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ON RIGID SUBSETS OF SOME MANIFOLDS
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Borsuk was concerned in [2] and [3] with some problems in intrinsic
geometry of Euclidean spaces. In particular, his Theorem (3.1) in [3] claims
that if X is an open connected subset of the Euclidean n-space E", then every
intrinsic isometry

fi X>f(X)cE"

is an isometry. ‘

A special case of this result (for X = E") was generalized to a certain class
of n-manifolds by Herburt and the author in [7].

The purpose of the present paper is to generalize Theorem (3.1) of [3] to
a possibly large class of n-manifolds (cf. 2.1).

0. Preliminaries. We follow the terminology and notation of [7]. In
particular, we refer to a metric space M = (M, g) as strongly arcwise connected
whenever every two distinct points of M can be joined in M by an arc of finite
length; for a strongly arcwise connected space (M, @) the intrinsic metric o*
induced by g is defined by the formula

e*(x, y):=inf{|L}; L is an arc in M and x, yeL}.

The class GA of geometrically bcceptable metric spaces introduced by Borsuk
in [2] can be equivalently defined as follows: ‘

GA:={M = (M, g); M is strongly arcwise connected and
g* is topologically equivalent to g}
(cf. [21, [31, [7]).

Let us notice that
0.1. If f: XY is a homeomorphism preserving the lengths of arcs, then

XeGA=YeGA.

Proof. Clearly, if X is strongly arcwise connected, then so is Y. Let,
moreover, ¢, and (g4)* be topologically equivalent:

ex = (ex)*



248 M. MOSZYNSKA

Then for every sequence (x,),.y in X and x,€ X the following two conditions
are equivalent:

(1) li’l;li 2 x(xn, Xo) =0,

?2) lim inf{|L,|; x,, xo€L,} =0.

Since f is a homeomorphism, (1) is equivalent to

(1) lim @y(f (x,), f (o) = 0.

Since f preserves the lengths of arcs, (2) is equivalent to
2) Liminf{lf (L,)I; f(x,), f(xo)€ f(Ly)} = 0.

Thus (1) is equivalent to (2), whence g, = (¢,)*. This completes the proof.

Let (X, 04,)€GA and (Y, 0,)eGA. A surjective map f: X—>Y is an
intrinsic isometry of (X, gy) onto (Y, ¢y) whenever f is an isometry of (X, (¢x)*)
onto (Y, (¢)*). Since, by Theorem (2.1) of [3], a map f is an intrinsic isometry if
and only if f is a homeomorphism preserving the lengths of arcs, Proposition
0.1 justifies the following

0.2. DEFINITION. Let M = (M, @) be a metric space and X its geometrically
acceptable subspace(!). The set X is rigid in M if and only if every intrinsic
isometry f: X - f(X) < M is an isometry(?).

Using this terminology, we can reformulate (3.1) of [3] as follows:

0.3. Every open connected subset of the Euclidean n-space E" is rigid in E".

In the sequel we shall need the following well-known notions: A metric
space M = (M, g) is (strongly) convex whenever every pair of distinct points
x, ye M can be joined by a (unique) segment L in M, i.e., there is a (unique) arc
L = M with end-points x, y isometric to the interval [0, ¢(x, y)] = R(®). The
space M is locally convex if and only if for every xe M and every neighbour-
hood U, of x in M there is a convex neighbourhood V, = U,. Further, M is
(metrically) homogeneous with respect to a family ¥ = 2M whenever for every
A, BeZ every isometry f, of (4, g|A%) onto (B, g|B?) can be extended to an
isometry f of the whole space M. The space M is (metrically) perfectly
homogeneous whenever it is homogeneous with respect to 2. Finally, let B, be
the metric betweenness relation (%), i.e.,

B,(a, b, c)<>g(a, b)+¢(b, c) = ¢(a, ¢).

(M) L e., more precisely, (X, 0|X?)eGA.

(3) For other notions of rigidity see [5].

() For complete spaces this notion of convexity coincides with that in the sense of Menger
(cf. [1], p. 41). For G-spaces in the sense of Busemann a different notion of convexity was
introduced in [4].

(4) It was studied in [8].
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The space M has no ramifications whenever B, satisfies the following condition:
for every p, x, a, be M

p # x A B,(p, x, a) A B,(p, x, b)=B,(x, a, b) v B,(x, b, a) (°).
The space M has uniquely prolongable segments whenever for every p, x, a, be M
p#xAB,(p,x,a)AB,(p, x, b) A g(x,a)=o(x, b)=a=10b (°)

(cf. [4], p. 36).
Clearly:

0.4. If M has no ramifications, then it has uniquely prolongable segments.

1. Geometric subspaces. Given a metric space M, we shall define an
operation

Disty,: 2M »2M

assigning to a subset A of M the set Dist,,(4) of points which are uniquely
determined by their distances from all the points of A (Definition 1.3). Let us
first generalize the notion of bisectrix.

