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1. Introduction and preliminaries

Primitive and related classes of universal algebras can be charac-
terized in terms of categories, i.e. necessary and sufficient conditions
can be found for a given category to be isomorphic to a primitive (or
quasiprimitive, ...) class of algebras of a type; see e.g. Ishell [2] and
Felscher [1].'Another problem is to characterize such classes in terms
of the theory of categories of structures; see Malcev ({3]-[5]). We shall
go in this second direction. The notion of category is not uwsed in this
paper and we shall be dealing only with categories of structures (these
will be called scategories here) in the sense of Malcev. Instead of isomor-
phism of categories, another notion must be introduced: namely, that of
the equivalence of scategories..All the notions are introduced below and .
the paper is written so that no special knowledge is supposed.

Malcev [4] characterized I, S, P-closed classes of algebras (classes
closed under formation of isomorphic images, subalgebras and Cartesian
products); from this he got easily (see [5]) a characterization of primitive
classes. In the present paper we shall give a characterization of S-closed,
8, P-closed and I, S, P-closed classes of quasi-algebras (Section 14). We
give also in Section 14 a characterization of arbitrary sets of quasi-algebras.
The problem of characterizing arbitrary classes of gquasi-algebras remains
open.

I have also included (in Sections 8, 10, 11 and 15) soine hon-original
theorems: they are stated in Malcev’s papers without proofs. These
theorems are only generalized to the infinitary case. In Theorem 29, con-
dition (iii), we give another characterization of S8, P-closed classes of
algebras.

We shall work in the Godel-Bernays set theory. Let us clear up
sone notation.

The ordered pair of ¢ and b is denoted by (a, b). Classes of ordered
pairs are called relations. Mapping is a relation satisfying a well-known
condition. If ¢ is a mapping, then its domain is denoted by 2(p) and
its range by W (p); these may be proper classes. The value of ¢ at a point @
is denoted by @(z). By ¢/A we denote the restriction of ¢ to 4, and we
put ¢ A = W(gpld). It B = W(p), then ¢~''B denotes the class of all
¥ €D (p) such that ¢(x) «B. If ¢ is a mapping of A into B and y a mapping
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of B into (, then the composition is denoted by woeg; it is a mapping
of A into C. If 4 is a class, then id, is the identical mapping of A onto
itself. If A and M are sets, then A™ is the set of all mappings of M into 4.
If @ is a mapping of A4 into B, then Kerq (the kernel of ¢) is the relation
in 4 which is defined by {z, y)>eKerp if and only if ¢(2) = ¢(y); it is
evidently 'an equivalence relation in A.

An ordinal number a is identified with the set of all ordinal numbers
smaller than a. Hence, 0 is the empty set. If A is a class, then 0 is the
only mapping of 0 into 4. If A # 0, then there does not exist any mapping
of A into’0. '

An ordinal number « is called cardinal if there does not exist a one-
to-one mapping of a« onto any ordinal number fec. The cardinality
Card (4) of a set A is that cardinal number ¢, for which there exists a one-
to-one mapping of 4 onto a. )

An ordinal number & is called regular if it is infinite and the following
holds: if a ¢, and f is a mapping of a into ¥, then W(f) is not a confinal
subset of . Bvery regular number is cardinal and every infinite cardinal
number with non-limitting index is regular. An infinite cardinal num-
ber ¢ is regular if and only if, whenever (4,).r is a family such that
Card T <# and Card 4, <# for all ¢<T, then Card({_A4,)<¥.

el

We shall use the axiom of choice and the following weaker form of
Fundierungsaxiom: If a class 4 and an equivalence relation R in 4 are
given, then there exists a class B and a mapping ¢ of 4 onto B. such
that B = Ker ¢.

2. Pre-scategories and scategories

By a pre-scategory we mean a triple 0, %, # of classes such that %
is a mapping of 0 into the class of all sets and +# is & mapping assigning
to every ordered pair 4, B of elements of ¢ a set of mappings of €u(A)
into #(B). ‘

Let a. pre-scategory 2 be given. The first member of this triple will
be denoted by A°, the second by %y and the third by . Elements of A
are called U-struclures (or briefly structures, if it is clear from context
which pre-scategory U is considered) and they will be denoted by A,
B,.., 2, A, A,... If Ais an U-structure, then %y (A) is called the
underlying set of A (with respect to ). Let us make. a convention: if
a structure is denoted by A (or B, or A, ... resp.), then its underlying
set 13 denoted by A (or B, or 4,, ... resp.). If A and B are A-structures,
then the elements of #y (A4, B) are called UA-morphisms of A into B; we
shall write “p: A — B in A" or briefly “p: A B” instead of “p e #y (A, B)”.
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If A is an U-structure, then Card A4 is called the order of A. Structures
of order 0 and 1 are called trivial. A pre-scategory is called trivial if it
‘contains only trivial structures.

A pre-scategory U ig called scategory if it satisfies the following three
conditions:

(1) if AV’ thenid,: 4> A;
2) ifA4,B, CeU p: A—~Bandy: B C, thenyog: 4> C;
(3) it A, BeW’ A =B, id,;: A—>B and id,: B— A, then A = B.

A pre-scategory B is called subpre-scategory of a pre-scategory U if
it satisfies the following three conditions:

(4) B =A%
() Wy(A) = Uy (A) for all A B
(6) #y(A, B) = #y(A, B) for all A, B B°.

)

Subpre-scategories of a given pre-scategory U are in an obvious
one-to-one correspondence with subclasses of U%; if such a subelass
is given, we shall speak of a corresponding subpre-scategory. Subpre-
seategories which actually are scategories are called subscategories. Evi-
dently, every subpre-scategory of a scategory is a subscategory.

Let %A and B be two pre-scategories. A mapping £ of A into B? is
called sfunctor of W into B if it satisfies the following two conditions;

(1) if 4 eU° then A and &(A) have the same underlying sets;

(8) if A, B ¢¥° then every QI-morphism of A into B is a B-morphism
of ¢(A) into &(B).

If, moreover, W(s) = B then e is called sfunctor of A onto V.

A sfunctor ¢ of U into B is called an equivalence of A onto B if there
exists a sfunctor & of B into A such that zo e = idye and eo & = idyeo.
It is evidently a one-to-one mapping of A° onto B°.

Pre-scategories U and B are called equivalent if there exists an squiva-
lence of A onto B.

TuroreM 1. Let A and B be two scategories. A mapping & of U° into B?
is an equivalence of A onto a subscategory of B if and only if the following
holds: if A, B U°, then a mapping of A into B is an W-morphism of A into B
if and only if it is a B-morphism of (A) into e(B).

The proof is easy.
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3. Scategorization

Let 9 Le a pre-scategory. A scategory.B is called a scategorization
of A with respect 1o ¢ if £ is a sfunctor of Y onto B and for every sfunctor &
of U into a scategory B there exists a sfunctor ¢ of B into B such that
T =¢ oe Bis called a scategorization of A if it is a scategorization with
respect to some e.

THEOREM 2. (i) Bvery pre-scategory has a soategoa ization.

(ii) If B, is a scategorization of A with respect to &, and B, a scategori-
zation of W with respect 10 ey, then there exists ewactly one equivalence e of B,
onto B, such that ¢, = ¢ 0 &;.

