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It is well known that the polynomials ZN

et are uniformly bounded, i.e.
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for all N and x we have the estimate
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with an absolute constant C. This fact has various applications in the theory
of trigonometric series and in approximation theory.

Similar estimates may also be obtained for polynomials in several
variables
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where the summation is over all integer points of a “sufficiently regular”
domain 4 of the m-dimensional space (we assume A to be contained in
(0, ©)™).

Clearly, if 4 is any rectangular parallelepiped with edges parallel to the
coordinate hyperplanes, then the polynomials (2) are bounded by a constant
depending on m only. Other classes of domains with this praoperty are also
known. The author [1] proved, when studying the estimates of the deriva-
tives of trigonometric polynomials in several variables, that if 4 is taken to
consist of all (n, ..., n,) satisfying a condition of the form

r r
n!..n"<N,

where ry, ..., r,, N are arbitrary positive numbers, then the polynomials (2)
are bounded by a constant depending on m only.
In this paper we exhibit a more general class of domains A with this
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property. For simplicity and better visualisation we restrict ourselves to
polynomials in two variables, i.e. to the case m = 2.

We first recall from [1] the proof of the uniform boundedness of the
polynomials

sinn; x, sinn, x,

2
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where A4 consists of all points of the first quadrant of the (n,, n,) plane
satisfying
(3) ntnZ<N, r,>0,r,>0 N>O0.

It is sufficient to consider x;, x, with 0 <x;, <&, 0 <x, < n. For fixed

Xy, X, we draw the line n; x; = n, x, in the (n,, n,) plane. Let (N,, N,) be its
intersection point with the boundary of 4 (Fig. 1).
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Fig. 1

The lines n, = N, and n, = N, divide the first quadrant into four parts;
we will estimate separately the polynomials
sinny x; sinn, x,

S(A)= X ,

(ng.n2)ed; ny (]

where A;, j =1 to 4, are the respective subsets of A.
Let A, be those (n,;, n,) for which n; < N, and n, < N,. Then

1

M sinng x, \[ %2 sinn, x,
4) S(A1)=( b)) )( ) ——)
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Note that in general N; and N, are not integers; the sign Z:L , denotes the
summation over all n satisfying 1 <n < N.
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From (4) and (1) we obtain the estimate
IS(4,)l < C?
Let A, be those points of A for which n, < N, and n, > N;. We rewrite

the double sum S(A4,) as an iterated one:
N(n3)

N,y .
Sy = Y Snmex: sinn, x, 5 smnlx,)’

np=1 N2 1=Nj+1 M

where N (n,) is the greatest integer n, such that (n;, n,) belongs to A. Hence
the estimate [sinn, x,| < n, x, yields

N2 Ninp) Sin ny X
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We now use the well-known estimate
4 sinnx| C,
) <—,
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with an absolute constant C,. This is easily obtained by applying the Abel
transformation.
Applying the estimate (6) to (5), we obtain

C Nz x2
S(A < C,
IS(42)l < "22_1)‘2 Nx xl

(6) 0<x<n,p>0,¢g<

But N, x; = N, x,, and therefore
IS(42)l < C

For the part of A where n; < N;, n, > N,, the estimate is similar, and
there are no points in A with n; > N, and n, > N,.
We have thus proved the estimate

sin ny x; Sin n, ng < Cz

(ny.n)eda ™ n;

with an absolute constant C, for domains 4 described by (3).

The above considerations carry over without change to the so-called
normal domains, i.e. to domains which, along with each point (n?, n9),
contain the whole rectangle 0 <n; < n?, 0 <n, < n?. However, the fact that
in the process of decomposition of the domain we have used its boundary
does not permit the same reasoning to be carried out for more general
classes of domains.

This defect is eliminated in the proof given below, where the decomposi-
tion of the domain is independent of its particular shape.



468 . S. A. TELYAKOVSKII

THEOREM. Let A be any domain contained in the first quadrant of the
(ny, ny) plane with the property that every line parallel to a coordinate axis has
at most two points in common with the boundary of A. Then we have the

estimate
sinny x, sinn, x,|

7 < C,,
@ (nl.nzz)eA ny n; l\ ?

where C; is an absolute constant and the summation is over all integer points
(ny, ny) in A.
Clearly, any convex domain satisfies the assumptions of the theorem.

Note that 4 can contain infinitely many integer points.

We will assume x; and x, to satisfy 0 < x, < n, 0 < x, < rn. For fixed
x;, X, we draw the line n; x;, = n,x,. It contains the point with the
coordinates M; = 1/x;, M, = 1/x,.

We divide the first quadrant of the (n, n,) plane into five parts, and
denote by B; the respective subsets of A (Fig. 2):

A

N,

M1 n

Ly
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i(ny, n))€A: ny <My, n, <M
B, = \(ny, n))€A: ny > M, n, < M,!,
By = \(ny, ) €A: ny S My, n; > M),

B, = \(ny, ny))€A: ny > My, ny > My, nyx; 2 n,x,),
Bs = {(ny, ny))€A: ny > M, n, > M,, ny x; <nyx,).

Let us note that a decomposition of the domain into parts satisfying
conditions of the form n; x; = n, x, was used in [1] in proving the estimates
for polynomials in three or more variables.
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We now prove the uniform boundedness of each of the sums

sinn; x, sinn, x,

S(B) =
J (nl.g)eﬂj nl nz
We have
lsinn x| Isinny x;) W 2
SBY< ¥ <X X xaslh

("1'"2)681 nl n2 n=1 n2=l

For B,, we rewrite the double sum as an iterated one:

sinn, x, sinn, x,
®) S(B) =y 22 (3 ———),
nzz n; "1("2) ny
where the sum over n, is taken over all integers n, < M, such that (n,, n,) is
in B, for some integer n;, and the sum over n, is taken over all integers n,
with (nl, nz) EBz.
The representation (8) yields
sinn, x,
) IS(By) < ) x2
n2

"zl("z) n |

By the assumptions on A, the integers n, in the inner sum satisfy conditions
of the form p <n, <q <00 or p <n; <. But p > M, in both cases, and
therefore (6) and (9) show that

¢,

M3
<C x, < C,.
M1X1\ 12 250

ny=1

IS(B)I <} x2
n2

For S(B;) the reasoning is similar.

Consider now S(B,). We again use the representation (8), but now the
summation over n, is taken over all n, > M, such that (n,, n,) is in B, for
some integer n,, and the summation over n, is taken over all integers n,
with (n,, n,) €B,.

Applying (8) gives
a0 SBI < T,

n2

5y sinn; x;
"l(nz) ny

Here the n; also satisfy conditions of the form p <n, <q <o or p<n,
< 0. But now p = n, x,/x,, and so (10) and (6) yield

SIS <% 2 S %M,
ny N2 N3 le 2 np=Mp+1 M2 X2 M;

= Cl'
X1

Since the estimate for S(Bs) is analogous, the proof of the theorem is
complete.
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The corresponding theorem for m > 2 is proved similarly. We also
assume that each line parallel to a coordinate axis has at most two
intersection points with the boundary of A4, and we conclude that the
polynomials (2) are bounded by a constant depending on m only.

The present paper was written in Warsaw during the activities of the
semester on approximation theory at the Banach Center in March 1986. The
author expresses his gratitude to Z. Ciesielski and P. Binev for discussing the
subject.
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