1.1. DerFINITION. For any a, be M, let
a
LM(b) = {xeM; o(x, @) = ¢(x, b)}.

We refer to LM(:) as the bisectrix of the pair (a, b) in M.

Evidently:
1.2. For every a,be M

0 LM(Z) - LM(’;);
(ii) LM(Z) =M if and only if a=b.

1.3. DerFINITION. For any A < M, let

Disty(A) = {xeM; VyeM (A c LM(x)ax = y)}
y .

We refer to Dist,,(A) as the geometric subspace of M generated by A.
Clearly:

14. (i) A < Dist,,(A) for every A c M;
(1) A < B=Disty,(A) < Disty(B) for every A, Bc M.

(°) In [9], p. 111, this property is referred to as outer smoothness II.
(°) Notice that the “segment” (p, x) does not have to be prolongable, but if it is, then is
prolongable uniquely.
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1.5. ExampLEs. (a) Let M = E". Then Dist,, = Af, ie., for every A c E"
the set Dist,,(A4) is the affine subspace spanned by A.

(b) Let S"= {xeR"*"!; ||x|| = l} and let ¢ be the Euclidean metric
restricted to S". If M = (8", ¢) or M = (§", ¢*), then for every A = §" the set
Disty,(A) is the smallest unit subsphere of S" containing A.

By 1.5, if M is the n-sphere or the Euclidean n-space, then every ball B in
M generates the whole space M, ie., Disty,(B) = M. Let us prove

1.6. PROPOSITION. If M is convex and has uniquely prolongable segments,

then
Disty,(B) = M
for every ball B in M.
Proof. We shall prove
1) Va,beM (a # b=Int L,,,(:) = @).

Let a # b. Since M is convex, LM(:) # O; let

a
peLM(b).

There exist metric segments L' and L’ joining a with p and b with p,
respectively. Let us show that

) Ln LM(:) ={p}=L"n LM(:).

Indeed, let xeL’nLM(:); then

&) B,(p,x,a) and o(a,x) =o(x,b),
which, together with g(a, p) = o(p, b), implies
@) B,(p, x, b).

Since M has uniquely prolongable segments and a # b, (3) and (4) imply p = x.
This proves (2). By (2), there is a sequence (x,)..y such that

x,,eL’—LM(:) and limx, =p.

This proves (1).
Suppose now there is a ball B, with

Dist,,(B,) # M.



RIGID SUBSETS OF MANIFOLDS - 251

3a, be M (a #bAB,c LM(Z))

1.7. COROLLARY. If M =(M, o) is a complete 3-smooth n-dimensional
manifold with ¢ = o* (or, more generally, a G-space in the sense of Busemann [4],
then Disty,(B) = M for every ball B in M.

2. Manifolds with open connected subsets being rigid. Let us establish the
main result. Its proof is a generalization of the proof of 3.1 in [3].

2.1. THEOREM. Let M be a finite dimensional manifold. If
(1) M is strongly arcwise connected,
(ii) M is locally convex,
(iii) M is homogeneous with respect to a family of sufficiently small balls,
(iv) for every ball B in M
Disty,(B) = M,
then every open connected subset of M is rigid in M.

Proof. By (i) and (ii), M e GA. Take an open connected set X < M. If
X =0, then X is rigid. Let X # 9 and let h: X—>Y < M be an intrinsic
isometry. Notice that for every 4, Bc M

(1) ifAcX,BcY, h(A) <= B,and A, B are convex, then h|A is an isometric
embedding of (A, 0|A?) into (B, o|B?).

Indeed, let Ac X, Bc Y, h(A) = B, and let A, B be convex. Then
VX, X, €4 0(xy, X3) = (@1X?)*(x,, X,) = (@Y 2)*(h(x,), h(x,))
= @(h(xy), h(x,)),

Then

contrary to (1).

which proves (1).
Let us prove

(2)  for every xy€ X there exist convex neighbourhoods U, and Vy,,, such that
h(Uxo) < I/h(xo)'

Indeed, h is a homeomorphism, so Y is open in M. Let x,eX and
Yo = h(x,); there is a 6 > 0 with open ball By,(y,, ) contained in Y. By (ii),
there is a convex neighbourhood V,,, contained in the ball By, (y,, 6). Since h is
continuous, by (ii) there is a convex U,, such that h(U,,) < V,,,, which proves (2).
By (1) and (2), there is an open subset U of X satisfying the condition

(3) AU is an isometry.

By (iv) and 1.4 (ii), Dist,(U) = M, whence, by (iii)) and (3), there is
a geAutM such that

4) glU = h|U.
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Let

X, = {xeX; g(x) = h(x)}.
Evidently, U = X, < X, whence
%) IntX, #9.

It remains to prove that X, = X. Suppose to the contrary that X, # X. Since
X is connected, it follows by (5) that

FryInt X, # 9.

