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ON AXIAL MAPS OF DIRECT PRODUCTS, II

BY

E. GRZEGOREK (WROCLAW)

This paper is a continuation of the joint paper [2] of Ehrenfeucht
and the present author. The results of [2] were announced in [1].

Recall that a function f: 4,x ... x4, -4, X ... x4, is called
axial if there exist ¢ and g: 4, X ... x4, - A; such that

f(@y, ..., x,) =(a’17 vy By G( By ooy Bp)y Xypny ---7a’n)

for all (#,,...,2,)ed,; X ... XA4,.

A function f: X — X which is one-to-one and onto is called a per-
mutation of X.

In [2] it was proved that every permutation of A x B can be represent-
ed as a composition of five axial permutations of A x B; moreover, if
|A| # |B|, then four is enough; if at least one of the sets A, B is finite,
then even three is enough. The first result (case |4| < |B| = N,) belongs
to Nosarzewska (see [5]). In [1] we have asked: “Is it true that every
permutation of A x B can be represented as a composition of four axial
permutations of A x B?”’ From the results of paper [2] it is clear that the
question remains open only in the case |4] = |B| >N,. The main aim
of this paper is to give the positive answer to this question (the answer
was announced in [1], Added in proof). Our second aim is to show that-
in the part of [2] which deals with permutations the term “permutation’
can be replaced by “one-to-one function”. The basis for that extension
to the case of one-to-one functions consists of theorems of [2] on permuta-
tions and of one result of the present paper. Analogous problems for
arbitrary functions and functions onto were studied in [2]. Theorems
(1), (ii), (iii) and (ix) of [2], strengthened in this paper, give the following
results.

THEOREM 1. Every function f: A XB — A X B which is onto can be
represented as a composition |

f=fio...of,,
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where f;: AXB - A XB (i =1, ..., 4) are axial functions onto (f,, fs, fs can
be permutations).

THEOREM 2. Every one-to-one function f: A XB —~ A XB can be repre-
sented as a composition

J=Ffo...of,,

where f;: AXB - AXB (¢t =1,...,4) are awial one-to-one functions
(fis fos f5 can be permutations).

Each of these two theorems implies immediately

THEOREM 0. Every permutation p of A X B can be represented as a com-
position

P = D10 ...0p,,

where p; (t =1,...,4) are axial permutations of A xXB.

Let us mention that Theorems 0 and 1 are new only in the case |A]|
= |B| =N, (see (i), (ii), (iii), (vili) and (ix) of [2]).

By a minor modification of the proofs of (iii) and (xiii) in [2], we will
generalize (iii) of [2] to the following form:

THEOREM 3. If at least one of the sets A, B is finite, then every one-to-one
Sfunction f: A xB — A XB can be represented as a composition

f = fiofsofs,

where f; (i = 1,2, 3) are axial one-to-one functions (if |A| <Ny, then f,
can be of the form f,(a,b) = (g(a, b), b) for all (a,b)e A X B).

It is not possible to decrease the number 4 in Theorem 0, and hence
in Theorems 1 and 2 (see (v) and (v’) of [2]). Also it is not possible to
decrease the number 3 in Theorem 3 (see (v'’) of [2]). Some results of [2]
and of this note, more precise than Theorems 0 -3, are collected in Section 4.
In connection with these theorems let us add that in [2] it was proved
that an arbitrary funection f: A xB — A X B can be represented as a com-
position of six axial functions, and if at least one of the sets A, B is infinite,
then three is enough. The question of [2] ‘“Can one decrease the number 6
in this theorem ?”’ is still open.

In Section 5 we generalize some previous theorems to the case of
functions f: 4,x ... x4, -4,X ... xA4,, where n < o (similarly as
it was done in [2]), but these results are not so precise as in the case n = 2.

After publishing [1], I have learned from Jan Mycielski that Fred
Galvin has independently obtained results which are equivalent to theorems
on permutations announced in [1] (including Theorem 0 of this paper,
announced in Added in proof in [1]). Fred Galvin has formulated these
results in the more comprehensive language of groups and so do I, by his
kind permission, in Section 4 of this paper.
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0. Notation and terminology. In the whole paper A and B denote
non-empty sets. If |[A| = |B| =m >N, and f: A XB —- 4 xB, then we
consider two conditions concerning the function f:

(C) VY(4o< 4)V(B; < B)((|4ol <m & |[B—B,| <m)

=(f(4 xB,) ¢ 4,%B)),
(Co) V(Bo=B)V(4; < A)((IBo]<m & [4—4;|<m)

=(f(4; xB) & A xB,)).

