COLLOQUIUM MATHEMATICUM

VOL. XXV 1972 FASC. 1

ON CHROMATIC NUMBER OF PRODUCTS OF TWO GRAPHS

BY

M. BOROWIECKI (ZIELONA GORA)

Berge [2] and Miller [3] have proved a theorem on the chromatic
number of the conjunction of graphs, and Aberth [1] improved the the-
orem of Berge [2] on the chromatic number of the cartesian product
of two graphs.

In this paper we give new proofs of above theorems by applying
Vitaver’s theorem [5]. We shall also prove some new theorems on the
chromatic number for some other operations on two graphs.

A graph G is a pair (X, R), where X is a finite set of elements (ver-
tices) and R a relation for which the following two conditions hold:

(1) @, Rz, = x, Ry,
(2) TaRx.

If @ is an undirected graph, we may assign to each edge of G a di-

rection; the resulting directed graph C: = (X, E) will be called an orien-
tation of @G.

Vitaver [5] proved the following

ProPOSITION 1. Let é be a directed graph which contains no directed
path of the length > k, where k> 1. Then G is k-colourable.

Obviously, Zr' is acyelic.

Remarks I. Let an undirected graph G be Ek-colourable. Then it
is easy to see that G has an orientation @ in which every directed sequence
of edges has length < k—1.

II. Let %(G) be the chromatic number of graph G. If H is a subgraph
of G, then y(H) < x(G).

Let G, = (X, R'), G, = (Y, R") and 2;eX, y;¢Y.

Definition 1. The conjunction G = G, A G, is a graph (X XY, R)
such that (@, y,) R(x,, ¥,) if and only if #,R'®, and y, R y,.

THEOREM 1. (G, A G,) < min{y(G,), x(G:)}.
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Proof. Let x(G,) = p, x(G2) = ¢, and p <gq.
As follows from remark I, graph G, contalns no du'ected path of
length > p. Let there be given a relatlon R in G (G A G ;) by the con-

dition: (x, yI)R(mz, ¥y.) if and only if wlR x, in G1 Then G, A G_; is acyclic
and contains no path of length > p. By proposition 1, we have y (G A G,)
< min{y(G,), x(G-)}-

Definition 2. The cartesian product @ = G, X @, is a graph (X X Y,R)
such that (z,, y,)R(2., y,) if and only if #, = x, and y, Ry, or ¥, = v,
and 2, R w,. '

THEOREM 2. x(Gl X @;) = max{y(G), x(Gz)}

Proof. Let G be acyclic (¢ =1,2). In G1 there exists the maximal
set of vertices V, = {#1,..., 2™} such that if 2’R'z (in @,) then FR
for all #, and, similarily, in 52 there exists the maximal set of vertices

= {y%, ..., 9"} such that if y'R"y (m G,) then y’R y for all y.

Let V, be the set of vertices of G1 such that zeV, if and only if
max (2, ) =r < oo, and let T(x) = r if and only if z¢V,. Similarily,

yeU, if and only if maxe(y’,y) = s < oo and T(y) = s if and only if
i

yeU,. Obviously, if (@, =p and x(G;) = ¢, then T () <p—1 and
Ty <q-

Let t = max{p, q} and let T ((m, y)) be a function into J;, the group
of integers (mod ?), such that
(*) T((,9) =T@+T(y)-

In G, xX@, there do not exist two vertices (#,,y,) and (v, ¥;) such
that (z,, 1) B(2., ¥,) and T((wli Y ) = T((wm Y )

Indeed, for, if (®q, y,)R(w,,y.) and T((mn ?/1)) = T((-’”z’ Ys) )7 then,
by definition 2,

(@) T'(w,) = T(2,) and T(y,) # T(y.)
or

(b) T'(y,) = T(y,) and T(2,) # T(,),
and from (a), (b) and (*) it would follow that T((wy, y,)) # T (%2, ¥2)) —
a contradiction.

Hence and from (*) it follows that

T((@,y) < max{p—1, ¢—1}.
Thus
x(G; X@;) < max {y(G,), x(G.)}.

Since in @, X @, there exist subgraphs H, and H, such that H, ~ a,
and H, ~@,, the proof is complete by remark II.
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Definition 3. The disjunction @ = G,v @, is a graph (X XY, R)
such that (., y,) R(x,,y,) if and only if 2, R z, or y,R"y,.
THEOREM 3. max{y(G,), x(G:)} < x(G1V G) < x(Gy) 2(G2).

