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An iterative method for solving operator equations

by W. Sorax (Krakéw — Nowa Huta)

1. Let us congider the equation
(1.1) 2 = Te,

where T is an operator R — R and B — a space with a metric in & (cf. [4]).
Kurpiel in [2] gives some methods for solving such equations, e.g. he
congiders the equation

(1°2) Xy = Tn(wni mn—l); n=1,2,...,

adjoined to equation (1.1) (see [2], p. 36).

This paper deals with another iterative method which gives the
solution of equation (1.1). For this scheme we shall state an analogous
theorem to that given for iteration (1.2} in [2].

DeriNiTION 0of the set @ (cf. [4]). Let G be a set with the following
properties: '

1° @ is a semi-ordered set and 0 is its minimal element, i.e. 0 < &
for all z<@,

2° For all %, @ there is a uniquely defined sum % +-veG such that
(a) u+v =v4+u, u+0 = u,
(b) if u, v, we@ and u < v, then % +w < v+w,
(c) from %4 o < w follows u < w,
3° Every non-increaging sequence {u;}, where u;eG and u;., < U,
i=1,2,..., has a limit ueG (we write limu; =% or u; N u) and the
following conditions are satisfied: oo
(@) if w, =u (4 =1,2,...), then u; N u,
(b) if w; N % and v, N v, then w,+v; ™ u+o, ‘
(¢) it u; >wu, vy >v and u;<v;, then u < v,
(d) the limit never changes when we drop off the initial terms.
The solution Ze[a, b] of the equation & = ¢(x) 18 called an upper
solution on the interval [a, b] if for all golutions ze[a, b} of this equation
we have z <% (cf. [2], p. 20).
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LeEMMA. Let @(u) be a funclion defined on the set A = [0, k]G, non-
decreasing and continuous ¢(u)eG and let there exvist be A suoch that

(1.3) o(b) < b.

Then the equation
(1.4) w = @(u)
possesses on the interval [0,b] an upper solution m(g, b). If, in addition,
0<p<h and
(1.5) P < p(p),
then p < m (g, b). If v has the same properties as ¢ and p(u) < y(u) for all
ue[0, b), o(d) < b, p(b) < b, then m(gp, b) < m(y, b) (cf. [2], p. 20).

Let R denote a space with the following properties:

1° R is an abstract space with a metric defined by elements of the
gpace @;

2° For the sequence of elements {x,}, #;¢R there is a uniquely defined
limit lima, =2 (x<R) which does not depend on the initial terms,

N~+00
and if x; = seR, ¢ =1, 2, ..., then limz; =s;
00

3° any sphere S(%, r), TeR, re@, is a closed set belonging to R;

4° The space R is complete (cf. [4]).

2. Suppose we are given a Sequence ¢, M 0 and the equation
(2'1) Ly =Tn(mn—-17yn—l)7 n = 1!2! vy

where T,: RX R — R.
We assume that the operators 7', fulfil the conditions

(2.2) d(Tn(m; ), T(.’E)) <a, (a,0),

where x is a solution of equation (1.1), and let ¥, be a sequence fulfilling
the condition

(23) d(mn:yn)gc’ni n = 071127“'
THEOREM. If, for all ,y, 2, teD, we have the inequality
(2.4) d(Tn(m,y),Tn(z,t))g 99n(d(wiz)ad(?/1t))a

where @u(e, d): AX 4 G (4 =[0,k] =« @), g, are non-decreasing, con-
tinuous functions (cf. [2], p. 36) and conditions (2.2), (2.3) are satisfied,
then for amy @, _;, Y, ¢D (n =1,2,...) equation (2.1) has solutions.

Furthermore, let (¢, d) be a non-decreasing continuous function [0, b -G
such that

(2.6) @by b)+a,+¢, <b,
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where b is a diameter of the set D, and
(2.8) eal0,d) < glc,d) for o, de[0,b].

Let us assume that the equation © = @ (v, ®) has a unique solution r = 0.

