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A functional-analytic approach to turbulent convection

by B. SzArIRsSKI (Krakéw)

The present paper is devoted to turbulent convection of incompres-
sible viscous fluid. The central role in the description of turbulent con-
vection will be played by some characteristic functionals. The possibility
of such handling of turbulence in general was first mentioned by Kolmo-
goroff [3]. A strict mathematical approach to turbulence by means
of characteristic functionals was given by Hopf [1], Lewis and Kra-
ichnan [5].

I am greatly indebted to Professor A. Pli§ for his invaluable en-
couragement and advice. I wish to express my deep appreciation of his
continuous interest and many enlightening conversations.

1. Introduction. Let D denote the domain of a 3-dimensional Eucli-
dean z-space, ¥ = (x,, ©,, 3}, which is occupied by an incompressible
fluid of constant density ¢ and of viscosity ». The motion of this fluid
will be described by the velocity vector field u(x,?) = [u,(z, 1), u,(z, ?),
us(x, t)]. Suppose that f(x,t) = [f,(x, t), f.(x, t), fs(x, t)] Tepresents the
external force acting on the fluid, and suppose that the fluid is at rest.
Then the temperature field 7' (z,t) of the fluid cannot be arbitrary. If
suitable conditions are not satisfied by T(z,t) the fluid cannot be at
rest. The flow obtained in this way is called convection flow or shortly
convection. The particular case of convection arising in the fluid which
moves in the unbounded domain between two horizontal planes is very
important. Here the field of gravitation plays the role of the field of
external force. Assume that the temperature 7, of the lower plane is
greater than the temperature 7', of the higher plane. If the difference
T,—T, is sufficiently small, then the fluid is at rest. If, however, the
difference 7',—T, is sufficiently large, then there arises a convection
motion.

There exist two different kinds of convection flows: laminar con-
vection and turbulent comvection. The central role in the description of
convection flows is played by the Grashof number. A convection is laminar
if the Grashof number is small, and it is turbulent if the Grasliof number
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is large. For the description of laminar convection the following equations
are used:

ou, ou, ap 0%u
() Gty = et G e 0T (@0, @ =1,2,3;
Buﬂ
2 — T =0,
( ) awﬂ )
3 orT " or 0T
) " dw, x 02,025

Equation (1) is a slight generalization of equation (56,3) in [4],
p. 267. Here u(w,t), T(z,t) and p(»,t) are functions representing the
velocity, temperature and pressure of the fluid, respectively; the pre-
seribed vector funetion f(x,t) represents the external force acting on the
fluid and », y, x are positive constants representing the kinematic viscosity
coefficient, the coefficient of thermal expansion and the coefficient of
temperature conductivity, respectively. The density of the fluid is assumed
to be equal to one. We employ the summation convention over repeated
indices. (1) is the system of forced Navier-Stokes equations, (2) is the
condition of incompressibility, (3) is the equation of heat conduction
for the moving fluid. We assume that the field of force f(z, t) is an irrota-
tional field. In the case T'(x,?) =0 equations (1), (2) and (3) clearly
become
ou, ou, op %u, OJug

5t T 0n, —  om "  omy0m,’ om,

=0.

In the case of laminar convection, from equations (1), (2) and (3),
velocity and temperature may be uniquely determined for t>=1?, by
specifying the initial conditions at ¢ = ¢,, and by appropriate boundary
conditions. In the case of turbulent convection this property does not
hold. It is typical for turbulent convection that different time developments
(uw(z,t), T(x,t)] can take place under the same initial and boundary
conditions.