A function f: A xB — A XB is called vertical if thereisg: A x B—>A
such that f(a,bd) = (g(a, b), b) for all (a,bd)e A xB, and it is called
horizontal if there exists g: A XxB — B such that f(a,d) = (a, g(a, b))
for all (a, b)e 4 X B.

If X = AXB, ac A, be B, we write X, = {a} xB and X° = 4 x {b}.

For every function f: X — X, where X = A xB, and for every
ac A, be B, we write F, = f(X,) and F° = f(X?).

We will often use, without explicit writing, the fact that if p is a per-
mutation of X = A4 x B, then the families {P,},.4 and {P’},.5 are partitions
of X, and |P,| = |B| and |P°| = |A| for every aec A, be B.

If p is a permutation of X = 4 xB, then we define the function
i,: X - B by

V(@e X)V(be B)((ip(2) = b)<>(xe P?).

Observe that if sets ¥,, Y, « X = A4 xB are such that i,(Y,)ni,(Ys)
=@, then Y,nY, =0.

A set E will be called a selector of a family {Y,},.cif E = U {Y,: ue U}
and [EnY, =1 for all ue U. It will be called a partial selector if
lEnY,l <1.

The following definitions will be used only in the proof of Lemma 11:

A matrix D = (@, 4)ac4,5e5 18 called a vertical (horizontal) transforma-
tion of a matrix C = (€ p)4c4,pep if there exists a vertical (horizontal)
one-to-one function h: A XB — A xXB such that d,, = ¢,y for all
(@, b)e A xB. If h is a vertical (horizontal) permutation of A X B, & matrix
D is called a vertical (horizonial) permutation of a matrix C.

Let M be a matrix (@, b)), 4,5e- For every function f: A x B -~ 4 X B,
we put f(M) = (f(a, b))sed,pe- Notice that, for any vertical (horizontal
transformation N of the matrix f(M), there exists a vertical (horizontal)
one-to-one function r: A XB - A xB such that N = for(M). If the
matrix N is a permutation of the matrix f(M), then r can be chosen to
be a permutation of A4 xB.

Indeed, let N = (7, 4)qc4,0ep b€ @ vertical transformation of f(M)
and let f(M) = (8;p)aca,0ep- BY the definition, there exists a vertical
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one-to-one function h: A XB — A XB such that n,;, = 8,,; for all
(a,b)e A x B. Hence n, , = f(k(a, b)) = foh(a, b). Therefore N = foh(M).
We put r = h. The rest is similar.

1. Permutations.

LEMMA 1. If |[A| = |Bl =m>=R,and f: A XB — A XB i8 a one-to-one
Sfunction or a function onto, then either (C,) or (C,) is satisfied.

Proof. If neither (C,) nor (C,) is satisfied, then there exist sets A,,
By, A,, B, such that |4/ <m, |Bol<m, [A—4,|<m, |[B—B|<m,
J(AxXB;) @ Ay xB and f(4, xB) =« A xB,.

Let f be a one-to-one function. Since f(4, xB,) = 4,XB,, we have

|4y XBy| = |f(Ay XB,)| < |4y XB,l.

Hence m < m, a contradiction.
If f is onto, we have

f((4—A4,) x (B—B,)) > (4 —4,) x(B—B,),
whence
(4 —A4,) x (B—By)| > |(4—4,) x(B—B,)|.

But the right-hand side of the last inequality is equal to m, whereas
the left-hand side is smaller than m, a contradiction.

LeEMMA 2. If |A| = |B] =m =8, and p is a permutation of X = A X B
with property (C,), then there ewists a set 8 =« X = A x B with the following
properties:

(1) 18] =m
(2) [ Xan8| <1 for every ae A,
(3) IP°A8S| <1 for every be B.

In other words, there exists a,. big set 8 (i.e. |S| = m) which is simulta-
neously a partial selector of the family {X,},.. and of the family {P’},.p.