(iii) Let B be a scategorization of W wilth respect to e. If A, B A, then
a mapping ¢ of A into B is a B-morphism of e(A) into &(B) if and only
if either

A=B and ¢=1idy
or there ewists a finite sequence
(9) ps Ag— A, oy ot 4, A4, (n=1)
of -structures and A-morphisms such that
(10) A=4, B=A4, and ¢ =¢,0...0¢.

(iv) Lot B be a scategorization of W with respect to e and let W fulfil
(1) and (2). I f A, B <N’ then a mapping of A into B is a B-morphism of
e(A) mto e(B) if cmd only if it-is an A-morphism of A into B.

Proof. Let A Le a pre-scategory. Let us define a pre-scategory A
in the following way: U® = A*; if A A% then #y(d) = Uy (A); if A,
B ° then a mapping ¢ of 4 into B is an Y-morphism of A into B if
and only if either 4 = B and ¢ = id, or there exists a finite sequence
(9) of WA-structures and W-morphisms such that (10) holds. We detine
a binary relation R in A% by: (4, B) eRif and only if A = B, id,: A— B
in A and id,: B~ A in 9A. It i evidently an equivalence relation in UA%;
from the Fundierungsaxiom it follows that there exists & class # and
a mapping ¢ of A onto # such that R is the kernel of & It is evidently
possible to define a pre-scategory B in this way: B = %; the underlying
set of a B-structure ¢(4) is the set 4 ; a mapping of 4 into B iy a B-mor-
phism of &(A)into e(B) if and only if it is an Y-morphism of A into B.
It can be easily proved that B is a scategory and that it is a scategori-
zation of 9 with respect to e. Everything else is evident.
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4. Abstract scategories

Let a scategory A and U-structures A and B be given. A morphism ¢
of A into B is called isomorphism of A onto B if there exists a morphism yp
of B into A such that py o ¢ = 1d, and ¢ 0 p = id,. It is evidently a one-
to-one mapping of A onto B and y iy the inverse mapping. We write
p: A ~ B if ¢ is an isomorphism of A onto B. If there exists an isomor-
phism of 4 onto B, then we write A ~ B and say that A is isomorphic
to B.

A scategory U is called abstract if the following holds: if an A-strue-
ture A and a one-to-one mapping ¢ of A onto a get B is given, then there
exists an U-structure B with the underlying set B such that ¢: A ~ B.
(It follows from (3) that this B is uniquely determined.)

A scategory U is called a skeleton of a scategory B if it is a subscategory
of B and every B-structure is in B isomorphic to an W-structure.

A scategory B is called an abstraction of a scategory U if it is abstract
and contains a skeleton which'is equivalent to .

THEOREM 3. (1) Bvery scategory has an absiraction.

(ii) Bvery two abstractions of a given scategory are equivalent scate-
gories. If B, and B, are two abstract scategories, W, a skeleton of By, U,
a skeleton of B, and e an equivalence of WAy onto Wy, then & can be extended
to an equivalence of B, onto B, in exactly one way.

Proof. Let A be a given scategory. Let & be the class of all ordered
pairs (A4, f> such that 4 is an UA-structure and f a one-to-one mapping
such that 4 = Z(f). Let us define a pre-scategory B in this way: B = %;
Ug({4, f>) = W(f); a mapping ¢ of W(f) into W(y) is a B-morphism
of (A, f) into (B, g) if and only if g~ 'o ¢ o fis an A-nmorphism of 4 into B.
This pre-scategory B fulfils (1) and (2). Let B be its scategorization with
respect to e. It is easy to prove that B is abstract and that the mapping e
of A° into BY defined by e(A) = ({4, id,)) is an equivalence of A onto
a skeleton of B. Everything else is evident.

5. Substructures and products of structures

Let A be a scateéory. An A-structure A is called substructure (or:
W-substructure) of an U-structure B if the following conditions have place:
(11) A < B;

(12) id,: A-B;
(13) if De¥N% ¢p: D— B and W(y) < 4, then ¢: D - A,

We also say that B is an overstructure of A.
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Remark. Malcev [3] defines: a substructure B of 4 is called sirong
if every 2-morphism into B is an A-morphism into A. Every substructure
is evidently strong.

THEOREM 4. If A is a substructure of B and B a substructure of C,
then A is a substructure of C.
Proof. Evidently 4 = 0. We have id, =idz oid,: A — C. Let
: D> Cand W(p) = A.SinceBisa substructure of C, we get p: D — B;
smce 4 is a substructure of B, we get p: D A.

TusorEM 5. Let A be a substructure of B and D eU°. If p: D~ 4,
then also @: D—>B Ifop: B> D, thenot A: A— D.

Proof. In the first case id,: 4 — B, hence ¢ =id, op: DB,
In the second case id,: A—B and ¢: B— D, hence ¢} 4 =poidy:
A—D.

TuroREM 6. Let A and B be substructures of C and A < B. Then A
18 a substructure of B.

Proof. A = B is supposed. Since A is a substructure of C, we have
id,: A— C; since B is a substructure of C, we get id,: A — B. Let
DU, ¢p: D—~B and W(p) < A. By Theorem 6 we have ¢: D—C;
since A is a substructure of C, we get ¢: D — A.

TuroreM 7. Let A be an abstract scategory and A, B, C eN°; lot A
be isomorphic to B and B a subsiructure of C. Then there exists an W-struc-
ture D such that A is a substructure of D and D is isomorphic to C; a given
isomorphism of A onto B may be extended to an isomorphism of D onto C,

Proof. Let ¢: A ~ B. This p can be extended to & one-to-one mapping
p of a set D onto (; we may e.g. take the first ordinal number « such that
{m, a) does not belong to A for any m and define p~'(x) = ¢ '(2) for
zeB and vy~ '(z) = (@, ¢) for . eC—B. As U is abstract, there exist.s
an 9U-structure D with the underlying set D such that p~': C ~
i.e. y: D ~ C. It remaing to prove that A4 is a substructure of D. Oleru'ly
4 =D We have id; =y 'op: A—- D. Let HeU% y: H—- D and
W(x) < A. We have yo y: - C and W(ypo g) € B; B is a substrue-
ture of C, so yoy: H—>B. Hence y =¢p'opo y: H— A.

Let A be an A-structure. For every set M < A there exists evidently
at most one substructure of A with the underlying set M ; if such a sub-
structure exists, then M is called a set underlying in A (or: a set W-under-
lying in A). If M is underlying in A, then we shall speak of the corre-
sponding substructure of A.

A set M < A is called U-generating in A if there exists no set B
underlying in A such that M < B < A.

Let a scategory U and a family (A4,),.r (T being a set) of U -structures
be given. An W-structure A and a family n;: A —> A4, (1T) of Y-mor-
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phisms is called the direct product of (A,),r in U if for every A-structure B
and every family ¢;: B — A, (teT) of W-morphisms there exists exactly
one p: B— A in U such that ¢, = =0 ¢ for all 7.

It 7 A— Ay (1eT) and m;: A~ A, (teT) are two direct products
in U of a family (4y).r, then evidently 4 ~ A; there exists exactly one
isomorphism ¢: A ~ A such that x, = 7,0 ¢ for all teT.

If (4)) Deer is a family of sets, then X A4, denotes the set of all mappings
{1’

f such that @(f) = T and f(t)ed, for all teT. If 1eT, then the mapping
p of A into A, defined by ¢(f) =f(t) for all fed, is denoted by pr/* (or
just pry).