2. Mathematical approach to turbulent convection (cf. [2]). Let
M,(z,,1) be an arbitrary point in D X[¢,, o). One supposes that the
vector [u(x,,1?,), T(x,,?,)] is a random vector determined by its proba-
bility density. The vector field [u(z, t), T(z, t)] is regarded as a random
vector field, i.e., one supposes that for every N (N arbitrary positive
integer) points M,(x,, %), ..., Mn(ZN, ty) such that (x;,t;)eD X[t,, o),
+=1,..., N, there exists a probability density p(M,,..., My) of the
random vectors [u(M,),T(M,)],...,[w(My), T(My)]. We say that
the random vector field [u(M), T(M)] is known if the probability density
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p(M,, ..., My) for any positive integer N and for all points M,,..., My
in D X[¢, co) is known. One supposes that the vector [u(x,t), T (z, ?)]
satisfies equations (1), (2) and (3) (ef. [2], p. 297). Let us consider the
initial random vector field [u(z, t,), T (%, t,)] such that dus/0z; = 0 and
suppose that the initial functions p(M,, ..., My) for any positive integer
N and for arbitrary points M, = (v, %), ..., My = (Zn, {,) are given.
Then the basic problem of turbulent convection is to find the time de-
velopment of the random vector field [u(z, ), T (x, t)], i.e., to find the
time development of the functions p(M,, ..., My) for any positive integer
N and for all points M,,...,, My in D X[t,, cc). In the present paper
some characteristic functionals are introduced and the basic problem
of turbulent convection is expressed in terms of these functionals. We
derive a functional differential equations for the characteristic functionals.
Should it be possible to solve these equations, this would yield a complete
solution of the basic problem of turbulent convection.

3. A space-time characteristic functional. Let D be a bounded or
unbounded domain in the Euclidean space R® (e.g. D = R?%). Consider
a fixed vector field [a(x,t), b(x,?)] which is defined on the boundary
0D x [t,, o) of Dx[t,, o0). Denote by K the space of vector fields
[u(z,t), T(r,t)] which satisfy the system of equations (1), (2) and (3)
in Dx(t,, o) and satisfy the boundary condition [u(z,t?), T (x,1t)]
= [a(®z, ), b(x, )] on D X [t,, co). If D is an unbounded domain with
bounded or empty dD, we impose on the space K the following boundary
condition at infinity

llim (u(x,t), T(z,t)] = C

x}—00
for all [u, T)e K, where C is a given constant vector independent of the
particular vector fields considered. It is assumed that u(z,t) and T'(z, t)
are sufficiently smooth and that all quantities entering in (1), (2) and (3)
are defined and continuous throughout D X[t,, oo). In the space K we
introduce a completely additive set funection P(A) which is defined for
subsets 4 of K such that P(A4)> 0 for all A « K, P(K) = 1. Denote
by H the space of vector fields [y(z,1),s(xz,?)], y(z,t) = [y, (2, 1),
Yo(x, t), ya(x, t)], continuous on D X[t,, o0) and with compact support
in D x[ty, o). Let

y,yssu, T} = {y(=,1), 8@, t); u(z, t), T(x, 1)}

= [ @, Y, )+ s(@, )T (@, t)]dvdt
Dx[tgy, 00)

and

I'(y,s) = <exp(i{y, s; u, T})) = [exp(i{y, s; u, T})dP.
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Then I'(y, 8) is a functional of (y, 8) and will be called the space-time
characteristic funclional of the probability distribution P. For the sake
of applications we extend the definition of I'(y, s). Let

N
Yoz, 1) = Z 0; 80,50 (@ — 2;) 8 (1—1;),
(4) N
8w, 1) = D) 6;6,,6(@—;)8(t—1,),
j=1

where 6, is the Kronecker delta, (t) and d(z) are the one-dimensional
and three-dimensional Dirac delta functions, and 6,,..., 05 are real
numbers; o¢; =1,2,3,4;8=1,2,3. We set

I'(S'y 5) = lim/I'[y,(z, t), 8, (z, )],

where 5’(w7 t) = [gl(w’ t), Yo (@, 1), Ys(, t)] and [y,(z,?), s,(2, )] is a fun-
damental sequence which determines the distributions (4) (cf. [6], p. 10).
For y, 8 given by (4) we have

N N
{y$;u,T} = Zoiuaj(a;j’ t) + 2 0; 0uja T (25, 1;).
37.213 i=1
Hence

N N
I'y,§) = <exp [i 3 60 (2, t)+ 3 0,804 T, tj)]>.
i=1 i=1
07'<3

Thus we see that I'(y, s) is the characteristic function of the N-di-
mensional probability distribution of random variable [§, (2,1), ...
coy Eap (N, TN, where Ear (Bry B) = Ugy (@5 T) for @, <3 and &, (@, t)
= T(x, t,) for a, = 4. The probability density is given by

N
P(Eyy e, En) = (2n)—Nfexp(—¢29,.5,.) I'(y,§)do, ...d6y.
i=1

Thus we see that the probability density p(&,,..., £éx) and its
characteristic funection can be obtained from the characteristic functional
I'(y, 8) by means of the special choice of ¥ and s. The functional I'(y, 8)
furnishes a full description of turbulent convection.