Proof. We only may assume that p is a one-to-one function, not
necessarily a permutation. Let T be the set of all ordinals of power less
than m. First we define, by transfinite induction, sequences {a,};.» and
{be}ser of different elements of A and B, respectively, such that X, N P% # @
for every te T. Assume that for ¢’ < ¢ elements a;, b, have been already
defined. Put 4, = {a,: t' <t} and B, = B—{b,: t' < t}. Since p has
property (C,), we obtain p(4 x B,) ¢ A4, x B. Hence there exists a’c A — 4,
such that p(4 xB )nX # @ and there exists b°¢ B, such that P nX ,
# 0. We put @, = a° a.nd b; = b°. By the definition of these two sequences,
it is clear that they have the required property. Let S be a selector of
the family {X, nP%}, ;. It is easy to see that § is what we need.
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LEMMA 3. Let {Z,}pew be a family of pairwise disjoint sets. Let Y
be a set such that

{w: YnZ, #0} =m=N,.
If Y° is a subset of Y such that |Y°| < m, then
{w: (¥ —Y°)nZ, # OB} =m.
Proof. We have
{w: YnZ, +# 0} = {w: Y°nZ, #0B}u{w: (Y—Y°)nZ, *O)
and, by the disjointness of the family {Z,},.w,
Hw: Y°nZ, # 0} <Y’ <m.

Hence the lemma follows.

LeMMA 4. If {Y,},cp and {Z,},cw are two families, each consisting of
pairwise disjoint sets, such that
(4) Hw: Y,nZ, #0} = |V| for all veV,
then there ewists a set K which i8 a selector of the family {Y,},.p and, at the
same time, a partial selector of the family {Z,},cw.

Proof. Assume that V is ordered in the type |V|. We define, by
transfinite induction, a transfinite sequence {y,},. such that

Yoe Yo— U {Zyp: (v < 0)(yyee Z,)} for every ve V.

Let ve V. Assume that for v’ < v elements y,, have already been
defined. Since the sets of the family {Z,},. are pairwise disjoint, we
have

{w: (V' < 0)(yye Z,)}I< IV
Hence, by (4), there exists
woe W—{w: (v’ < 0)(yy e Z,)}

such that Y,nZ,, #9. Let y, be an arbitrary element of Y,nZ,,. It is

seen that the sequence {y,},., has the required property. Put E
= {y,: ve V}. It is obvious that this ¥ is what we need.

LeMMA 5. If |A| = |B] =m >N, and p is a permutation of.X = A xXB
with property (C,), then there exists a partition R of X with the following
properties:

(5) {ae A: X,nR #0@} .=m for every Re R,
(6) {ReR: X;nR #0} =m  for every ac A,
(7) IRNP’| =1  for every Re R and every be B.
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Proof. Let S be a set satisfying (1), (2) and (3) for a given p. Such
an S exists by Lemma 2. Let T be the set of all ordinals of power less
than m. Let a partition {S,};.r of 8 be such that |S,] =m for every teT.
Each §; satisfies (1), (2) and (3), since 8 does. Let a function f: T' - 4
be such that |f~!(a)] = m for every a< 4. Put

B, = {b: sup|X,nP° =m].

Let a function g: B, xXT — A be such that
1 X 0.0 NP°I > [t|+2  for all (b, )e ByxT.
Let C be a selector of the family
{P°PnX,: PPnX, #0,ac A, be B}.
From the definition of C it follows that

(8) {be B: P°PnX, #0}| = |CnX, for every acA.
We show that
(9) Ha: X,nP® #0} =m for every be B—B,.

Indeed, for every be B we have
P’ = (P°nX,) = U{P°nX,: P°PnX, #0,ac A}.

a

Hence for every be B we obtain

m = |P%| < |{a: P’ nX, # @}|sup|P’nX,|.

Let now be B— B,. From the definition of B, we have

sup|X,nP° =n, where n<m.
a

Thus m < |[{a: P°nX, # O}|n, and hence (9) follows.
Assume that B is ordered in the type m. '
We define, by transfinite induction, a transfinite sequence {R;};
of subsets of X such that, for every te T,
1° B,nUR, =0,
t'<t

2° D, = {b: (f(9), )¢ U B} #0 & (f(i), min D) By,
<

3° |R,nP® =1 for every be B,

40 |R,('\S| =m,

5° |Bin U 8| <1,
Tt

6° | X,nR,nC| < 3 for every ac A.
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Let ue T. Assume that for ¢ < u the sets E; have already been defined
in a way such that for every ¢ < u conditions 1°-6° are satisfied. The
definition of R, will be preceded by four observations (10)-(13).