Let (A;).p be a family of U-structures; put 4 = X 4,. An U-struc-
{el

ture A with the underlying set A i called the Cartesian product-(in )
of (A, )ier 1 DYy 1s an A-morphism of A4 into A4, for all teT and the family
pr;: A—> A, (teT) is a direct product of (A,)p. Every family hag at
moat one Cartesian product.

A scategory is called Cartesian if every family of its structures has
the Cartesian product.

THEOREM 8. Let an abstract scategory W and a family (A,).r of U-
structures be given. Suppose that there exists a direct product =m,: A — A,
(teT) in W such that for every family (a;).p of elements a e A, there exists
exactly one acA satisfying =,(a) = a, for all teT. Then (A,).; has a Car-
tesian product in W

The proof is obvious.

6. Rich scategories

A scategory U is called rich if for all A «A° every subset of 4 is under-
lying in A.

A subscategory U of a scategory B is called an S-skeleton of B if
every B-structure is a B-substructure of an Y-structure.

Supposing that a scategory U is given, we shall construct in this
section a rich scategory containing an S-skeleton equivalent to . This
will be done in two various ways; in connection therewith see also Theorem
16 below.

Although the vesults of this section are not applied below, I think
they may be interesting,.

An S-skeleton A of a scategory B is called rough if the following
holds for all A-structures A and B: if 4 is an Y-substructure of B, then
it is a B-substructure of B if and only if id, can be extended to an U-
morphism of B into 4.
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TueoReM 9. Every scategory U is equivalent to a rough S-skeleton of
a rich scategory B satisfying

(14) if A, B, (B° A bez‘oz-é a B-substructure of B and p: A — C in B,
then ¢ can be extended to a B-morphism of B into a B-overstructure
of C.

Proof. Let & Dbe the class of all ordered palrs (A, M) such that
AN and M < A. Let us define a pre-scategory 9 in this way: A° — A

Ug((A, M) = M; a mapping ¢ of M into N is an - -morphism of <4, M)
into (B, V) if and only if p can be extended to an A-morphism of A into B.

This o evxdently satisfies (1) and (2). Let B be a scategorization of oA with
respect to e Define a mapping & of AY into B? by e(A) = ({4, 4)).
A mapping ¢ of 4 into B is an A-morphism of (4, A) into (B, B) evidently
if and only if it is an W-morphism of A into B; by Theorem 2, it is thus
a B-morphism of e(4) into £(B) if and only if it is an W-morphism of A
into B. By Theorem 1, ¢ is an equivalence of 9 onto a subscategory of B.
It is easy to prove that if A<%U® and M < A, then &({(4, M)) is a B-sub-
structure of £({4, A4)). In view of this and Theorem 6, the B-substructures
of #(¢A, M>) are exactly the B-structures e(¢(A4, N¥N)) such that N c M
From this it is easy to prove that B is rich and that ¢ is an equivalence
of A onto an S-skeleton of B. If £((A, A)) is a B-substructure of «((B, B)),
then we have s((A4, A)) = e({B, A)), as ¢({(B, A)) is also a B-substruec-
ture; from this it follows that id, can be extended to an Y-morphism of B
into 4. The S-skeleton is thus rough. Let ({4, M)), (B, N)) and
£(<C, @>) be B-structures, the first being a B-substructure of the second;
let ¢ be a B-morphism of (<A, MD) into ((C,Q)). As (<A, M))
= ¢((B, M), ¢ can be extended to an U-morphism @: B — C. The
restriction ¢ [N can be extended to ¢, so that

eI N: e({B, N)) - ¢(<C, () in B.

Since p !N is an extension of ¢ and =(¢C, 0>) is a B-overstructure of
£(<C, ©>), we have proved (14).

An S-gskelefon U of a scatégory B is called fuithful if the following
holds for all 9U-structures 4 and B: if 4 is an W-substructure of B, then
4 is also a B-substructure of B. |

TuroREM 10. Every scategory U is equivalent to a faithful S-skeleton
of « rich scategory.

Proof. Let o be the class of all ordered pairs (A, M) such that 4
iy an Y-structure and M < 4. Let us define a pre-scategory oA in this

way: AT =5 Uz((A, M>) = M; a mapping ¢ of M into N is an UA-
morphism of (A M into (B, N) if and only if it can be extended to
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an W-morphism of an U-substructure of 4 into B. This Pre-scategory

evidently satisfies (1). Let 8B be a scategorization of 9 with respect to e,
Define a mapping ¢ of A’ into B? by £(A4) = £(<4, 4)). It is evidently
a sfunctor; we shall prove that it is an equivalence of W onto a subsca-
tegory of B. Let A, BeA® and ¢: £(4) —> ¢(B) in B; it is sufficient to
prove g: A—> B in .

By Theorem 2 there exists a finite sequence

Pt <A-Dl J’-/[O> - <A1) ﬂf!)! ceey Pt <An—1’ JIIn—]) —> <An! -M-n> (”‘ = 1)
of Y-structures and ﬁ-morphisms such that
CAyy My) = (4, 4, 4,, M, = (B,B) and ¢ =¢,0...0¢q..
We show Dby induction on ¢ =1,...,n that ¢;0...c¢, is an UA-
morphism of A, into 4;. Let ¢ = 1. We have ¢,: (A, A) -~ {(4,, M,> in
A; A is the only A-substructure of A whose underlying set contains 4, xo

p: A—A; in A. Let the assertion hold for an 4 and let i4+1 < ».
We have

@ 0...op: Ay~ A, in A and g <Ay, M) - (A, My in 5[;
there exists an A-substructure A; of A; and an extension ¢i,, of ¢,
to an Y-morphism of A; into A;,,. As W(g;) = M, < A;, we have
W(p;0...0¢) € A; and hence g;0...0¢,: Aj—A; in 9, so that
Pip10¢;0...0 ¢ Ay — A, in U; evidently
Pisr OPiO - OPy =P OPO.en Oy
The assertion iy thus proved; we get
PO ..o Ag—>A4, in¥U, de g: A-B in U

Let A be an Y-structure and M < A; we now prove that ({4, M)
is a B-substructure of £((4, 4)). Since id,, can be extended to id,:

A—~ A, we have idy: (4 ,M) (A, A) in A and hence
id,: e(CA, M))—¢({A4, 4)) in B.

Let a B-structure (B, N)) be given and let ¢ be a B-morphism of
e({B, N)) into &({A, A)) such that W(p) = M. By Theorem 2 there
exists a finite sequence

Pr: <B0’ N0> - <B17 Nl)’ covy Put <Bn—1! Nn—1> - <Bn1 Nn) (”2 -l)
of A-structures and 9-morphisms such that

<Boy -N0> = <B; N)) <Bn’ -Nn> = <A’ A> and # = @0 ...0 Q.
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For every 1 = 1,..., n there exists an W-substructure C;_, of B;_, and
an extension ¢; of ¢, to an W-morphism of C;_, into B;. We define a set
N;_, and a mapping ¢; for every ¢ =1, ..., n in this way:
No=Ny, or=g¢; Nia=Wiay oi=¢lN
put further N, = M. We have
PrnO - OPL = 0...00 = p;

evidently

Wi(g) = Wippo...0o¢) = W(p) € N,
Hence, ¢; is for-every i =1,...,n a mapping of N,_, into N, and it can

be extended to the A-morphism ¢;; we get

gt (Bioyy Nioy) = (B, Ny in QI

and consequently
pi: 6(<Bi_1, N;_)>) —e((B;, Npd) in 3.
This gives
700 ... 0 g2 E((By, Npd) > 2(¢B,, N,))  in B,

i.e.

