An iterative method for solving operator equations

by W. Solak (Kraków - Nowa Huta)

1. Let us consider the equation

$$(1.1) x = Tx,$$

where T is an operator $R \to R$ and R — a space with a metric in G (cf. [4]). Kurpiel in [2] gives some methods for solving such equations, e.g. he considers the equation

(1.2)
$$x_n = T_n(x_n, x_{n-1}), \quad n = 1, 2, ...,$$

adjoined to equation (1.1) (see [2], p. 36).

This paper deals with another iterative method which gives the solution of equation (1.1). For this scheme we shall state an analogous theorem to that given for iteration (1.2) in [2].

DEFINITION of the set G (cf. [4]). Let G be a set with the following properties:

- 1° G is a semi-ordered set and 0 is its minimal element, i.e. $0 \le x$ for all $x \in G$,
 - 2° For all $u, v \in G$ there is a uniquely defined sum $u + v \in G$ such that
 - (a) u + v = v + u, u + 0 = u,
 - (b) if $u, v, w \in G$ and $u \leq v$, then $u + w \leq v + w$,
 - (c) from $u+v \leq w$ follows $u \leq w$,
- 3° Every non-increasing sequence $\{u_i\}$, where $u_i \in G$ and $u_{i+1} \leq u_i$, $i = 1, 2, \ldots$, has a limit $u \in G$ (we write $\lim_{i \to \infty} u_i = u$ or $u_i \geq u$) and the following conditions are satisfied:
 - (a) if $u_i = u$ (i = 1, 2, ...), then $u_i > u$,
 - (b) if $u_i > u$ and $v_i > v$, then $u_i + v_i > u + v$,
 - (c) if $u_i \to u$, $v_i \to v$ and $u_i \leqslant v_i$, then $u \leqslant v$,
 - (d) the limit never changes when we drop off the initial terms.

ł

The solution $\overline{x} \in [a, b]$ of the equation $x = \varphi(x)$ is called an *upper solution* on the interval [a, b] if for all solutions $x \in [a, b]$ of this equation we have $x \leq \overline{x}$ (cf. [2], p. 20).

*222 W. Solak

LEMMA. Let $\varphi(u)$ be a function defined on the set $\Delta = [0, k] \in G$, non-decreasing and continuous $\varphi(u) \in G$ and let there exist $b \in \Delta$ such that

$$\varphi(b) \leqslant b.$$

Then the equation

$$(1.4) u = \varphi(u)$$

possesses on the interval [0, b] an upper solution $m(\varphi, b)$. If, in addition, $0 \le p \le b$, and

$$(1.5) p \leqslant \varphi(p),$$

then $p \leqslant m(\varphi, b)$. If ψ has the same properties as φ and $\varphi(u) \leqslant \psi(u)$ for all $u \in [0, b]$, $\varphi(b) \leqslant b$, $\psi(b) \leqslant b$, then $m(\varphi, b) \leqslant m(\psi, b)$ (cf. [2], p. 20).

Let R denote a space with the following properties:

- 1° R is an abstract space with a metric defined by elements of the space G;
- 2° For the sequence of elements $\{x_i\}$, $x_i \in R$ there is a uniquely defined limit $\lim_{n \to \infty} x_n = x$ $(x \in R)$ which does not depend on the initial terms, and if $x_i = s \in R$, $i = 1, 2, \ldots$, then $\lim_{i \to \infty} x_i = s$;
 - 3° any sphere $S(\bar{x}, r)$, $\bar{x} \in R$, $r \in G$, is a closed set belonging to R; 4° The space R is complete (cf. [4]).
 - 2. Suppose we are given a sequence $c_n > 0$ and the equation

$$(2.1) x_n = T_n(x_{n-1}, y_{n-1}), n = 1, 2, ...,$$

where $T_n: R \times R \to R$.

We assume that the operators T_n fulfil the conditions

$$(2.2) d(T_n(x,x),T(x)) \leqslant a_n (a_n \setminus 0),$$

where x is a solution of equation (1.1), and let y_n be a sequence fulfilling the condition

$$(2.3) d(x_n, y_n) \leqslant c_n, n = 0, 1, 2, \dots$$

THEOREM. If, for all $x, y, z, t \in D$, we have the inequality

$$(2.4) d(T_n(x,y),T_n(z,t)) \leqslant \varphi_n(d(x,z),d(y,t)),$$

where $\varphi_n(c,d)$: $\Delta \times \Delta \to G$ ($\Delta = [0, k] \subset G$), φ_n are non-decreasing, continuous functions (cf. [2], p. 36) and conditions (2.2), (2.3) are satisfied, then for any $x_{n-1}, y_{n-1} \in D$ (n = 1, 2, ...) equation (2.1) has solutions.