4. Derivation of the functional differential equations. In this section
we obtain equations for I'(y, s) from the basic flow equations (1), (2)
and (3). First, however, let us recall some definitions. For simplicity we
confine ourselves to the case where the functional I' depends only on
one function y(x, t).
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A functional I'(y(z, ) is said to be differentiable for a particular
function y = y(x,t) if there exists a function A (y; z,t¢) which, besides
being dependent on y(z,t), is such that

Ty, t)+ oy (z, ) —T(y(x, 1) — [ [ Aly; z, t) by (x, t)dudt
lim = D
Supv@ =0 [ 16y(x, t)|dwdt
Dty

=0

=0.

The function A(y;x,t) will be called the  functional or Volierra
derivative of I’ with respect to y (z, {) at the point (x, ). It will be denoted by

or , 1

A(y; x,t) is a functional of y(x,t) and for fixed y(x,t) A(y;=,?)
is a function of (z, t).

The higher order functional derivatives can be defined in the same
way and we use here a similar notation, e.g.

0 [éf(y (z, t)) _ 621’(y(w, t))
0y (23, t5) L Oy (@, 1)) 0y (w4, 15) 0y (@4, ty)

denotes the second order functional derivative.

We now return to the characteristic functional I'(y, s). Observe
that

ol'(y, s)

or'(y, s)

ds(z, 1)
*I'(y,s) B ' ‘

0. (@, ) dys(z, 1) — (U (@, t)up(w, tyexp(i{y, s; u, T})),
#I'(y,s) _ o
W = — (T%x, t)exp(i{y, s; u, T})>,

02I'(y, s)
8Ya(z, 1) 8s(x, 1)

= (i, (2, t)exp(ily, s; u, T})),

= 4T (x, t)exp(i{y, s; u, T})),

= — (ug(z, 1) T (@, t)exp(i{y, s; u, T})).

Hence and from (1), (2) and (3) we have

_6_ 6F(y(w, 1), 3) — < ou,

0t Oy.(w, 1) i exP(ily, s u, T})>

} op ou, 0%u, )
= <@ [— o0, " B, + 52,02, —Vfol@, ) T (2, t)] exp(i{y, s; u, T})>
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and
0 oI'(y(=x,t), 0T u, T
at ((sys((x t)) 8) < at exp (i{y, s; })>

_<[ oT 02T ] . cu. T
= (1| —u awﬁ_l_xawﬂamp exp(i{y, 8; u, T}) ).

In a similar manner we obtain

02  ol(y;s) < 0%u

—_— a > . T .
0w 0m, 0ya(w,1)  \ Owsoa, exp(ily, §; u, })>

According to (2) we have

o &I(y,8) ( 0%, Oug : _
32, 8. 847 = < Up a$ﬁ+’”’a a.‘f";ﬂ) exp(i{y, 8; u, IT'})

ou
_ —< S explity, sy, T})>
0 ozr
awa 5%63 <(

9 . 8T
0w, 0, 63 - <1, 0w, 0, exp(i{y, s; u T})>

Hence we can get

a oI'(y,s) . 0 &I 02 ar 6" Om
® 5 =i + e
ot dy,.(z, 1) 0xg 8y, 0y, 0xz0xs 6y, o8 Oz,
a=1,2,3, where
n = i{p(x,t)exp(i{y, s; u, T})) '

)exp (iy, 5; u T})>

8 u T})>

and

) oL .0 &I . 0 or
_— = 1 _—
3t os dw, oy.0s ' * 0w 0m, 0s

From the incompressibility condition (2) it follows immediately that

a or
0z, éya

(7)