¢t 5((B, NY) > 5(¢A, M)) in 8.

From this we get easily that B is rich and that ¢ is an equivalence

of % onto an §-skeleton of B; this S-skeleton is faithful. For if 4 is an

A-substructure of B, then it is easy to prove e((A, AD) = (KB, 4)), %0
that e({4, A)) is a B-substructure of ({B, B)).

7. Locally small, bounded and regular scategories

Let » be a cardinal number. A scategory U is called x-locally small if
there exists a set 4 < UA° such that every U-structure of order <  is
isomorphic to a structure from .#. It is called locally small if it is »-locally
small for all cardinal numbers .

A scategory U is called small if NA° is a set. Every small scategory
ig locally small.

THEOREM 11. An abstract scategory U is locally small if and only if

(15)  for any set A, the class of all W-structures with the underlying set A
18 a set.
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Proof. Let % be abstract and locally small. If A is a given set, then
there exists evidently a set 4 of U-structures with the underlying set 4
such that every U-structure with the underlying set A is isomorphic to a
structure from . If 4 e #, then the class of all A-structures B with the
underlying set A which are isomorphic to A4 is a set, because any such B is
uniquely determined by a permutation of 4, and all permutations of A
constitute a set.

Let A be an abstract scategory satisfying (15) and let a cardinal
number » be given. In virtue of (15), the class of all A-structures A such
that A = » is a set. As U is abstract, every UA-structure of order < is
isomorphic to some A with A < «.

If -we defined locally small scategories by (15), then the following
theorem would not hold:

THEOREM 12. The abstraction of a locally small scategory is an abstract,
locally small scategory.

The proof is obvious.

Let m and n be cardinal numbers. A scategory U is called (m, n)-
bounded if for every W-structure A and every set M < A of cardi-
nality < m there exists an underlying set B in 4 such that M = B and
Card B <.

A scategory is called bounded if for every m there exists an n such
that it is (m, n)-bounded.

Let U be a scategory and AeN° A set M < A is called dense in A
(or: A-dense in A) if for every U-structure B, the conditions ¢: 4 — B,
p: A—>Band ¢| M =y} M, imply ¢ = p.

A scategory U is called regular if for every U-structure A and every
subset M < A there exists a substructure B of A4 such that M = B
and M is dense in B.

8. IFree structures

Let a scategory U and an A-structure A be given. A set M < 4 is
called an W-basis of A if for every U-structure B, every mapping of I
into B can be extended in exactly one way to an %-morphism of A into B.
Every 9-basis of A is dense in A. An U-structure is called UA- -free if it
has an U-basis.

TuEOREM 13. Let M, be an W-basis of A, and M, an U-basis of A,.
If there exists a one-to-one mapping ¢ of M, onto M, then ¢ can be extended
in exactly one way to an isomorphism of A, onto A,.

The proof is easy.
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THEOREM 14. Let A be a non-trivial, locally small, bounded, regular
and Cartesian scategory. Then for every cardinal number m there exists
an U-free structure with W-basis of cardinality m.

Proof. Let M be an arbitrary set of cardinality m. As U is non-
trivial and bounded, there exists a cardinal number n such that the
following two conditions are satisfied:

(16)  there exists a non-trivial %A-structure of order < n;

(17) if De’ ¥ < D and Card ¥ <m, then there exists an underlying
set Zin Dsuch that ¥ = Z and Card Z < n

9 is locally small, so there exists a set .# < A’ such that every
N-structure of order < n is isomorphic to a structure from #. Let T be
the set of all ordered pairs (D, 1) such that De .#, A is & mapping of M
into D and W (A) is a set dense in D. For the teT, denote the first member

of the corresponding ordered pair by D, and the second by 2;. Let F be

the Cartesian product of (D,),r. We define a mapping ¢ of M into F in

this way: if ae M, then @(a) is that element of X D, which satisfies
teT

(p (a)) = M(a) for all teT. As U is regular, there exists a substructure
F of F such that W(p) € F and W (p) is dense in F. It iy easy to prove
that ¢ is injective (apply the non-triviality of .# and the regularity
of A). Hence, it is sufficient to prove that W(¢p) is an A-basis of F.
Let an UA-structure A and a mapping » of W(p) into 4 be given.
As Card W(yp) <m, there exists a substructure of A of order <n,
whose underlying set contains TV (); in this substructure there exists

a substructure B such that W(y) =< B and W(y) is dense in B. There
exists evidently a structure De # and an isomorphism #: B =~ D.
Putt =<{D,npoypopd, g0 that teT. For all ae M we have

(1o yoq)(a) = 4(a) = (p(a))(t) = (pr, 0 p)(a),
so that

N0 PO @ =DPr,op;

consequently,

noy =pr| W(p).

The mapping 5 ‘o (pr, | ') is evidently an extension of p to a morphism
of F into A; the uniqueness of such an extensmn follows from the density

of W(p).
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9, J-ary scategories and scategories with
- (¥, x)-ary morphisms

Let & cardinal number # be given. A scategory U is called 9-ary if
the following holds for all U-structures A and B:

(18) whenever ¢ is a mapping of 4 into B such that ¢| K can be
extended to an UA-morphism of A into B for all non-empty sets
K = A of cardinality <, then ¢: A - B in U,

Let cardinal numbers ©# and » be given. A scategory ¥ is called sca-
tegory with (9, x)-ary morphisms if the following holds for all UA-struc-
tures 4 and B:

(19) whenever ¢ is a mapping of 4 into B such thaf <prﬁ: A—~B
for all substructures A of A satisfying Card A < x and having
a non-empty dense subset of cardinality < ¥, then ¢: A - B
in A.
THEOREM 15. Let & be a-oardinal number. If W is a scategory with
(?, #)-ary morphisms, then it is a #-ary scategory.
The proof is evident.

THEOREM 16. Let ¥ be a cardinal number. Every #-ary scategory is
equivalent to an S-skeleton of a rich scategory with (&, d)-ary morphisms.

Proof. Let A be a #-ary scategory. Let o be the class of all ordered
pairs {4, M) such that AeU° and M < A. Define a pre-scategory U
in the following way: U° = #"; %z(¢A, M>) = M; a mapping ¢ of M
into N is an Y-morphism of <4, M) into (B, N) if and only if ¢ | K can
be extended to an W-morphism of A into B for all non-empty K < M
of cardinality < #. This pre-scategory evidently satisfies (1); we prove
that it satisfies (2). Let ¢: <A, M) - (B, N>inWand y: (B, N) - (C, L)
in Q—[; let a non-empty set K of cardinality < 4 be given. We have to
prove that (y o @)} K can be extended to an UA-morphism of 4 into C.
The mapping ¢ | K can be extended to an W-morphism ¢: A — B. The
set @' K is evidently non-empty and of cardinality < §; hence, y} (¢'' K)
can be extended to an A-morphism y: B - C. We have yog: 4 - C
in U, and p o p is an extension of (y o ¢) | K. Let B be a scategorization
of 9 with respect to s. Define a mapping ¢ of %A° into B® by e(A)
= &g({A, 4)). Since U is ¥-ary, the following holds for all A-structures A
and B: a mapping ¢ of 4 into B is an ‘ﬁ-morphism of (4, 4) into (B, B)
if and only if it is an Y-morphism of A into B. On account of Theorem 2,
¢ i3 an equivalence of U onto _a.gubscategory of B.

