (iv) holds,

(c) Dini’s derivatives at the point p of every function Ae C for which
(iv) does not hold are finite, then every smooth run y in (R, (sc C)z) passing
through p at the moment t, satisfies condition (3) for AeC.

Proof. Let AeC. In case (iv) we get (3) by Lemma 3. Therefore, we
may take a of class C with Dini’s derivatives being finite at p. Then
there exist positive numbers c¢; and n, such that

a(x)—a(p)

-l <c when 0 < |x—p| < #n,.
x—p 1 Ix—pl <m

From (b) it follows that for some A, where AeC or —AeC, and for some
positive numbers ¢, and 5, we have

Ax)—Alp)
|x—pl

for te A,y v Ay

(6)

(7

>c¢, when 0 < |x—p| <1n,.
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Condition (C,) yields the existence of a U € 1¢ such that pe U < (p—n; p+1),
n = min {#,, n,}. The continuity of y yields the existence of § > O such that
y()eU for te(ty—9d;t,+0). Thus we get |y(t)—pl <n for |t—t,| < 4.
Assume that 0 < |t—t,| < 6 and y(t) # p. Then

a(y (D) —a(y(t,) y(t))—a(p)' | y(O)—p ‘ |1(r(t) ~A0) |

t—t, Y(t)—p A(y(©)—4(p) t—tq
Hence, by (6) and (7), we have
®) a(y@)=alr(to)) | _ e | Alr®)—A(r(to)
t—t, T, t—t,

Of course, this inequality is also true when y(t) = p, as well as when
A is replaced by —A. We have obtained inequality (8), where 4 is some
function of C satisfying (iv). Thus by Lemma 3, we obtain (xoy) (t,) = 0.
In other words,

9) 7(to) (@) = 0.

THEOREM 2. Let pe R and let C be a set of real functions on R fulfilling
condition (C,). If there exists A€ C such that (iv) holds and Dini’s derivatives
of each function of C for which (iv) does not hold are finite, then R together
with the least differential structure containing C constitute a differential space
whose arcwise tangent space at p is the zero space.

Proof. Let y be a smooth run on (R, (sc C)g) passing through p at the
moment ¢, and let aesc C. Thus a = w(a;(-), ..., %(-)), where ay,...,a,eC
and we E,. Hence, by Lemma 4, we get

Pty @ = 3 @i (p), ..., %:(p) - 7(po) (@) = O.

i=1
Now, let us take fe(sc C)z. Then we have f|U = «|U, where pe Ue1,
aesc C. Thus, p(ty) (f) = 7(ty) (@) = 0, and so y(t,) = 0. In other words,

(R, (sc Cw), = 0.
This completes the proof.
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