We now represent the property (7) in another form. The first argu-
ment of I" is a continuous vector on D X [?,, co) and for fixed ¢ vanishes
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outside a bounded domain E, such that E, = D. Let E, be a bounded
domain such that B,c D and E,c E, For fixed ¢t we represent the
vector y(z,t) by the formula

y(x,1) = Qz'(w’ 1)+ grad;¢(z, 1),

where 94,/0x, = 0 and the interior normal part §, of vector ¥ (z, t) vanishes
on 0k ¢(v,t) denotes a scalar which for arbitrarily fixed te[t,, oo)
vanishes outside #,. Using Green’s theorem we get

fgra,dxqa(cv, t) u(z,t)dr =0
By

for all functions u(x,?) which satisfy (2). Hence

(8) ffy(a,- t)-u(z,t)dedt = f f (§ + grad,p)- u(z, t) dvdt

to D
:f f;(w,t)u(x,t)dmdt.
tg D

By (8) we obtain the important relationship

(9) I'(y,s) =T(y,s).

This relationship is another expression for (7) and for the incom-
pressibility condition (2).

Various devices for eliminating the pressure term dx/dx, from (5)
are possible. The method we shall use here is to introduce the testing field

Nz, = (771(‘”7 t), ne (@, t), na(x, t))a

which vanishes sufficiently rapidly at spatial infinity and satisfies the
condition '

0,

10
(10) .

=0.

Then

.
D

and from (5) we obtain

1) f ( t)-[ or .0 T ¢ or N
—_— —_1’/ —
i T ot oy, 1) dxg 8Y,0Ys " 90505 3y,

07,
-—f o, ndr = 0,

+9f, ]da:dt = 0.
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This must be satisfied by I for all testing fields n(x, t) which satisfy
(10). Equations (6) and (11) are the required equations for the funectional
I'(y, s).

Three further conditions on I'(y,s) are

(12) 0,0 =1, I*(y,s)=I(—y,—9), I'(y,8<1.

Here * denotes the complex conjugate. These conditions follow
immediately from the definition of I'(y, s).

Let P,(A) be a probability distribution defined for subsets of the
space of vector fields [u(z,t,), T(x,1%)] such that ou,/0x, = 0. The
basic problem of turbulent convection can be formulated as follows:
find the solution of (6) and (11) which satisfies conditions (12) and the
following initial condition

P(Y(“’)é(t_to)a s(m)‘s(t—to)) = Fo(J’(m)’ 3(“’)))

where I'y(y,s) denotes a characteristic functional of the probability
distribution P,(4).

5. A space characteristic functional. Consider a fixed vector field
[a(x), b(x)] which is defined on D U 0D and is such that da,/0x, = 0
on D. Denote by K, the space of vector fields [u(x), T (x)] which satisfy
the ineompressibility condition du,/0z, = 0 in D and satisfy the boundary
condition [u(x), T'(2)] = [a(z), b(x)] on 0D, If D is an unbounded domain
with bounded (or empty) 0D, we impose on the space K, the boundary
condition at infinity

lim [u(z), T(2)] = (a, b)

|z|—>00
for all [u(z), T'(x)]«K,, where (a, b) is a given constant vector independent
of the particular vector fields considered. We assume that the solution
[u(z,t), T(x,t)] of system (1),(2) and (3) is uniquely determined in
D X (1, o©) by the initial conditions

u(@,t) = a{z), T(x,1)=b)

for zeD and the boundary conditions u(z,t) = a(x), T(z,?) = b(x)
for t > 1, and 2edD.

Let P(4) denote the probability that the point of K, falls into the
part 4 of K,. P(4) is a completely additive set function which is defined
for all subsets of K, such that P(4)>0, P(K,) =1. Denote by H, the

space of vector fields [y(z), s(x)] continuous on D .and with a compact
support in D. Let

ly, 858, T; 0] = [ (¥a(@) ua(®, )+ 8(2) T (@, t)) do
D
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and consider the expression