Let be FryInt X,. Then beFry,X,. By (2), there exist convex neighbourhoods
U, and Vg, such that h(U,) c V). Clearly,

(6) UynIntX, # 9"
and

7 Un(X—X,) #9.
By (iv) and (6), there is C =« U, n X, such that
(8) Disty,(C) = M.

By (1) it follows that h|U, is an isometry. Since C = X, we have h|C = g|C.
Therefore

9) VxeU, VaeC g(x, a) = g(h(x), g(a)).
On the other hand,

VxeU, VaeC g(x, a) = ¢(g9(x), g(a)),
whence, by (9), we obtain
(10) VxeU, g(C) < LM(""").

g(x)
Evidently, (8) implies
Disty,(9(C)) = M,

whence, by (10), HU, = g|U,, i.e., U, < X,,, contrary to (7).

By 2.1 and 1.7 we obtain the following two analogues of the Borsuk
theorem (cf. 0.3):

2.2. COROLLARY. Every open connected subset of S" is rigid in (S", 0*) as
well as in (S", g) (cf. 1.5(b)). i

Proof. For (S", o*) this is a consequence of 2.1 and 1.7. Since neither the
class of intrinsic isometries nor the class of isometries differs for (§", 0*) and
(S", ), the second part of the statement follows from the first one.

2.3. COROLLARY. Let T? be a 2-dimensional torus of revolution in R3 and let
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@* be induced by the Euclidean metric g. Then every open and connected subset of
T? is rigid in (T?, o*).

Proof. It suffices to check conditions (i)«iv) of 2.1. Evidently, (T2, o*)
satisfies (i) and (ii); by 1.7 it satisfies (iv). To show that it satisfies (iii), let us
consider two isometric balls B; = Br:(a;, ¢€), i = 1, 2, with arbitrary centres a,,
a, and sufficiently small radius ¢ > 0 (smaller than one half of the radius of
meridians). Since g* is the intrinsic metric, there is an intrinsic isometry f:
B, —» B,. The map f preserves Gauss curvature K. Since K is constant along
each latitude and since two latitudes 4,, 4, have the same K if and only if
either A, = A, or A; and A, are symmetric with respect to the equatorial
plane P, for each latitude A either f(B,nA)=B,nAorf(B,nA)=B,n A4,
where A’ is symmetric to A. Moreover, f preserves the angles between arcs on
T? and preserves the family of geodesics. Thus, it preserves the family of
meridians, so for each meridian C, there is a meridian C, such that

fB,nC)=B,nC,.
Consequently, f can be extended to either a rotation of R? or the composition
of a rotation and the reflection at P. Thus (iii) is satisfied.

The following example (due to the referee of the first version of this paper)
shows that Theorem 2.1 cannot be generalized to infinite dimensional
manifolds.

24. ExamPLE. Let M be the Hilbert space, M = R“ with the standard
metric g: if
X =%y, Xp5-- )y Y=1 V2r--)s
then

(= y)*

i=1

The map f: M— f (M) c M defined by the formula

f(xy, X5, X5,..2) ={

is an intrinsic isometry which is not an isometry.

It is worthy of notice that Theorem 2.1 remains valid for every metric
space M which satisfies (i)«(iv) and has the domain invariance property.

™Ms

e(x, y)=

(x4, 0, x5, X3,...) if x; <0,
©, x,, x5, x3,...) ifx, =20

3. Final remarks. Various kinds of rigidity can be found in the literature
(for references see, e.g., [5]). Most of them are particular cases of one of the
following two notions.

3.1. DeFINITION. Let & be a family of intrinsic isometries of subsets of
a metric space M = (M, g). A set X <« M is rigid (weakly rigid) in M with
respect to # if and only if, for every f: X>Yc M,

fe# =fis an isometry (X is isometric to Y).
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Clearly, if # is the family of all intrinsic isometries, then the rigidity with
respect to & coincides with the rigidity in the sense of Definition 0.2; similarly,
the weak rigidity with respect to & is then referred to as weak rigidity.

Both the rigidity and weak rigidity, especially for subsets of Euclidean
spaces, have been studied by Herburt in her doctoral dissertation [6].

The following statement answers the question under what assumption on
a metric space (X, g) the weak rigidity of X in arbitrary overspace M is
equivalent to rigidity of X in M.

3.2. PROPOSITION. Let & be a family of intrinsic isometries, which is closed
under composition and contains all isometries. Then for every metric space (X, o)
the following two conditions are equivalent:

(@) X is rigid in itself with respect to ¥,

(B) for every overspace M of X, if X is weakly rigid in M with respect to %,
then X is rigid in M with respect to &.

Proof. (a)=(B). Let X be weakly rigid in M with respect to &# and let
g: X —-g(X) < M be an intrinsic isometry, g € #. Then there exists an isometry
h: g(X)— X. Let f = hog. Clearly, f is an intrinsic isometry of X onto itself and
f€%. Thus, by (a), the map f is an isometry, and therefore g is an isometry.

(B)=>(a). Take M = X. Evidently, X is weakly rigid in itself; in particular,
it is weakly rigid in itself with respect to %, whence, by (B), X is rigid in itself
with respect to %
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