Furthermore, let $\varphi(c, d)$ be a non-decreasing continuous function $[0, b]^2 \rightarrow G$ such that

$$\varphi(b,b)+a_1+c_1\leqslant b,$$

where b is a diameter of the set D, and

$$\varphi_n(c,d) \leqslant \varphi(c,d) \quad \text{for } c,d \in [0,b]^2.$$

Let us assume that the equation $x = \varphi(x, x)$ has a unique solution x = 0. Then equation (1.1) has a unique solution on the set D equal to x which is a limit of the sequences of solutions $\{x_n\}$ $\{y_n\}$ of (2.1) for every $x_0, y_0 \in D$, and the following inequalities hold:

$$d(x_n, x) \leq B_n(b), \quad n = 1, 2, ...,$$

$$(2.8) d(y_n, x) \leq C_n(b), n = 1, 2, ...,$$

where $B_n(b)$ is an upper solution of

$$(2.9) u = \varphi(u, C_{n-1}(b)) + a_n, C_0(b) = b, n = 1, 2, ...,$$

and $C_n(b)$ is an upper solution of the equation

$$(2.10) \quad u = \varphi(B_{n-1}(b), u) + a_n + c_n, \quad B_0(b) = b, \quad n = 1, 2, \ldots,$$

and $B_n(b) > 0$, $C_n(b) > 0$ for $n \to \infty$ on the interval [0, b], and the inequalities

$$(2.11) d(x_n, x) \leqslant m(\psi_n, b),$$

$$(2.12) d(y_n, x) \leqslant m(\overline{\psi}_n, b),$$

where $m(\psi_n, b)$ is an upper solution of the equation

(2.13)
$$u = \psi_n(u) = \varphi_n(u, d(y_{n-1}, x)) + a_n$$

and $m(\overline{\psi}_n, b)$ — an upper solution on the interval [0, b] of the equation

(2.14)
$$u = \overline{\psi}_n(u) = \varphi_n(d(x_{n-1}, x), u) + a_n + a_n.$$

Proof. Since $x \in D$ and $x_n, y_n \in D$ from the equality x = Tx, $x_n = T_n(x_{n-1}, y_{n-1})$ and from assumptions (2.2), (2.3), we have

$$d(x_n, x) = d(T_n(x_{n-1}, y_{n-1}), Tx) \leq d(T_n(x_{n-1}, y_{n-1}), T_n(x, x)) + d(T_n(x, x), Tx) \leq \varphi_n(d(x_{n-1}, x), d(y_{n-1}, x)) + a_n,$$

and since $d(x_n, x) \leq b$ and $d(y_n, x) \leq b$ for n = 0, 1, ... from (2.2), (2.6), (2.5) and (2.3), we have

$$(2.15) d(x_n, x) \leqslant \varphi(d(x_{n-1}, x), d(y_{n-1}, x)) + a_n \leqslant \varphi(b, b) + a_1 \leqslant b$$

and

$$(2.16) d(y_n, x) \leq d(x_n, y_n) + d(x_n, x) \leq \varphi(b, b) + a_1 + c_1 \leq b.$$

For n=1 we obtain

$$d(x_1, x) \leqslant \varphi(d(x_0, x), b) + a_1 \leqslant b, \quad d(y_1, x) \leqslant \varphi(b, d(y_0, x)) + a_1 + c_1 \leqslant b,$$

224 W. Solak

and from the lemma we have

$$d(x_1, x) \leqslant B_1(b) \leqslant b = B_0(b), \quad d(y_1, x) \leqslant C_1(b) \leqslant b = C_0(b).$$

Let us assume that

$$d(x_n, x) \leqslant B_n(b) \leqslant b$$
, $d(y_n, x) \leqslant C_n(b) \leqslant b$

for a certain index n. From conditions (2.15) (2.16) we get

$$\begin{split} d\left(x_{n+1},\,x\right)&\leqslant \varphi\big(d\left(x_n,\,x\right),\,d\left(y_n,\,x\right)\big)+a_n\leqslant \varphi\big(d\left(x_n,\,x\right),\,C_n(b)\big)+a_n\leqslant b\,,\\ d\left(y_{n+1},x\right)&\leqslant \varphi\big(d\left(x_n,x\right),\,d\left(y_n,\,x\right)\big)+a_n+c_n\leqslant \varphi\big(B_n(b)\,,\,d\left(y_n,x\right)\big)+a_n+c_n\leqslant b\,,\\ \text{i.e.} \end{split}$$