I'(y(@),s(@);1) = [exp(ily, s; v, T;t])dP = <exp(ily, s; u, T; 1)),

where [u(z,t,), T(z,t)]<K,. Then I'(y(z),s(x);t) is a functional of
(y (), s(w)) and a function of ¢ and will be called the spatial characteristic
functional of the probability distribution of the random vector [u(x, 1),
T(x, t)] for fixed ¢. Then just in the same way as in the case of the space-
time characteristic functional we evaluate the characteristic functional
for the special argument y(z), $(x) whose components are given by

N N
hs(@) = D 0;0,58(@—a), §@) =Y 0;8,.0(e—a,).
i=1 7=1

Thus, we obtain the description of turbulent convection for fixed ¢.
Similarly to our deduction of property (9) it is easy to prove that

(9) I'(y(@), s(®); 1) = I'(§(2), s(2); 1),

where §(x) is the solenoidal part of y ().
From equations (1), (2) and (3) we now derive a functional differen-
tial equation for I'(y, s;?). Observe that

I'(y,s;t) o(Z,1) oT ) ) )
e < bf[ya(w)—T_ + 8(») a_t] dwexp(ily, s; u, T?» t])>

From (1) and (3) we have

or ) ou, O0p 0%u
- — — — T
at <z Df {y"(“’)[ “om,  m,  Bayom, ]+
orT 0T ) :
+(o)| —u o L | doexpity, 55w, 2509,
Then in the same manner as we deduced (5) and (6) we obtain}

af' oI 02 or or
13) — Y
(13) ot {y°( )[ 0ws 0Y,0Ys T 0xs0z5 Oy, Ve o8 ]+

s )[, 0 é&r n 02 6P]}d
x) |4 x.
0xzs 6ypos xamﬁamﬁ ds

Thus equation (13) is the required equation for the functional
I'(y, s; ).

6. Oseen’s equations, the case of the space characteristic functional.
The basic problem of turbulent convection was expressed (in Section 5)
in terms of selutions of (13). We used the assumptions that the random
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vector [u(x,t), T(x,t)] satisfies equations (1), (2) and (3). The finding
of the solution of the initial problem for equation (13) involves great
mathematical difficulties (cf. [2], p. 299). In the present section a simpler
problem is considered. Suppose that D = R® and the random vector
[w(z,t), T(x,t)] satisfies the following equations of Oseen:

ou,, (z,t) ou,, (z, t) op(z, t)
14 —_—_— -~ 1 —_
(14) Fr a; (1) o, o, +
0%u,, (z,t)
W — Y ()T (2, 2),
oT oT  0T(z,1)
2 _alt
(15) ot %0 e M 50 o,

and the continuity equation (2), where m = 1,2,3 and a(t) = [a,(?),
a,(t), ag(t)] is a non-random continuous vector field defined for ¢ > t.
In this case we obtain an equation analogous to Hopf’s equation (13)
and we investigate the time developement of characteristic functionals
satisfying this equation.

Suppose that for fixed ¢ the random vector [u(x, t), T(z, t)] vanishes
outside a compact domain D,. Let

U (@, 1) = [6* 0, (k, t)dk, p(a,1) = [e*q(k,1)dk,

T(z,1) = [e*w(k, t)dk,
where m = 1,2,3; k = (ky, ks, ks) e R, bz = k@, , 0% (k, t) = v, (—k, 1),
g*{k,t) = qg(—k, ), w*(k,t) = w(—k,1). Then we have

o (k, . .
fe““L"‘;t—’—) dk = —a,-(t)ifk,-e”‘%m(k, t)dk—z’fkme""”q(k, 1ydk —

—vf|k|2e““=vm(k, t)dk—yfm(t)fe““—‘w(k, t)dk,

o ow(k, 1 ; i
fezkzw(Tt’)_dk = —aj(t)ifk].ezkx,w(k’t)dk_xfIklka:c,w(k’t)dk,
[kme™ v, (k, tyk = 0.