Dissertationes Mathematicae LX
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It i evident that if AeU° and. M € A, then (<4, M)) is a B-sub-
structure of &((4, A)) From this it follows easﬂy that ¢ is an equwalence
of % onto an S-skeleton of B and that B is rich. We prove that B is
a soategory with (9, #)-ary morphisms. Let s(¢A4, M)) and e({B, N))
be two B-structutes and p & mapping of M into N such that its restriction
to any substructure containing a non-empty dense subset of cardinality
< # and being of order < ¢ iy & B-morphism, If X = M is non-empty.
and of cardinality < 4, then K is dense in the substructure &({4, K))
of e((A M}) so that

plK: 5({4,K)) > &(KB,N)) in®B
and consequently
?1K: <A, Ky > <B,N) in %;

by the construction of %, ¢ } K can be extended to an Y-morphism of 4

into B. This holds for every K, so ¢ is an *f[-lnorphism of (A, M) into
(B, N) and consequently a B-morphism of ({4, M)) into &({B, N)).

10. Scategories closed in themselves

Ascategory U is called closed in itself if it satisfies the following con-
dition: If 4, Be%® and ¢: 4 — B, then W (p) is a set underlying in B,
TrEOREM 17. Lot U be a scategory closed in itself and suoh that for
every cardinal number m there ewists an U-frec structure with W-basis of
cardinality m. Then the following holds :
(1) A is bounded;

(ii) A s regular;

(iii) of AeWA°, then the intersection of any non-empty system of sets
underlying in A is a set underlying in A;

(iv) if AeA° and if M is an W-generating set in A, then M 4s dense
in A;

(v) if Ay BeW®, p: A~ B and M is a set underlying in A, then ¢’ M
18 underlying in B;

(vi) if A, Bs"JI"’ p: A—B and M is a set underlying in B, then

V' M s underlymg in A.

Proof. (i) Let m be a cardinal number, There exists an A-free struc-
ture F with ¥-basis M of cardinality m; putn = CardF. Let A% N < A
and Card N =m. There exists a one-to-one mapping of M onto N, and
it can be extended to an UA-morphism ¢: F — A. The set W (g) is under-
lying in A and Oard W(p) < n. From this the boundedness follows easily.



" 10. Scategories closed in themselves 19

(iii) Let (4;).r be a non-empty family of sets underlying in A; for

every teT let A, be the corresponding substructure. Put M = (M) 4,.
- tel
There exists an U-free structure F with A-basis N of cardinality Card M.

A omne-to-one mapping » of N onto M can be extended to a morphism
¢: F — A in exactly one way. For every teT we have ¢: F —+ A,, as 17
can be extended to a morphism of F into A, and this morphism is
a morphism of F into A. We get W (p) = M and consequeﬁtly W(p) = M.

(iv) There exists an UA-free structure F with A-basis N of cardinality
Card M ; a one-to-one apping 5 of N onto M can be extended to a mor-
phism ¢: F — A in exactly one way. Evidently W(p) = 4. Let Be%C,
vi: A—>B, y,: A—-B and yp,t M =y,t M. We have yp,0¢: F =B,
y,op: F—~B and (p,0¢)tN = (p,0¢)tN, so that yp,0p = p,0q.
As W(p) = A4, we get p; = yp,. )

(i) If AeN° and M < A, then M is W-generating in a substructure
of A by (iii), and it is dense in this substruecture by (iv).

(v) is easy.

(vi) There exists an U-free structure F with U-basis N of cardi-
nality Card(e~'M). A one-to-one mapping # of N onto ¢~''M can
be extended to a morphism y: F - A. We have ¢poy: F —>B; as
(pop)(x)e M for all zeN, we have evidently W(g o ) = M. Heunce,
W(p) < o™V M, so W(p) =¢ M.

11. Additive scategories

Let 4 be a cardinal number. A scategory U is called J-additive if
the following holds: whenever A is an U-structure and M < 4 is a set
such that for every K < M of cardinality << J there exists o set con-
taining K, contained in J{ and underlyingin 4, then M is underlying in A.

A gystem # of sets is called 9-local if for every set K = () A4 of
cardinality < ¥ there exists an Me.# such that K < M. Every 9-local
system (# being non-zero) is evidently non-empty.

THEOREM 18. Let ¢ be a cardinal number, & = 2. A scategory U 1is
#-additive if and only if for every W-structure A, the union of any 9-local
sy stem of sets underlying in A is a set underlying in A.

The proof is easy.

Let U be a scategory, # a cardinal number and 4’ A set M = 4
is called 9-dense in A if it is dense in A and if for every aecA there exist
a set K = M of cardinality < 9 and a substructure B of A such that
K c B, I is dense in B and aeB.
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THEOREM 19. Let & be a cardinal number, 4> 2. Let W be a closed
in itself scategory such that for every cardinal number m there exisis an
W-free structure with W-basis of cardinality m, this basis being J-dense.
Then U 4s V-additive.

Proof. Let an ¥-structure 4 and a 9-local system . of sets underlying
in A be given. There exists an U-free structure F with %-basis N of car-
dinality Card(l) .#) such that ¥ is 9-dense in F. A one-to-one mapping 7
of N onto | J.# can be extended to a morphism ¢: F — A in exactly
one way. It is sufficient to prove W(p) = U, or only W(p) = U.
Let acF. Ay N i 9-dense in F, there exists a set I = N of cardinality
< ¢ and a substructure B of F such that K is dense in B and aeB. Since
'K e (J# and Card(n" K)< &, so there exists an Me .# such that
n''K = M; denote the corresponding substructure by M. (If | «# is
empty, then evidently F is empty and everything is evident; if it is non-
empty, then we can choose M to be non-empty.) From this we get: There
exists a morphism y: F —M such that

(VM) =) (g7 M) =@} (7" I).

We have
py!|B: B> A, ¢|B:B—A
and
(B (n™" M) = (¢ B) | (n~"" M),
so that

(p} B)MC = (p| B) L,  so that ¢ }B =g¢!}B.

We get W(p|B) = M and consequently p(a)e M < [J.A~.

THEOREM 20. Let 9 be a reqular number. Let U be a reqular 9-additive
scategory. If a set M is an N-basis in an W-structure A, then it is J-dense
in A. _

Proof. For every X = M of cardinality < ¥ let us choose a sub-
structure Ax of A such that X = 4, and K is dense in Ay. (This can
be done by the regularity of 9U.) We shall prove that the system of all
those Ax’s is J-local. Let L < (JAg be of cardinality < &, Every leL

K

belongs to an Ay,. Since ¢ is regular, the cardinality of X° = UK, is < .
leL
For every leL we have Ax, < Aro, a5 idg, can be extended to a morphism

of A into Ago (if Agze # 0) and hence to a morphism of Ag, into Ago,
and this latter morphism, being a morphism of Ag, into A, is equal to
idg,. (If Ago =0, then this is evident.) The system of all those Ax is
thus 9-local, so that its union B is a set underlying in A4; denote the
corresponding substructure by B. It is evidently sufficient to prove
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B = A. The mapping id,; can be extended to a morphism ¢ of A into B;
as @ is a morphism of 4 into 4, we have ¢ =id,. Hence, 4 < B.