Then equation (1.1) has a unique solution on the set D equal to  which
18 a limit of the sequences of solutions {x,} {y,} of (2.1) for every @y, y,¢D,
and the following inequalities hold:

{2.7) d(@,, ®) < B,(b), n=1,2,..,

(2.8) A(Yny 0) < Op(b), n=1,2,...,

where B, (b) is an upper solution of

(2.9) U =‘P(’“70 —l(b))'l'an’ Co(b) =b, n=1,2,..,
and C,(b) 18 an upper solution of the egquation

(2.10) w = @(B,_1(b), )+ ay+¢,, Bo(b)=2b, n=1,2,..,

and B,(b) } 0, C,(b) X0 for m — oo on the interval [0,d], and the ine-
qualities

(2.11) A(@yy @) < My, b),

(2.12) A (Yny @) < M(Ypy D),

where m(yp,, b) 8 an upper solution of the equation
(2.13) U = Yo (%) = Pa(thy A(Yp_1, @) + 0

and m(y,, b) — an upper solution on the interval [0, b] of the equation
(2.14) U = Eﬂ.(“’) = ‘pn(d(wn—li x), u)""'an"'on'

Proof. Since weD and 2,,¥y,¢D from the equality » = T, =,
= T (®p_1y Yn-y) a0d from assumptions (2.2), (2.3), we have

d(mn) m) = d(Tn(mn—-li yn—l)! T{D) < d(Tn(mn—H yn—l)) 'Tﬂ(m7 m)) +
+d(Tp(@, 2), T2) < @(@(Zn_1 ), G(Yn1) ) + 0,

and since d(z,, z) < b and d(y,, 2)< b for n = 0,1, ... from (2.2), (2.6),
(2.5) and (2.3), we have

(2.15) (@, %) < @(A(@p_1s 2)5 E(Yn_1, 2))+a, < @(b, D)+ 0, < D

and

(2.16) A(Yny 2) < A&y Yn) + A (@, #) < @(by b)+ a1 +0, < D.
For n =1 we obtain

d(zy, z) < ‘P(d(wo, r), b)+a1 <b, Ay, 2) < ?’(br (Yo m))+a1+01< b,
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and from the lemma we have
a(w,, 1) < By(b) < b = By(b), d(y:, o)< 01(d) <b = 0y(d).
Let us assume that
d(@yy #) < Bp(b) < by d(Yny 2) < Cp(B) <D

for a certain index n. From conditions (2.15) (2.16) we get

(@1, @) < @(E(@Bgy 2)y AWy D))+ 0y < @ (A (2, @), Op (b)) + 0, <
(Y1) 0) < @(A(@y,2)y A(Yny 3))+ G+ 0, < p(By (D), 'ymw))+wn+ 6, <D,
i.e.

A(@pi1y 0) S By (0) <y, A(Yns1) @) < Crpa (B) < b,

and by induection — for all » = 0,1, 2,... we have
(2.17) d(2,, 2) < B,(b)<b
(2.18) A(Yn, @) < On(b) <.

Let us see that B,(b) \ 0 and C,(b) \ 0. We have proved that

B, (b) < By(d), 0.(b) < Cy(b).
Let us -assume that
By(0) < B, 1(8),  Co(b) < Ony(B).

Sinee ¢(c, d) is non-decreasing and a, < a,_,, ¢, < ¢,_;, we have
'Pn(’“) = (P('“'! G‘n(b))'!_a‘n < 9”('“’, On—l(b))'l' Ap—-1 = 'y)n—l(u)
for all 4¢[0, b]. From the lemma we have

m(wn b) M (Pn_1y D),

i.e. B,.,(b) < B,(b) and similarly C,.,(b) < C,(b). The elements of the
sequences B, and C, belong to @, and thus there exist limits ¢, d

Bo(d) = @(Ba(b), O (D)) 4y On(d) = @(Bys (D), Cp(b)) + ap+0py
¢c=glc,d), d=g¢c,d, ie. o=d=0.
Inequalities (2.11) and (2.12) follow from the conditions

a (@, x) < ‘Pn(d(wn—H 2)y &(Yp—1) w))"‘“n = "Pu(d(mn—n m)) < M (Py, )
and
d(yn, ‘Pn(d(m -1 a;) d(yn—li w))"—a’ 'I' Cp = wn(d yn—l’ m)) w'n$ b)
This ends the proof.
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3. Here we give two examples to which iteration (2.1) can be applied.
Example 1 (cf. [3]). Let us consider the equation

(3.1) Fx =0,
and suppose we are given the iteration
(3.2) Ty =Ty —Ly(Yn1) B2y, (n=1,2,..),
where I', differs little from [#']™*. Then
T @1y Ynos) = By — L (Yp1) FOp_y.

Example 2 (cf. [1]). For the equation f(X) =0, where
X =(a* o?...,0"), ¥ =(¥%...,9")y f=(f1,.-+,fp) and the iteration

i 0y 1 f( ¥ y) ~ Yirf (X )
(3:3) o S T () — (X )

for f(¥,-1) #f(Xn1) (@ =1,...,p), We have
Dy 1f (Y1) = Yn—f (X, 1)
F( ) ~F(Xars)

2 f (Tey) = VB 1 f(X)
f(Yn—l) —f(Xn-l)

Tn (Xn—u Yn—l) =
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