Hence

Ovp (R, 1)

(16) = —2 = Ly (1) kv (k, )= ik g (b, 1) — v (k{20 (k, 1) —

—Yfm()w(k,?), m=1,2,3,
?w(k,t)

(17) o

= —ia,(t) kw(k, t)— g |k|2w(k, 1),
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(18) knvn(k,t) =0.
Consider at first a simpler case where
(19) w(k,t) =0.
From (16), (18) and (19) we find ¢(k,t) = 0. Hence
(20) %g:’—t)= (—a; () k;— v |K|2) v, (R, 1)
Let
(21) Vlk, 1) = exp[—iA;(#) k;— v |k|2(t—1,)]b,, (K, 1),

t
where A;(t) = [ a;(s)ds. Remark that v,(k, {,) = b, (k,1,) and

o
0v,(k, 1)
ot

— (—ia;(t)k; — v |k|%) exp [— i A; () by— v kI*(E— 1) 1 by (B, 8) +

(22)

+exp[—id;(t) k—» [k[*(t—to) ] —

If we insert (21) and (22) in (20), we obtain
by (k,t)

(23) il

Consider the functional

Obya(k, 1)

17

(24) pla(k), 8] = [ (27)™ [ *2(k)dk, 0, 1],

where z(k) = z*(— k). It has the form

(25) pLs(k), 1] = (exp[i [2,(k) vy(k, 0 dk]),

where the averaging ¢ ) is over the probability distribution of v(k, t,).
Let

(26) yls(k), 1] = (expli [ 2(k)b;(k, 1) dk]).

From (21), (25) and (26) we see that

p[=(k), t] = w|z(k)exp(—id; (&) b;— v k|2 (t—1,)), 1]
Let

wlz(k),t, s] = <exp [6 [ 2(0) exp (— ik A, (8) — v K12 (2 — 1)) by (&, s)dk]>.

Remark that
v[=(k),t, ] z(k), t].
U
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From (23) we find

oy[=(k), 1, s]
os

_ <exp [z fz,-(k)exp(—ikmAm(t) — I3t — 1)) by (k, 8) k] x

x ifz,-(k)exp[—ik,’,,Am(_t)—v|k|z(t—to)]-?—bjg:—’s)dk> —o.

Thus y[=(k),?, 8] is independent of s. Hence

vl=(k),t, 8] = y[=(k), t, t,]
- <exp | [ #(k)exp (— ik A (8) — v [Bl2(t— 1)) X
X b (k, t.,)"dk]>
= <exp [z’ [ 2;(k) exp (— ik A (8)— ¥ |2 (2 — 1)) X
X 0;(k, 1) dk]>
= p[=(k)exp (— ikp A (8) — v k|2 (t— 1)), 1] -
In particular,

y(=z(k),1,1] = ¢[=(k), t]
= (P[z(k) exp(—ikmAm(t)—vlk[’(t'—to))) t0]°
Writing
plz(k), 5] = ‘Po[z(k)]a
we get
plz(k), 1] = @, [z(k)exp(—ikmAm(t)—vIklz(t—to))]-
From (24) we see that
o[z (k), t] = @[5 (k) exp (— ik, A, (1) — v k|2 (t—1o))]
= T, [(27)° [ 6" (k) exp (— ik A, (1) — » [ K|2(2—1,)) dk]
=T, L(2n')"3 [ exp (iFo— ik, A () — v 5|2 (t—1,)) X
x(fe "y (a') dw') dk]
= I,[@m) | { [ exp (ik(@— ")) exp (— iky A (8)— »|K[2 x
X (t—t,)) dk} y (@')dw']

where I', is defined at the end of section 4. Since

o0

. 2
fe"zcosmsds = Vme ™N,
—00
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we finally find

I'(y(®),0,t] =T, [(4mt)‘3’zfe)m(— Iw'—w:;tA(t)lz)y(w')dw'],

where A(t) = [4,(t), 4:(t), 45(?)].
Consider now the case where w(k,t) # 0. Let

ols(k), u(k), 8] = I[(22)° [ =z (k) dk, (27)7° [ ¢ (k) dk, 1]
= (exp i [[#(k)v;(k, )+ u(Ryw(k, )1k} ),

where the averaging (> is over the joint probability distribution of

v(k,t,) and w(k,?,). From (16),(17) and (18) it follows that ¢[z(k),

u(k), t] satisfies the equation
O

(27) L — [ ou®) (— iy v 1113

o
02y, (k)

dk+-

—2 dp
7 [ 102 M by ) - dl—

: d
— [ (a0 k-2 k) ) -
Let ¢,[2(k), u(k)] be a given characteristic functional of a distri-
bution of randem vector w»(k,t,),w(k,?,). Consider