Let cardinal numbers § and x» be given. A secategory U is called
(9, »)-additive if the following holds: it 4<A¢, M < A and

(20)  whenever B is a substructure of A such that CardB < x and
such that B contains a dense subset D satisfying D < M and
CardD < ¥, then B < I,

then M is a set underlying in 4.
If A is (4, »)-bounded, regular and #-additive, then it ix evidently
(#, »)-additive.

12. Scategories with divisible morphisms

A scategory U is called a scategory with divisible morphisms if it
satisfies the following condition: if 4, B, C<¥’, ¢: A - B, W(p) = B,
v a mapping of B into ¢ and po¢: A — C, then y: B — C.

THEOREM 21. Let W be a closed in itself scategory with divisible mor-
phisms; let A, BeU®. Then A is a substructure of B if and only if A < B
and id4: A - B.

Proof. Let this condition be satisfied. 9 is closed in itself, so A4 is
a set underlying in B; denote the corresponding substructure by A, We
have id,: A - A, W(id,) = 4, il,is a mapping of 4 into A and
id,oid,: A — A; since A is a scategory with divisible morphisms, we
get id,: A — A. This implies id,: 4 ~ A, so that A = A.

13. Quasi-algebras and algebras

By a type we mean an arbitrary family of sets (the domain being
a set). Let us make the following convention: if a type is denoted by 4
(or 4% ...resp.), then its domain is denoted by I (or I%,...resp.) and
its value at an i by 4, (or 4], ... Tesp.).

A type 4 is called a type without constants if A, is non-empty for
all 4e1; otherwise it is called a type with constants.

The dimension of 4 is the least regular number exceeding all Card 4,
(teI). 4 is called finitary if its dimension is N,, i.e. if all the sets 4; (iel)
are finite.

Let A and L be two sets. A mapping f is called a partial operation
of arity L in A it 2(f) = A" and W(f) < A. A mapping f is called an
operation of arity L in A it 2(f) = A" and W(f) < A. Operations of
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arity 0 in A are in a natural one-to-one correspondence with the elements
of A. )

By a quasi-algebra of type 4 we mean an ordered pair A = {4, (f;)wr)
such that A is an arbitrary set and f; is a partial operation of arity 4,
in A for all s¢I. The seti A is called the underlying set of A; f; is called the
i-th fundamental partial operation of A. Let us make the following conven-
tion: if a quasi-algebra is denoted by A (or B, or 4,,...resp.), then its
underlying set is denoted by A (or B, or 4,,...resp.) and its 4-th funda-
mental partial operation by Ay (or By, or Ay, ... Tesp.).

A quasi-algebra A is called algebra if every fundamental partial
operation of A is an operation; we then speak of fundamental operations.

Lett A and B be two quasi-algebras of type 4. A mapping ¢ of A
into B is called a homomorphism of A into B if: whenever il and ae2(4;),
then

poacP(B;) and  o(dy(a) = Bylroa).

If A and B are algebras, then this condition can be re-formulated:
whenever i eI and aeA“, then

W(A[il (."')) = By(p o a).

Let a type 4 be given. We define a seategory £, as follows: its strue-
tures are exactly quasi-algebras of type 4; the underlying set of a structure
is the underlying set of the quasi-algebra; morphisms are just the
homomorphisms. (It is easy to show that #, is really a scategory.) The
subscategory of 2,, determined by the class of all algebras of type 4,
is denoted by 27,. :

By a sfunctor of a scategory W into a class 4 of quasi-algebras of type A
we mean a sfunctor of U into the scategory determined by . Similarly:
sfunctor of ¢ into U, of ", into o ,; equivalence of U onto ", ete.

Let a quasi-algebra A of type 4 and a set B < A be given. Let us
define a quasi-algebra B of type 4 with the underlying set B in this way:
it iel and a@eB", then a2 (By,) if and only if ue2(Ay) and Ay (a)eB;
in the positive ease we put By, (a) = Ajy(a). This B is denoted by A|B.
A quasi-algebra is called a relative quusi-algebra of A if it is of the form
A||B for some B = A. It is easy to prove that relative quasi-algebras
of A are exactly the substructures of A in the sense of 2.

Let A be a quasi-algebra of type 4. A set B = A is called elosed in A
if: whenever iel, aeZ(Ay;) and W(a) = B, then Aj(a)eB. A relative
guasi-algebra of A is called subguasi-algebra of A if its underlying set
is closed in A. ~

It is easy to prove that the intersection of any non-empty system
of sets closed in A is a set closed in A. From this it follows that for every
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set M < A there exists the least‘set closed in 4 and containing M ; this
set is denoted by C,4(M) and the corresponding subquasi-algebra by

Ca(M). A set M is called a set of generators of A it C4(M) = A (not to
be confused with the notion of #,-generating set in A; evidently, 4 1s
the only # -generating set of A.)

If A is an algebra, then every subquasi-algebra of A is an algebra;
we then spealt of subalgebras. Subalgebras of 4 are exactly the substrue-
tures of A in the sense of «/,. 7 ,-underlying sets of A are exactly the
sets closed in A; «/,-generating sets are exactly the sets of
generators.

Let (Ap).r be a family of quasi-algebras of type 4. Put 4 = X 4,
teT
and define a quasi-algebra A4 of type 4 with the underlying set 4 as

follows: if 1eI and aeAJL then GEJ(A[]) if and only if pr; o ae2(4,;)

for all teT; in the positive case Ay (a) is that element fe X 4, which
leT

satisties f(f) = 4, ;(pr, 0 @) for all teT. This A is called the Carlesian
product of the family (A,).y of quasi-algebras. It is evidently the Cartesian
product of this family with respect to 2. If (4,),. is 2 family of algebras,
then its Cartesian product is an algebra and it is the Cartesian produet
of that family with respect to «7,. |

THEOREM 22. Let (A);p be a family of algebras of type 4. An algebra

A of type A with the underlying set X A, is the Carlesian product of that
feT"

family if and only if pr, is & homomorphism of A into A, for all teT.

The proof is easy.

A class & of quasi-algebras of type 4 is called I-closed if, whenever A
belongs to o, then every quasi-algebra isomorphic to A belongs te f;
it is called S-closed if, whenever A belongs to ¢, then every subquasi-
algebra of A4 belongs to J'; it is called P-closed if, whenever a family
of quasi-algebras of %" is given, then its Cartesian product belongs to ¢
it is called 8, P-closed if it is S-closed and P-closed; etc.

14, A characterization of some classes of (uasi-algebras

THEOREM 23. Let a scategory W and a regulur number 4 be given. The
following two conditions are equivalent:

(i) Uis equivalent to an S-closed class of quasi-algebras of a type of
dimension < 9;

(ii) there exists a cardinal number x such that A is a x-locally small
and (&, =) -additive scategory with (9, x)-ary morphisms.