Proof. Clearly, for each graph @G; there exists an epimorphism f;
(¢ =1, 2) such that (see [3])

fir Gy, > K, and f,: G~ K,
where p = x(@,) and ¢ = x(G,). If we define

f:GvG, > K,vK,
by
f(@y,91) = (fl(wl)ifZ(yl))’

then f is also an epimorphism. Since K,v K, ~ K, , we obtain x(G,Vv @,)
< x(G4) x(@,). Obviously, G,V G, contains subgraphs H, and H, such that
H;,~@; (¢t =1,2). Thus, by remark II, the theorem is proved.

Definition 4. Symmetric difference @ = G, @ G,is a graph (X X Y, R)
such that (z,, y,)R(®., y,) if and only if either #, Rz, or y, Ry, (but
not both).

Since @, @ G, is a subgraph of @, v G,, we have, by remark II and
definition 4,

THEOREM 4. max {y(G), 1(G.)} < (G, ® G,) < x(G4) x(Gy).

Definition 5. Joint negation G =@, | @, is a graph (X XY, R)
such that (x,, y,) B(®,, ¥,) if and only if 7|z, R &, and "y, R’ v,.

Let G be the complement of @. It is clear that @,|G, is a subgraph
of G, v @, and that G, | @, contains subgraphs H, and H, such that H; ~ G,
(z =1,2).

By remark II we then obtain

THEOREM 5. max{y(G,), 1(G2)} < 2(G11G:) < 2(Gy) x(F,).

Definition 6. Alternative negation @ = G,|G, is a graph (X X Y, R)
such that (z,, y,) R(®., y,) if and only if Tz, Rz, or T(y,R"y,.

Let |X| = p, and |Y| = p,.

LemMMA 1. If K, (a complete graph) is a subgraph of GQ,, then Kop,
i8 a subgraph of G,|Q,.

Proof. Let V(K,) = {yy, .5 Yn}-

Obviously, in G, we have

(a) 1y, R’'y; foré,j=1,...,n.
From (a), by definition 6, we infer that (v, y;)R(x,, y;) for k,r =1,
...;p, and 2,j =1,...,n. Hence the lemma is proved.

Let Iy be the isolated set of G; (i =1, 2).
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LemmMa 2. If Iy = {®,..., %}, then K, is a subgraph of @,|G,.

Proof. By definition 6, (;,y,)R(#;,y,) for i,j =1,...,8 and
kyr =1,...,p,. Hence K, is a subgraph of G,|G,.

LemMA 3. If K, is a subgraph of G, and Iy = {=, ..., v}, then K,
where d = n(p,—8)+p:8, 18 a subgraph of G|Q,.

Proof. It follows from lemma 1 that K;, where d, = n(p,—3),
is a subgraph of G,|@., and from lemma 2 that K, , where d, = sp,,
is a subgraph of G,|G,.

Now it is easy to see that V(K )NV (Ky) =9, and that if vV (Kg)
and yeV(K,y), then #Ry. Thus the lemma is proved.

By {a} we mean the least integer p which p > a.

Nordhaus and Gaddum [4] proved

PROPOSITION 2. {2Vn} < x(G)+ x(G) < n+1, where n = |V (G)|.

THEOREM 6. Let K, be a maximal complete subgraph of G, and K,
be a maximal complete subgraph of G,. Then

max {dy, do} < 2(G|G2) < P1P:+1— (G, A Gy),
where

dy = n(ps— Ig )+ D:llg ], ds =m@r—1g,)) +Pillg,.
Proof. It follows from lemma 3 that each K,, (¢ =1, 2) is a subgraph
of G,|G,;. Hence max{d,, d,} < y(G|G:). ’
Since G,|G, ~ G, A G,, we have, by proposition 2,
(G |Ge) < PP +1—2(GLAGy).
Thus the theorem is proved.
PrROBLEM. Prove or disprove (P 783):

1(G41Ge) = ma’x{dl*7 d;}’

where
a = Z(éz)(fh_llall)"l'?z [IGII7 dy = l(é1)(.p2—1102|)+191l102|-
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