(28) p[z(k), u(k), t] = @ola(k, 1), x(k, 1)1,
where
0o(ky t) = exp(— ik A, (1) — v|k[2(t—to)) (|K] 7> Ks— 8;6) 24 (K),
x(kyt) = exp(—iky A, () —v|k|2(t—1,)) ¥

t
X (112 Ryl 00) [ fa(7) € 2™ duz (k) +
to

+ exp (— ik, A, () — g k12 (t—1)) u(k), s =1,2,38.

THEOREM. Functional (28) salisfies equation (27) and the condition
p[z(k), u(k), 1] = @o[2(k), (k)]
Indeed, we have

0
O 13 (it 0 ) Ry 8005, 8)
X XD (— 5 Ay (8) — ¥ B |2 (8 — t0)) +
+ 6;: [(—ikmam(t)—vikle)exp(—’ikmAm(t)—”lkl”(t—to))x
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X (%]~ b kea— 8;) f fo(m)exp ((v— 1) 1%(27) dr 2, (k) +
+ exp|— iky, Am(t>—v|k| (t— to)) (1] = K og— 6;5) X
X 2; (k) f,(t) exp (v — x) [k]24) +
4 (— ik A,y (8) — x |K|2t) exp (— ik, A, (1) — 1 |KI2(E—t,)) ,u(k)]}dk
On the other hand,

o Oa.(a,l) O, ox(a, t)
6z (k) f[éa (@,0) 2,0 " om(a, ) Dz, (k) ]d"

and
. 0o dx(a, 1)
ou(®) ~ J ox(a,t) ou(k)
Since
6 7‘( ’ t) . 2 —9
ey = X Aa(t) = vlal*(t— ) (s b)(a— B),
0x(a,t) . 2
';,,,(k) = exp(—ia, A, (1) —»|al?(t — to)) X
¢
X [fo(x)exp((v—x)lal?7)drd(a— k) (|a| apa,— d,),
to
T — exp(— iy dy (0= 7l 1) S (a— ),
we find
dp O, . 01 _ .
B0) 5T = T g OB n An() — R — L) (Kl — B+
54
+ (‘Z 35 exP(— iy Ay (1) — » kI (E— 1) X
t
x [ fu(z)exp ((v— ll27) de (1| kb, — 8,)
and
(30) 00 oxp(— ik, 4,(0— g IHIE(—10).

su(k)  ox(k, 1)

From (29) and (30) we see that functional (28) satisfies (27).
Remark that

plz(k), p(k), t] = @olo(k, ), x(k, t)],
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where
os(k,ty) = (|k|_2kjks— 6;‘3)2;:‘(}{’)7 x(k, 1) = f“(k)'
Hence and from (9') we have established the theorem.

7. Oseen’s equations, the case of the space-time characteristic func-
tional. In the present section we also consider the case where D = R®
and the random vector [u(z,t),T(x,t)] satisfies equations (2),(14)
a,nd (15). We shall deal here with the characteristic functionals I'(y(z, 1),

s(x,1 ) From equations (2), (14) and (15) the equations which are simpler
than Lewis and Kraichnan’s equations (6), (11) can be obtained. We
obtain an explicit solution of these equations.

Similarly to our deduction of equations (6) and (11) we get

L @ t){a Oy 28T 92 or
(1) f G FTRF + om, 8y,  0w0m, 0y,

or
_yfa(t) ‘33—.} dwdt = 07

0 or —at) d 5F+ 02 or
ot os N Bw,  bs "aa,-,.am,. ds

We shall apply the Fourier transform to equations (11’) and (6"). Let

(6)

7

Yo(@, 1) = (27)7° [ 2, (k, 1) 6™k,
(@, 1) = 2m) ™ [ A.(k, 1) ™= dk,

s(@, 1) = (2m)° [ w(k, )™ dk,
and

oLz (k, 1), wk, 0] = D[(2m)° [ 20k, )6k, (2m)™ [ (s, 1)6*ak].
By simple calculation (cf. [5], pp. 402-403) we get

6 2
61 [k, ){ataa(k 5+ (i kvl

a(k t)
f()d i, t)}dkdt=0
0 A s A 0P
(32) 2 Sk, ) —(w,-(t)k x k| ) 5 (k )

and by (2) we find

op
33 _% _ _o.
(33) o 02,(k, t) 0
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Remark that
kA (k,t) = 0.