Proof. (i) = (ii): Let U be equivalent to an S-closed class 4 of
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quasi-algebras of a type of dimension < 4. There exists a cardinal number
» such that whenever A is a quasi-algebra of type 4, K < A4 and Card K < 9
then Card(C,4(X)) < ». U is evidently locally small and (#, »)-bounded;
we prove that it is (8, »)-additive. Let A be an W-structure and let M/ < A4
be a set satisfying (20). Let us denote by A* the quasi-algebra corres-
ponding to A. It is evidently sufficient to prove that M is closed in A*.
Let iel, e M* and @<2(Ay). Put K = W(a), so that K = M and
Card K < 9. Put B* = %, (K), so that B*ex'; let B be the U-structure.
corresponding to B*. B is a substructure of A4, the set K is %-dense in B
and Card B < x. By (20) wehave B = M and consequently Ay (a)eB = M.
It may he proved quite similarly that % is a scategory with (&, »)-ary
morphisms. '

(ii) = (i): Sinee ¥ is x-locally small, there exists a set .# = AY such
‘that every U-structure of order < » is isomorphic to a structire from 4.
Let I be the set of all ordered ftriples (Z, M,z) such that Ze.#,
M is a set dense in Z, Card M < ¢4 and zeZ. Define a type 4 (with
the just defined domain I) in this way: if 7 = (Z, M, 2)el, then 4, = M.
It is evidently a type of dimension < . To every U-structure A we shall
assign a quasi-algebra A* of type A: its underlying set is the set A4; if
i =(Z, M, zyel and ae A", then a2 (A4y) i and only if @ can be exten-
ded to an A-morphism a: Z — A (this e is then uniquely determined);
in the positive case we put AE‘}J (@) = a(z). Let ¢ be the mapping assigning
to every AeU” the corresponding A*; put # = W{(e). We shall prove
that e is an equivalence of % onto " and that # is S-closed.

Let ¢ be an A-morphism of A into B; we shall prove that it is a homo-
morphism of A* into B*. Let ¢ = (Z, M,z)el and acZ(Aj). The
mapping a@ can be extended to an W-morphism a: Z — A and we have
AE’}] (@) = a(2). The mapping ¢ o a is & morphism of Z into B and it is
an extension of p o @; hence

PO ae.@(BE]) and BE",-J (poa) = (p(a(z)) = (p(AE-](a)).

Jonversely, let ¢ be a homomorphism of 4" into B*; we shall prove
that it is an A-morphism of 4 into B. Let A be an arbitrary W-substructure
of 4 having a non-empty dense subset M of cardinality < ¢ and being
of order < x. As QE is a scategory with (@, »)-ary morphisms, it is sufficient
to prove ¢tA4: A - B in U. There exists a structure Ze.# and an
isomorphism #u: Z~A. Put M =y ''M. For every ced put i,
= (Z, M, n7'(¢)), so that i.eI. M is non-empty, so A is also non-empty;
tix an element ¢ jed. As 5: Z — A, we have

A (1 M) = (57 (o)) = o;
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since ¢ is a homomorphism of quasi-algebras, we get
Bii,a(@ 0 nt M) = g(e);

by the definition of B, the mapping ¢ o | i can be extended to an
Y-morphism y: Z —~B. We have po 7't A B in U; it is sufficient
to prove yo ' =g A. Let ced. In the same way as for ¢,, we can
prove
A'[.;cj("? M) = )
50 that '
Bj (o 9} H) = p(c);

by the definition of B*, the mapping g o » | can be extended to an
Y-morphism y: Z -~ B and we have y(n~'(¢c)) =g¢(c); as M is dense
in Z, we have p =1, so that y(y7'(¢)) = @(¢). This holds for all ced,
thusyo ™! =g 4.

This shows that & is an equlvalence of U onto 2. We ghall prove
that o is S-closed. Let a quasi-algebra PeX and its arbitrary subquasi-
algebra Q Dbe given; we are to prove Qe . There exists an W-structure 4
such that P = A*., We first prove that @ is a set underlying in 4. Let
an W-substructure D of A be given, D being of order < » and containing
a dense subset K which satisfies X < @ and Card X < &. As W is (¥, =)-
additive, it is sufficient to prove D < . There exists a structure Ze .#
and an isomorphism #: Z ~ D, Put M = V'K; for every zeZ put
i, = <Z, M, 2, so that i,el. As : Z > A in U, we have

n(2) = A?}z] (M M) = Qi (ntM)eQ for all zeZ.

We get W(y) = @ and hence D = @. @ is thus in fact a set underlying
in A; let us denote the corresponding substructure by B. We shall prove
B" = Q. Asid,y: B - A in %, id,, is a homomorphism of B* into 4™ and
consequently a homomorphism of B* into Q. It is sufficient to prove
‘that idg is a homomorphism of Q into B*. Let ¢ = <Z, M,2)eI and
ae2(Q). The mapping a can be extended to an A-morphism a: Z — A.
For every zeZ put 4; = (Z, M, z), so that 7;eI ; we have

a(z) = [1,z](a') Oiy(a) @
and thus W(u) = @. As B is a substructure of 4, we get u: Z - B in ¥,
whence

By(a) = a(z) = Qyla).

THEOREM 24. Let a scategory U and a regular number & be given. The
following two conditions are equivalent:
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(i) A is equivalent to an 8, P-closed class of quasi-algebras of a type
of dimension < ¥

(ii) there exists o cardinal number x» such that U is a =-locally small,
(4, %)-additive Carlesian scategory with (9, x)-ary morphisms.

Proot. (i) = (ii) is evident. (ii) = (i): Let us hold the notation intro-
duced in the proof of Theorem 23. It is sufficient to prove that the class
constructed there is P-closed. Let a family (A,),p of U-structures be given.
Let us denote by A the Cartesian product (in %) of this family and by €
the Cartesian product of the family (A4;),, of quasi-algebras; we shall
prove A* = C. For every teT we have pry;: A — 4, in A, so that (by
Theorem 23) pr, is a homomorphisny of A* into A); by the definition
of (' there exists exactly one homomorphism 5 of A" into € such that
pr; = pryo n for all teT; evidently 5 = idy; it remains to prove that
id, is a homomorphism of € into 4*. Let i = (Z, M, z)cI, a eCli = M
and ae2(Cp;). For all 1eT' we have pr,o aed]* and prtoae.@(A;':[,.]);
the mapping pr,cae can be extended to an U-morphism g¢,: Z — A4,
and we have A:lil (pr; 0 @) = ¢;(2). By the definition of the Cartesian
product A there exists an U-morphism ¢: Z - A such that ¢, = pr,o ¢
for all teT.

If 2 M, then for all {7 we have

prfp(z) = ¢(@) = prfa(a)),

so that ¢(x) = a(w). ¢ is thus an extension of a; by the definition of 4*
we have @e2(Ap;); as idy is a homomorphism of A* into C, we get
Apy(a) = Cyy(a).

Evidently, we could get a characterization of I, 8-closed and I, 8, P-
closed classes of quasi-algebras if we added the assumption “91 is abstract”
in (ii), Theorems 23 and 24.

TurorREM 25. Let a small scategory U and a regular number & be given.
The following two conditions are equivalent:

(i) A is equivalent o a set of quasi-algebras of a type of dimension < 9;

(ii) A is a J-ary scategory.

Proof. (i) = (ii) is easy. (ii) = (i): By Theorem 16, % is equivalent
to an S-skeleton of a rich scategory B with (#, #)-ary morphisms, B is
evidently small. 8 is (9, 9)-additive, because it is rich. By Theorem 23
B, and thus also %, is equivalent to a class of quasi-algebras of w type
of dimension < 4.