First we prove that

(10) X,—UR; #9 for every acA.
Let ae A. =
Case 1. |OnX,| =n, where n < m. Since
X, =UZX,nP,
we have ’
X,nR,c U{P°nR;: X,nP® #0,be B} for every t< u.
Thus

|1 X,nRy < [{b: X,nP® # O}|sup|P’nE,| for every < u.
b
Hence, by (8) and 3° we have | X,nER,| < |CnX,| for every < u.
Thus, in this case, |X,NER,| <n for every ¢ < . Hence
| XanUR,| <njul <m.
t<u

Thus we have (recall that |X,| = |B] =m)
X,—UR, #9.

I<u

Case 2. |CnX,| =m. By 6° we have
ICnXanUR,I < 3ul < m.
t<u
Hence, in this case,
|CnX,— UR,| =m,
t<u

which obviously implies
X,—UR, #0.

i<u
Now, by 3° and property (3) of 8,
(11) |an(t2R,uS)[<m for every be B.
Fix be B—B,. In Lemma 3 put
Zoywew = {Zalaeas Y =P, X' = an(tEJuRtUS)'

By virtue of (9) and (11) we infer that assumptions of Lemma 3
are satisfied, and thus

(12)  |{a: (P°—(UR,U8))nX, #0O}| =m for every be B—B,.
t<u
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Now we observe that
(13) (X o, P?) — (UR,UCUS) %@ - for every be B,.
t<u

Indeed, for every be B,, we have

| X oo,y P°| > |u|+2  (by the definition of the function g),
|an URtI < |u]  (by 3°),
t<u

| X0, P’NCI <1 (by the definition of the set C),
IP°PAS| <1 (by property (3) of the set 8),

whence (13) follows.
In order to define R,, we first define some sets R), R, and then

we put R, = RLURZ. In view of (10) we infer that
D, = {b: (f(u), b)¢‘g‘R,} #0.
Construction of R,. Put
d, =minD,, b, =i,((f(u),d,)) and 8= Su—(‘gR‘uP"u).

Observe that |8}| =m, as a consequence of the following relations:

|8y UR| < lul-1<m  (by 5°),
i<u

I8,nP’| <1 (by property (3) of 8,),
|8, =m  (by property (1) of S,).
In Lemma 4 put

{Yv}ve vy = [-Pb - (tg‘Rt US) }beB—-(Bou{bu}uip(S;)) and {Zw}unW = {Xa}aed .

By (12), the assumption of Lemma 4 is satisfied in this case. There?
fore, there exists @ set B (it depends on u, and we shall write F, instead
of E) which is a selector of the family

{Pb - ( BMR‘ US) }beB-(Bo U(bu}Uip(S;))

and, at the same time, a partial selector of the family {X,},.,. We put
R = (f(w), d,)US,VE,. Using the definition of R}, it is easy to check
that 4,(R)) > B—B,. Hence B—i,(R,) = B,. Therefore, by (13), there
exists a set R% which is a selector of the family

{(Z oo OP") — (tg R,uCU8)}

beB—ip(RL)’

Now we put R, = R,UR;.
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We have to show that conditions 1°-6° are satisfied for ¢ = u. By
the definition of R, it is easy to see that conditions 1°, 2° and 3° are satis-
fied. To prove 4°, observe that by the definition of R, we have §; c R,.
We have proved that |S;| = m. Since S;, = §, = §, 4° is satisfied. By the
definition of R, we have RZnS =@, and, by the definition of R},

RLAS < SEU(f(u), d)}.
Since R, = RLUR:, 8}, = 8,, and {8;};.p is a partition of S, we have
u

Run U St < “f(u)7du)}'
Iat#u

Hence 5° is satisfied. To prove 6°, observe that, by property (2)
of 8, and by the definition of ¥, each of the three sets, the union of which
is R, is a partial selector of the family {X,},.,. We also have

REAC =0 and X,nR,nC =X,nR.nC < X,nR)..

