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On expansions of Meijer’s functions II

The method of the exponential fat;.tor

by J. LAwRYNOWICz (L6dZ)

§ 3. The method of the exponential factor. Let us introduce
the notations of the first part of this paper (see [3]) and further let

(45) By(s ={n1’ s—bj)nl" 1—s+ap)j/{ HP(1~8+bf) HFS—‘W)}
'ﬁk

Jmm+ f=nt1
1

(h=1,..,m),

(46) Bis)= [] ra—s+by,
Jmm41

o [ 4 7 o
1) Das) ={] [r@—s) [ [ra+s—ep}/{ [] ra+s—ap [] Lies—s)}

fm1 jm1 Jmptl jmrt1
1%h
(h=1, ..., u),
(48) s8)= [] ra+s—ay.
F=u+1
Finally let -
=} m
(49) Gualz) = ’exp( aft) @y (cu:r c" 2 ’ Z (1/71) Ba(bs) (an) ™ X
7=0 Rol
r —T,l—bh+a1,...,1—bh+0p; l
X (@ft)p+1Fo— (1— ba+byy o * ey 1—by+by; (—1)”‘"““"'11:/77)

(50) Gyp(2) =.'e>1p(—tw) GfZ‘.'a”(w/n

=) 3] Stampvariere

r 1+d;.—01,.. 1+d;,—o,,
X(tw)a-l-lFl‘—l (1+dh—d1, . 1+dh"' " 1)0‘ u— v+1wlt)




44 d. Lawrynowicz

where the agterisk * in the first formula denotes that the number
1—bp+bpy is to be omitted in the sequence 1—bp4-by, ..., 1—bs+ by
and, analogously, the asterisk * in the second formula denotes that
the number 1+ ds—dp i8 to be omitted in the sequence 1+ dp—dy, ...,
14 dp—d,. In formulae (49) and (50) we assume that z > 0 and ¢ fulfils
the condition :

(28) t#0, |argt|<i=.

The functions By and Dp exist if the Gamma functions appearing
in the numerators have no poles at the given points. Analogously, the
functions # and J exist if the Gamma functions appearing in the re-
spective formulae exigt. The function Gy, exists in each of the ocases
(I), (II), (III), (IV), (V) (see [3]); this will be proved in Theorem 1A
below. The function G,p exists also in each of the cases (I), (II), (III),
(IV), (V), where in (IT) and (IV) we assume additionally (30); this will
be proved in Theorem 1B below. In the case where some of the numbers

(51) b—b; (=m+4+1,..,q; h=1,..,m),
(52) di—drn  (J=p+1, .7 h=1,..,u)
are positive integers, formulae (49) and (50) must be understood in the

sense of Remarks 5 and 6, respectively.

Remark 5. In the case where gsome of the numbers (51) are nat-
ural, the' respective coefficients Byx(bp) are to be replaced by the limit
of the products By(b})f(b%) as bi—bn, and the respective functions
p+1Fg—1(1—by+a,, ...) by the limit of the quotients

19+1F ~1(1—bi+a1, .)/ﬂ(b;:) as bz -—>b),,.

Remark 6. In the case where some of the numbers (52) are nat-
ural, the respective coefficients Da(ds) are to be replaced by the’limit
of the products Dn(d})é(d%) as df —>ds, and the respective functions
at1Fz-1(1+dn—ey, ...) Dy the limit of the quotients

a+1.F _1(1+d]*,— €1y ...)/(5(dz) as ;:—)dh.

We shall prove two theorems by the method of the exponential
factor announced in § 1 (see [3], pp. 245-247).

THEOREM 1A. Let m, n, p, ¢, p, v, 0, v be inlegers, let t fulfil (28)
and let one of the cases (I), (II), (III), (IV), (V) take place. If for
large x, '

(53) f Gia(m)dz  converges ,
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where the asterisk * denotes that the number 1—Dby+bn 98 to be omitted
th the sequence 1—bp—+by, ..., 1—by-}-by, and in the case where some of
the numbers (51) are natural; formulae (54) and (49) must be understood
in the sense of Remark 5. The conmection between the branches of Ghiimt

and GLIi: is determined by Remark 1.

Proof. Let J denote the left-hand side of (54) and let there occur
one of the five cases (I), (IT), (III), (IV), (V), where m, n, p, ¢, i, ¥, 0, T
are integers. By virtue of Lemma 1 we have
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It is known (see [6], I, formula (18), p. 371 or [b], I, formula (1), p. 82)
that the function Gy, can be expressed in the form
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where the asterisk * denotes that the number 1— b+ bs is to be omitted
in the sequence 1—bp+by,...,1—bp+ b, and in the case where some
of the numbers (51) are natural, the formula must be understood in the
sense of Remark 5. Hence
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Now we use for h=1, ..., m the formulae
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(see [6], IX, formula (201), p.244), which are valid only under the
assumptions ¢ = 0 and p < ¢. Then we obtain
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We shall investigate, on the basis of Tests 1 and 2 given in §1 (see [3]),
under which conditions it is possible to perform integration in (57) term
by term with the restriction that the integrals will be summed first
with respect to h and only then with respect to ». We shall do it in
three steps.

(i) Formulae (56) hold for any 2 from the interval 0 < 2 < oo;
thus in view of a well-known theorem the power series

D id@)  (h=1,..,m)

re=0

are absolutely and uniformly convergent in any fixed interval 0 < @ < @,,
where z, is arbitrary.

Let
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For any &> 0 there exists such a number r, that (5)

r

58— D) 1f5(@)| < (1fm)ehmax {1, )} (=1, ..., m)
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for any o from the interval 0 < z < #,. Since for sufficiently small ¢* > 0
in view of (11) we have g, > 0, then for 0 <z <1
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In consequence the series
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() m > 0in view of (9) in cases (I) and (III), in view of (16) in cases (II) and (IV),
and in view of (24) in case (V).
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and thus also the series

=]

D {34

()
absolutely and uniformly converge in any interval 0 < z < x,, where
x, is arbitrary.