$$d(x_{n+1}, x) \leq B_{n+1}(b) \leq b, \quad d(y_{n+1}, x) \leq C_{n+1}(b) \leq b,$$

and by induction — for all n = 0, 1, 2, ... we have

$$(2.17) d(x_n, x) \leqslant B_n(b) \leqslant b,$$

$$(2.18) d(y_n, x) \leqslant C_n(b) \leqslant b.$$

Let us see that $B_n(b) \setminus 0$ and $C_n(b) \setminus 0$. We have proved that

$$B_1(b) \leqslant B_0(b), \quad C_1(b) \leqslant C_0(b).$$

Let us assume that

$$B_n(b) \leqslant B_{n-1}(b), \quad C_n(b) \leqslant C_{n-1}(b).$$

Since $\varphi(c,d)$ is non-decreasing and $a_n \leqslant a_{n-1}$, $c_n \leqslant c_{n-1}$, we have

$$\psi_n(u) = \varphi(u, C_n(b)) + a_n \leqslant \varphi(u, C_{n-1}(b)) + a_{n-1} = \psi_{n-1}(u)$$

for all $u \in [0, b]$. From the lemma we have

$$m(\psi_n(u), b) \leqslant m(\psi_{n-1}, b),$$

i.e. $B_{n+1}(b) \leq B_n(b)$ and similarly $C_{n+1}(b) \leq C_n(b)$. The elements of the sequences B_n and C_n belong to G, and thus there exist limits C, d

$$B_n(b) = \varphi(B_n(b), C_{n-1}(b)) + a_n, \quad C_n(b) = \varphi(B_{n-1}(b), C_n(b)) + a_n + c_n,$$
 $c = \varphi(c, d), \quad d = \varphi(c, d), \quad \text{i.e. } c = d = 0.$

Inequalities (2.11) and (2.12) follow from the conditions

$$d(x_n, x) \leqslant \varphi_n(d(x_{n-1}, x), d(y_{n-1}, x)) + a_n = \psi_n(d(x_{n-1}, x)) \leqslant m(\psi_n, b)$$

$$d(y_n, x) \leqslant \varphi_n (d(x_{n-1}, x), d(y_{n-1}, x)) + a_n + c_n = \overline{\psi}_n (d(y_{n-1}, x)) \leqslant m(\overline{\psi}_n, b).$$
 This ends the proof.

3. Here we give two examples to which iteration (2.1) can be applied. Example 1 (cf. [3]). Let us consider the equation

$$(3.1) Fx = 0,$$

and suppose we are given the iteration

$$(3.2) x_n = x_{n-1} - \Gamma_n(y_{n-1}) F x_{n-1} (n = 1, 2, ...),$$

where Γ_n differs little from $[F']^{-1}$. Then

$$T_n(x_{n-1}, y_{n-1}) = x_{n-1} - \Gamma_n(y_{n-1}) F x_{n-1}.$$

Example 2 (cf. [1]). For the equation f(X) = 0, where $X = (x^1, x^2, ..., x^p)$, $Y = (y^1, ..., y^p)$, $f = (f_1, ..., f_p)$ and the iteration

(3.3)
$$x_n^i = \frac{x_{n-1}^i f(X_{n-1}) - y_{n-1}^i f(X_{n-1})}{f(X_{n-1}) - f(X_{n-1})}$$

for $f(Y_{n-1}) \neq f(X_{n-1})$ (i = 1, ..., p), we have

$$T_n(X_{n-1}, Y_{n-1}) = \begin{bmatrix} \frac{x_{n-1}^1 f(Y_{n-1}) - y_{n-1}^1 f(X_{n-1})}{f(Y_{n-1}) - f(X_{n-1})} \\ \vdots \\ \frac{x_{n-1}^p f(Y_{n-1}) - y_{n-1}^p f(X_{n-1})}{f(Y_{n-1}) - f(X_{n-1})} \end{bmatrix}.$$

References

- [1] W. M. Kincaid, A two-point method for the numerical solution of systems of simultaneous equations, Quarterly of Applied Math. (1960), p. 313.
- [2] N. S. Kurpiel, Proekcionno-iterativnye metody resenija operatornych wravnenij, Kiev 1968.
- [3] Reinboldt, J.S.I.A.M. Num. Analysis, May 1968.
- [4] T. Ważewski, Sur une procédé de prouver la convergence des séries comparaison, Bull. Acad. Polon. Sci. Sér. sci. math. ast. et phys. 8, 1960, p. 47-52.

Reçu par la Rédaction le 15. 7. 1970