Hence 6° is satisfied.
The defined sequence {R;};,.r has, in particular, properties 1°-4°.
To prove Lemma 5, put R = {R;: teT}.. We must show that R is a parti-
tion of X, and satisfies (5)-(7). To prove that R is a partition of X, by 1°,
we need only to show that
UR, > X.

teT

Let (ao, bo)e X. Suppose, a contrario,

(@5 by) ¢ UR,.
teT
Put Ty = {teT: f(t) = ao}. By the definition of f, |T,|] = m. Recall
that

.D‘ = [b: (f(t), b)¢t,L<Jt 'Rt'} * %) and (f(t), d‘)G 'Rh

where d;, = min D, (by 2°). Hence, for every teT,, we have (a,, d;) ¢ E;.
Therefore, by 1° we have d; # d, for every ¢ %t t,t'e T,. Hence
[{ds: te T'o}| = |Ty| = m. But, on the other hand, since we assumed
(@oy bo) ¢ UR,,
teT

we have b,e D, for every te Ty (see the definition of D, and T,). Therefore,
since d; = minD,, we have d, < b, for every teT,. Hence |{d;: te T,}|
< m. Since we have showed that |{d;: te To}| =m, we have a contradic-
tion. Thus R is a partition. _

Now, by 4° and (2), property (5) is satisfied. By the definition of f
we have |[f~!(a)] = m for every ae A, whence, by 2°, we obtain (6). Prop-
erty (7) follows from 3°.
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Remark 1. Actually, the proofs of Lemmas 2 and 5 yield the fol-
lowing assertion:

Let U and V be two partitions of a set Y into sets such that
(14) Ul =V =Yl =m>=¥%, and |Ul=|V|=m
for every Ue U and every VeV,
(18) YU« O)VV' e V[(IUI<m& [V-V'|<m)
=(UV' ¢ UT).

Then there exists a partition R of Y such that each Re R is a selector
of V and
{UeU: UNR #0}| = |{ReR: UnR #0}| =m

for every Re R and every Ue U.

Let us add that it is easy to check, with help for instance of Lemma 2,
that if U and V are two partitions of ¥ which satisfy (14), then (15) is
equivalent to the following:

15y VYU <cUONVIV' V) [(|V']<m& |U—-U’l < m)
=>(UU' ¢ UV')].

LEMMA 6. If |A| = |B] = m =N, and R is a partition of X = A XB
with properties (5) and (6), then there exists a horizontal permutation q
of X such that

(16) IRnQ®| =1  for every Re R and every be B.

To prove this lemma we need three sublemmas.
If U and V are two partitions of a set ¥, we may consider the condi-
tion

17) KUeU: UnV #0} ={VeV: UnV #0}| = Y| =m =N,
for every Ue U and every VeV.

SUBLEMMA 1. Let U and V be two partitions of Y with property (17).
Let Y, be a subset of Y such that |Y,nZ|<m for every Ze(UUV).
Then partitions {U— Yo}yp and {V— Y,}p.y, both of Y —Y,, also have
property (17).

The sublemma is evident.

SUBLEMMA 2. Let U and V be two partitions of Y with property (17).
For each yoe Y there ewists a set S = Y which is a selector of UUV
and yqe S.

Proof. Let T be the set of all ordinals of power less than m. Let
a sequence { U,},.r of sets of U be such that each Ue U appears exactly once
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in this sequence. Let {V,},.r be a similar sequence for V. We may assume
that yoe UynV,. We define, by transfinite induction, a sequence {8;},r
of elements of Y such that s, = y, and, for every te T,

S;€ U‘ N Vj“),
where

j(@) =min({t': U;nV, =@} —{': A(r < )(s,e V})}).

It is easy to check that § = {s;: te T} satisfies the thesis.

SUBLEMMA 3. Let U and V be two partitions of Y with property (17).

Then there exists a partition S of Y such that each set 8¢ S is a selector
of UUV.