THEOREM 26. A small scategory U is equivalent to a set of quasi-algebras
of a type if and only if for all AU, if A =0, then 0: A > B for every
B Y°.

The proof follows from Theorem 25,
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15. A characterization of S, P-closed classes of algebras

THEOREM 27. Let & be a regular number. Let W be a scategory with
divisible morphisms such thai for every cardinal number m there exists an
W-free structure with a J-dense U-basis of cardinality m. Then A is equiva-
lent 1o a class of algebras of a type of dimension 9.

Proof. For every cardinal number » << ¢ choose an -free structure
F, with an %-basis X, of cardinality ». Let us define a type 4 in the fol-
lowing way: its domain I is the set of all ordered pairs {x, ¢) such that »
is a cardinal number, » < & and ceF,; if i = (x,¢c)el, then 4, = X,.
Evidently, 4 is a type of dimension ¥. We assign to every U-structure A
an algebra A* of type 4: its underlying set is the set A; if ¢ = (x, edel
and acA¥~ then Ap(a) = g(c) where ¢ is the uniquely determined
extension of @ to an A-morphism of ¥, into 4. Let & be the mapping which
assigns to every AeU° this A*. Put # = W(e). We shall prove that ¢ is
an equivalence of 9 onto 7.

Let A, Be¥%°and ¢: A — B in U. Let ¢ = (%, ¢>el and aeA** The
mapping @ can be extended to an Y-morphism p: F, - A in exactly
one way; we have Af;(a) = y(c). As g o y: E, — B in %, we have

Biy(p 0 @) = glv(0) = ¢(Afy(a)-

@ is thus a homomorphism.

Conversely, let ¢ be a homomorphism of A* into B*. If A =0,
then (as there exists a morphism of Iyinto 4) the structure F is of order 0;
since 0: Fy > A, W(0) = A, 0 is a mapping of 4 into B and 000:
F, -~ B, we get 0: A - B, so that ¢: A — B. We shall suppose 4 # 0.
There exists an UA-free structure F with an A-basis 4 of cardinality
Card A such that 4 is 9-dense in F. A one-to-one mapping » of 4 onto 4
can be extended to a morphism y: F — A and the mapping pon to
a morphism y: F — B. Since U is a scategory with divisible morphisms,
thus, in order to prove that ¢: A — Bin it is sufficient to provegp o y = %.
For every heF there exists a set K, A of cardinality < & and a sub-
structure D, of F such that heD,, K, < D, and K, is dense in D). Let
an arbitrary element deF be given. If K; # 0, put £ = K, and D = Dy,
If K; = 0, choose an arbitrary aed and put K = K, and D = D,, 50
that evidently L # 0; in this latter case deD, too, as there exists exactly
one morphism of D; into D (namely the restriction of any morphism
of F into D) and this is equal to id,, , so that D; < D. In both cases K is
a non-empty subset of 4, Card I < 19 and D is a substructure of I, I being
dense in D. If €' «YY and ). is a mapping of X into C, then 2 can be extended
to a morphism of F into C and the restriction of this morphism to D is
an extension of 2 to a morphism of D into C; K is thus an U-basis in D.
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‘If we put » = CardIK, there exists an- isomorphism u: F, ~ D such
that X, = K. Put v = p7'(d) and 7 = {x,v). We have

1(@) = x(u(v) = By(xoul X,) = Bylgonoul X,y
= g(Ay(nout X,)) = e(Ag(vout X,))
= g((wou)(v)) = ¢(v(d).

As de ' was arbitrary, we get really y = ¢ o .

THEOREM 28. Let & be a regular number. Let A be a closed in itself
scategory with divisible morphisms such that for every cardinal number m
there exists an U-free structure with a 9-dense U-basis of cardinality m.
Then N is equivalent to an S-closed class of algebras of a type of dimension §.

Proof. Let us hold the notation introduced in the proof of Theorem
27. It is sufficient to prove that the class o constructed there is S-closed.
Let Ae%° and let D be an arbitrary subalgebra of 4*; we have to prove
Dex. If D = 0, then from the definition of A* we get Iy = 0; as there
exists at most one algebra of type 4 with the empty underlying set, we
have Fy = D, so that De . Let D = 0. There exists an U-free structure
F with an U-basis D of cardinality Card D such that D is 9-dense in T
a one-to-one mapping n of D onto D can be extended to a morphism
¢: F — A. Let deD. Similarly as in the proof of Theorem 27, there exists
a non-empty K < D of cardinality < ¢ and a substructure B of F such
that deB, I < B and I is dense in B; if we put » = Card I, then there
exists an isomorphism u: F, ~ B such that 4’ X, = K. Put v = u~(d)
and 7 = {», v). We have

p(d) = (pou)(v) = A lpo utX,) = Afy(noplX,)eD.

We get W(¢) < D and consequently W(p) = D, so that D is a set under-
lying in A; let B be the corresponding substructure. Since B* = D and
id;, is a homomorphism of B* into A*, we. have evidently B* = D, so
that De A,

THEOREM 29. Let a regular number & and a scaiegory U be given. The
Jollowing four conditions are equivalent:

(1) A s equivalent to an 8, P-closed class of algebras of & type of dimen-

ston < 9

(ii) A 4s a locally small, bounded, regular, Cartesian, 9-additive and
closed in itself scategory with divisible morphisms;

(ii1) there exists a cardinal number x such that W is a x- Zoca,lly small,

Cartesian, (9, x)-additive and closed in itself soutegmy with (9, x)-ary and
divisible mo phzsms ;

(iv) A is a Cartesian and closed in itself scategory with divisible mor-
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phisms such that, if it is non-trivial, then for every cardinal number m
there exists an W-free structure with a 9-dense W-basis of cardinality m.

Proof. (i) = (ii) and (ii) = (ili) are easy. (ii) = (iv) follows from
Theorems 14 and 20.

(ili) = (iv): By Theorem 24 U is equivalent to an 8§, P’-closed cl(ns.s
of quasi-algebras of a type of dimension < ¥, so that U (if non-trivial)
evidently fulfils the assumptions of Theorem 14 and every U-basis is
#-dense.

It remains to prove (iv) = (i). If A is non-trivial, then this is easy
if we use Theorems 28 and 22. Let ¥ be trivial. Let 4 Dbe. an arbitrary
type of dimension ¢ satisfying only the following condition: 4 is a type
with constants if and only if there exists an U-structure of order 0. It is
easy to prove that U is equivalent to an S, P-closed class of algebras of
type 4 if we realize the following facts:

(21) There exists at most one U-structure of order 0.

Indeed, if A and B are two W-structures of order 0, then the Car-
tesian product € of the family constituted by 4 and B is again of order 0
and we have 0: C - A4 and 0: C — B in U; by the divisibi.lity of mor-
phlsmb weget 0: 4 - Cand 0: B—>(C,sothat A =C =

(22) If 0 is an A-structure of ordel 0 and Ae¥Y then 0: 0 —»A

Indeed, the Cartesian product (‘ of the family constituted by 0
and A is of order 0, so that 0 = C'; we have 0: C — A.

(23) Tvery two U-structures of order 1 are isomorphic.

This follows from the existence of Cartesian products and divisi-
bility of morphisms.

Evidently, we could get a characterization of I, 8, P-closed classes
of algebras if we added the assumption: U is abstract.
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