¢
Consider at first equation (32). Let A;(?) = fa;(s)ds. Then
to
dg
du(k,t)

where B[=z(k,t), u(k,t), k] is an arbitrary functional independent of {.
In view of the lemma of [5] there exists a scalar function p(k,t) such
that ’

(34) = exp (i4;(t) k;— x |kI2(t— ) B = (k, t), u(k, 1), K],

a . A %9 ép

59) 5 5oy T G OhE ) o o) s = 2 (K, OF,.

From (35) and (33) we have

- _ o O

(36) plk,t) = —vfskslk| Sk 1)

From (34), (35) and (36) we get
0 b . o 09
9 oz, (k, 1) o, () k;+ v k1) dz.(k, 1)

—exp (id; () k; — x |k|*(t—1t,)) B(=(k, 1), u(k, 1), K1y [fo— (1Bl kK fs)] = O.
Hence
op
dz,(k, 1)

(37) = exp(id;(t) k;— v k|2 (t—1,)) {Cu[2(k, 1), p(k, 1), K]+

¢
+ (8ap— k| >k o)} B3 (K, 1), (K1), K]y ff,g(‘l)e("—x)kz’dr,
to

where k,C.[z(k,1), u(k,t), k] = 0.
Let ¢o[#(k), u(k)] be a given characteristic functional of a distri-
bution of random vector [v(k,t,), w(k,t)]. Consider

(38) o[5(k, 1), u(k, )] = @olr(k, 1), Lk, 1)],
where r(k,1) = (Tl(k’ 1), ro(k, 1), re(k, t))r

ra(ky 1) = [ exp(ikp A (1) — v k[2(v— 1)) (0,0 k|2 ko Fip) 2, (K, 7) dr,
[/
' ﬂ = 11 21 3’
Gk, 1) = [ X (ikp Ay () — v k|2 (T—10)) (Bop— K] > Ko p) X
ty

Xy [ fa(8)exp((v— ) |kI*s) dsza(k, T)dz+
U]

+ [ exp(ikp () — 1|k (r—to)) (K, 7) dr.
to
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Formula (37) suggests that the following theorem holds:
THEOREM. Functional (38) satisfies equations (31), (32), (33) and the

condition
(39) plz(k)0(t—1o), p(k) 6(t—1to)] = @olz(k), u(¥)].

Proof. Since

Sp dpo  Org(k', 1) dpo  LO(K, t)] ,
62 (k, 1) f[ar,,(k', 1) ek, 1) oLk, 1) da,(k, 1) ak

and

ora(ky8) _ XD (1, Ay (8) — ¥ B’ |2 (2 —1o)) (1K) Ko Tep— 8,p) 8 (K — k),

02,(k, 1)
oC(k', 1) ., ) s
a ety = CXP (i A ()= 2112t —10)) ('] Ky — 60p) X
t
Xy ffﬁ(s)exp((‘l’—x)Ik'|28‘)d86(k'-—k),
we have
6(P = 6(;70 (Ikl_z ka kﬁ- 60{‘3) €xXp (ikmAm(t)—— v |k|2(t__ to))+

62,(k,t)  org(k,t)

O, s . B o
+m(|kl loulog— 8,5) €Xp ik Ay (8) — v |EI2(2 t6)) X

t
Xy f'fﬂ(s) exp((»— x) k?s)ds. "
Yo
Similarly we find

dp dgo :
= expltk, A,, (1) — x| k|2(t—1,)).
i)~ 3% (k, ) XD Fn A ()= 2 K1)
Thus, we see that functional (38) satisfies (33), (34) and (37). Hence
it follows that (38) also satisfies (35) and (31). From (9) it follows that

condition (39) holds.
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