Proof. Let T be the set of all ordinals of power less than m. Let
{y:}:.7 be a sequence of elements of ¥ such that each ye Y appears exactly
once in this sequence. We define, by transfinite induction, a sequence
{8;};cr of subsets of Y such that, for every te¢ 7,

(18) 8;nUSy =9, y,eUSy, and 8,;is a selector of UUV.
t'<t <t

Let we T. Assume that sets S, for ¢t < » have already been defined
in a way such that (18) is satisfied for ¢ < #. In Sublemma 1 put

Y, =US8, Y=Y, U=U and V=V.
t<u
By (18) the assumptions of Sublemma 1 are satisfied and thus also
the conclusion. Hence the assumptions of Sublemma 2 are satisfied for
partitions {U— Y }ypy and {V—Y}p.p, both of ¥Y—Y,. Therefore,
by Sublemma 2, there exists a set 8§ « ¥ — Y, which is a selector of the
family ({U— Yo}p.oV{V — Yo}per). In the case

yu¢ USH

t<u

we can additionally demand that y, e S (see Sublemma 2). We put §,, = S.
It follows immediately from (18) that the family S = {8,: te T} is what
we need.

Proof of Lemma 6. In Sublemma 3 put U = {X,},.., V=R
and Y = X. In view of tha assumed properties (5) and (6) of R we see
that in this case the assumptions of Sublemma 3 are satisfied. Therefore,
by Sublemma 3, there exists a partition S of X such that each set S¢S
is a selector of ({X,},.4VR). Thus each set S¢S has exactly one element
in common with each row of the mutrix M = ((a, b))4c.4,.5- Hence there
exists a horizontal permutation ¢ of X such that sets Se S are columns
of ¢(M). Therefore, each column of ¢(M) is a selector of R, since each
set Se S is. Hence the defined horizontal permutation ¢ of X satisfies (16).
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We need the following particular case of Lemma (xiii) in [2]:
LeMmA 7. If p and q are permutations of X = A X B and there exists
a partition R of X such that

|Q°AR| = |P°AR| =1 for every be B and every Re R,

then there exist awial permutations ry, vy, s of X such that p = qor,or,or;.

ProPOSITION I. Let |[A] = |B] =m=N,. If a permuiation p of X
= A X B has property (C,), then it can be represented as a composition

P = P10 ... Oy,

where p; (1 =1, ...,4) are azial permutations of X, and p, is horizontal.

Proof. Let p be a permutation of X = A4 xB with property (C,).
By Lemmsa 5, there exists a partition R of X with properties (5), (6)
and (7). In view of (5) and (6) there exists, by Lemma 6, a horizontal
permutation ¢ of X such that (16) is satisfied for ¢ and R. Since the per-
mutations p, ¢ and the partition R satisfy (7) and (16), we can use Lemma 7;
thus there exist axial permutations r,, r,, r; of X with p = qor,or,or;.
We put p, =¢, P: =711, Py =71, and p, =r;. Hence p =p,0...0p,
and p, is horizontal.

It is easy to see that Proposition I is equivalent to

ProPOSITION I'. If |A| = |B| =m>=¥,, then every permutation
p of X = A xB with property (C;) can be represenied as a composition

P = P10 ... 0Py,

where p; (1 =1, ...,4) are avial permutations, and p, is vertical.

Now we can strengthen Theorem (i) of [2] to Theorem 0. Indeed,
if |[A|] = |B|>=¥,, then Theorem 0 follows from Lemma 1 and Proposi-
tions I and I'. In the case of other cardinalities this theorem follows
from Theorems (ii) and (iii) of [2].

Remark 2. One can prove that for each limit cardinal m the con-
verse of Proposition I holds true. It does not hold for any cardinal m
which is not limit.

2. Functions onto. We need the following particular case of Lem-
ma (viii) of [2]:

Levma 8. If |A| < |B|, then every funmction f: A XB — A XB which
i8 onto can be represented as a composition f = gop, where g: A XB —~ A X B
i8 a horizontal function onto, and p is a permutation of A X B.
(If |B| < N,, then the lemma is obvious, since f must be a permutation.)

ProrosiTioN II. If . |[A| = |[B| =m>=N,, then every function f:
A xB — A xB which is onto and has property (C,) can be represented as
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a composition

f=rfio...0f,,

where f,: A XB —~ A XB is a horizontal function onto, and f,, fs, f, are
awial permutations of A xB.

Proof. Let f = gop, where g and p are as in Lemma 8. We show
that p has property (C,). For otherwise there would exist sets A, c 4
and B, c B such that |[4d,/<m, |B—B,|]<m and p(4 XB,) = 4,XB,
and since g is horizontal, we would have

gop(A xXB,) = g(A¢xB) « Ay X B.