(i) The function @47 which appears in the formula defining
is continuous in. the interval 0 < # < oo. Point 0 is in general a branch
point ‘of the analytic function @%7. We ghall prove, however, that if f
(0 < B <1) is sufficiently small, then the integral

oD

8
(58) [ |69 (@)|da

converges. According to a well-known theorem this integral converges
if there exists a function ¥"4 defined in the interval 0 < @ < g such
that [0“(2)| < |P*“(x)| and if the integral

)
f |!,1_7(1.4)(w)|dw
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is convergent. In each of the cases (I), (IL), (III), (IV), (V) the formula
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analogous to (66), may be applied for this purposé provided that in the
case where some of the numbers (52) are natural, this formula must be
understood in the sense of Remark 6. Hence
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If g (0<p<1) is sufficiently small, then there exists such a constant
M > 0 that
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whence
u
6°(a)| < M|(afn) ™4 exp (—aft)] ) | Da(dn) (waf®
h=1
Y
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Since

f 2 4y = f[e*,
;

the integral (58) converges.

(iii) Notice first that in each of the cases (I), (II), (ILI), (IV), (V)
for r=20,1,.. and =1, .., m formulae (27) hold provided inequal-
ities (28) are satisfied. In view of (i) and (ii) (compare Tests 1 and 2)
the integration term by term in formula (50) may be performed (with
the restriction that the integrals are summed first with respect to &
and only then with respect to r) provided the integral

f G],A({D) dw
8

ig convergent. Since in view of (i) and (ii) the function G 4 is continuous
and non-negative in the interval 0 < # << oo, in the condition given
above the number B may be replaced by any other positive number,
i.e. it is sufficient to agsume that condition (53) is fulfilled.

Assuming that all the conditions mentioned in the reasoning are
fulfilled, we obtain from (57) and (27)

oL m

T= 3 X (1ir!) Balbn) (fn) ™ x
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Le. formwa (54). Thus the proof of Theorem 1A is ended.

Remark 7. The particular cases of Theorem 1A will be considered
in §5 (see [4]). Certain particular cases of this Theorem for ¢{= 1 were
also considered by Meijer in his papers [6]. Our condition (53) corre-
sponds in [6] to the condition ren > § for p = ¢—1 and is superfluous
for p < ¢—1. If in [6] we substituted # and w by 7/t and wt respectively,
we should receive the condition re(n/t) > 4 for p = ¢—1. Moreover,
some conditions may be simplified by suitable substitutions. The author
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i at present unable to answer the question in what degree these obser-
vations may be transferred to the general case. We emphasize however,
that the introduced parameter ¢ has, at least for p = ¢—1, the convergence
properties: the condition re(nft) > % may be fulfilled provided we choose ¢
properly, and in consequence the series on the right-hand side of for-
mula (b4), divergent for ¢= 1, will become convergent. For the above
reasons the parameter ¢ may be named the convergence parameter, and
the factor exp(—ajft), the use of which is the essence of the method
presented, the convergence factor. An analogous remark may be for-
mulated for each of the Theorems 1B and 2A, 2B (see [4]).

THEOREM 1B. Let m, n, p, q, 4, v, 0, © be initegers, let t fulfil (28)
and let one of the cases (I), (IT), (III), (IV), (V) take place, where in (II)
and (IV) we assume additionally (30). If for large m,

(59) f Gip(x)dxr  converges,
then -
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where the asterisk * denotes that the mumber 1+ dp—dp is 1o be omitied
in the sequence 1+dp—d,, ...,1-+dr—d,, and in the case if some of the
numbers (62) are natural, formulae (60) and (50) must be understood in
the sense of Remark 6. The commeclion between the branches of Garimt’
and Gph is determined by Remark 2.

Proof. As in the previous proof, we first state that for any com-
plex ¢ # 0 in each of the cases (I), (II), (III), (IV), (V) we have
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Let us write the integrand in the form
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and let us introduce the notations

Q)(’B’(a;) = (po) """ exp(—1z) Gpy (W/W’ b ::p) !
13 - q

1ER(@) = (1/r!) Da(dn) "2+ (1) x

% o F (—-r, 14dp—oyy ooy 1+ dp—ay; )
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Applyihg as in the proof of the previous theorem Tests 1 and 2
from §1, we state when it is possible to perform integration in (61)
term by term with the restriction that the integrals will be summed
first with respect to » and only then with respect to #. Moreover, we
state when it is possible to evaluate these integrals from formula (29)
with » = 0,1, ... The required conditions are (28) and (59) in cases (I),
(ILL), (V) and (28), (30), (59) in cases (IL) and (IV), as may be easily
verified. .
Assuming that all the conditions mentioned in the reasoning are
fulfilled, we obtain from (61) and (29)
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i.e. formula (60), and thus the proof is ended.
4*
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Remark 8. Formula (60) may be vewritten in a slightly different
way by taking advantage of the identity

—dn—‘l‘, —all, eiey —a/p)

(62) (o) (ol oegss (ym| " T8

1—dp—r,1—a,, .., 1—a
_— dp a1 b ? 1 ?
= (wft) " Gptrg (l/nt 1—byy .y, 1—0g )

which results from (see [6], II, formula (41), p. 486)

dh—'r, _all’ sesy —ap)

(1/nt) p-‘lrlfql (”"ﬂ’:b _b
1y -y g

. ,ﬂ:‘]‘l 1'—dh—'r, 1—a1’ reey l—alp .
= Uptig (1/’7t 1—by, ..., 1—b,
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