Hence f(A xB,) =« A4, XB, contrary to the assumption that f has
property (C,). By Proposition I, there exist axial permutations p,, p., Ps,
p, such that p = p,0...0p,, and p, is horizontal. Thus we have

J = go0p10P:0P30 D4,

where, in particular, g and p, are horizontal functions onto. Put f; = gop,,
fa = Ds, fs = ps, fs = p,. Therefore, f = f,0 ... 0of,, where f, is a horizontal
function onto, and f,, f;, f, are axial permutations.

It is easy to see that Proposition II is equivalent to the following

ProrosiTION II'. If |A| = |B| =m>=N,, then every function f:
A XB — A X B which is onto and has property (C,) can be represenied as
a composition

f=fio...ofs,

where f,: A XB — A XB is a vertical function onto, and f,, f,, f, are axial
permutations of A XB.

Now we can strengthen one of the results of [2] about functions
onto to Theorem 1. Indeed, in the case |4| = |B| >N, Theorem 1 follows
from Lemma 1 and Propositions IT and IT'. In the remaining case Theorem 1
was proved in [2] (if at least one of the sets A, B is finite, then Theorem 1
is a consequence of a particular case of (ix) of [2], and if ¥, < |A| # |B|
= Ny, one can use simultaneously (ii) and (viii) of [2]).

3. One-to-one functions.

LEMMA 9. If B is infinite (while A may be of arbitrary finite or infinite
cardinality), then every ome-to-one function f: A XxB — A X B can be repre-
sented as a composition f = pog, where p is a permutation of A XxB and
g: AXB — A XB i8 a horizontal one-to-one function.

SUBLEMMA 4. There exists a set S< X = A xB such that |S|
= | X —f(X)| and |X,— 8| = |B| for every ac A.

Proof. Case |4| < |B|>N,. In this case we have |X| = |B|. Let
By, <= B be a set such that |By = |X —f(X)| and |B—B,| = |B|. Let
age A. We put § = {a,} X B,.
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Case |A|> |B|>N,. Here we have |X| = |A4|. Let a set 4, A
be such that |4, = | X —f(X)|. Let bye B. We put 8 = 4, X {by}-

Proof of Lemma 9. Let S be a set as in Sublemma 4. Let a function
g: X - X be one-to-one and horizontal and such that ¢(X) =X -8
(such a g exists by the property of S). Let a function 2: X — X be one-to-
-one and such that A(8) = X —f(X). We put

_ flg™ (@) if weg(X), ‘

p(@) h(x) if we X —g(X).

By the definition of p we conclude that p is a permutation of X
and f = pogy.

ProPoOSITION IIL. If |A] # [B| = N,, then every one-to-one function
f: AXB — A XB can be represented as a composition

f=ho...ofs,

where f,, fs, s are axial permutations, f, is an axial one-to-one function,
and f, is wvertical.

Proof. Case |4] <N,. In this case the proposition follows from (iii)
of [2] and from Lemma 9.

Case |A| > N,. By Lemma 9 we have f = pog, where p is a permuta-
tion of A xB and g: A XxB -~ A XB is a horizontal one-to-one function.
By (ii) of [2] we have p = p;0...0p,, where p; (¢ =1, ..., 4) are axial
permutations, and p, is vertical. Hence we may assume, without loss
of generality, that p, is horizontal. Put f, = p,, f. = ps, f3 = Ps,
fi = p,09. We have f = f,o0...0f,. The additional claim about f,, ..., f,
is also visible from their definitions.

It is easy to see that Proposition III is equivalent to the following

ProrosiTION IIT'. If R, < |4| # |B|, then every one-to-one function
f: AXB — A XB can be represented &s a composition

f=fio...ofs,
where fi, [y, f3 are awial permutations, f, is an awzial one-to-one function,
and f, 48 horizonial.

ProPOSITION IV. If |A| = |B|=N,, then every one-to-one function
f: AXB — A XB with property (C,) can be represented as a composition

f=rfi0...0fy,

where fy, fa, fs are amial permutations, f, is an axial one-to-one fumction,
and f, is horizonial.

Proof. Since both 4, B are infinite, using Lemma 9 we can represent
f a8 pog, where p is a permutation of A XxB and g: A XB - A XB is
a vertical one-to-one function. Now, p has property (C,). For if not, then





















