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Abstract. Therc are investigated transformations of self-adjoint linear differential system
(%) u=AXu+B(x)r, v'=-CXu—A"(x),

where A(x), B(x), C(x) are nx n matrices of real-valued functions. The main result (Theorem 1)
presents a new method of investigation of system (x) by means of the so-called trigonometric
matrices. Using this method, oscillation propertics of (*) and related systems are investigated.

1. Introduction. Consider a self-adjoint linear diflerential system
(I.1) "= AX)u+Bx)r, v =-CxXu—AT(x)v,

where A, B, C are nxn matrices of real-valued continuous functions, the
matrices B, C are symmetric (ie. B" = B, CT = () and u, v are n-dimensional
vector-solutions of (1.1). Simultaneously with (1.1), we shall consider the matrix
system

(1.2) U =AXU+B(X)V, V =—-Cx)U—-AT(x)V,

where U, V are n xn matrices.

The aim of the paper is to study transformations and oscillations of (1.1).
The main result of the paper (Theorem 1) gives a new method of investigation
of (1.1) and (1.2) by means of the so-called trigonometric matrices. Using this
method, the relationships between oscillation properties of (1.1) and the
reciprocal system

W=—-ATX)u+Cx)v, v =—Bxu—AT(x)v

are investigated (Section 4), and some new oscillation criteria for (1.1) and
related systems are derived (Section S5). These criteria generalize the known
criteria for scalar equations.

Matrix notation is used. E and 0 denote the identity and the zero matrix of
any dimension. If 4 is a symmetric matrix, A > 0 (> 0) means that the matrix
A is positive (nonnegative) definite. C™(I) denotes the space of real-valued
functions having continuous m-th derivative on an interval I. C° means
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continuity. If 4(x) is a matrix of real-valued functions, A4 (x)e C™(I) means that
each entry of A(x) is of the class C"(I). A particular condition is said to hold
for large x if there exists a real number ¢ such that the condition holds on
[¢, ).

2. Preliminary results. Let (U, V|), (U,, V,) be solutions of (1.2) and let
U,
W, = Y, i=1 2
Then

2.1) W = ()W,

where

Write

S 0 E)
T o\-E 0)
then g/ +./" ¢ =0.

It implies (W," # W,)’ = 0. and hence W) y W, = K, where K is a constant
nX n matrix.

A solution (U, V) of (1.2) is said to be self-conjugate if UT(x)V(x)
—VT(x}U(x) = 0. Two solutions (U,, V), (U,, V,) of (1.2) are said to be
lincarly independent whenever every solution (U, V) of (1.2) can be expressed
in the form (U, V)=(U,M+U,N, V, M+V,N), where M, N are constant
n x n matrices. From the above-given considerations it follows that (U, V,).
(U,. V,) are linearly independent if and only if the 2n x 2n matrix W= (W,, W,)
has rank 2n. If (U, V), i =1, 2, are self-conjugate solutions, then W' y W
= —diag!{ — W/ g W, Wi 4 W,} #, ie. these solutions are linearly indepen-
dent if and only if W' y W, = UTV,—UT V, is nonsingular.

Now, let R(x}) be a nonsingular 21 x 2x matrix consisting of n x n matrices

K. Ls M. !\i!
R(x) = (K“"") M(x))
L{x) N(x)

for which RT(x) # R(x) = #. i.e. R(x) is #-unitary. Then the transformation
(2.2) W=R(x)Z
transiorms (2.1) into the system

(2.3) Z = AWN)Z,
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where 4 = R '(—R' +.</R), ie.

—~NT(K'— AK - BL)+ M"(L+ CK + AT L)

04 P =\ IN(K' = AK = BL) = K"(L+CK + AT L)
~NT(M’— AM — BN)+ MT(N'+ CM + A" N)\
"M+ AM + BN)—K"(N'+ CM + A" N)

moreover,

(2.5) AU F + .9 4(x) =0,

sce e.g. [3]. 1e. system (2.3) is of the same form as system (2.1).

Two points a, b 1n an interval I are said to be (mutually) conjugate with
respect to (1.1) or (1.2) if there exists a solution (u, v) of (1.1) such that
u(a) = 0 = u(b) and u(x) is not identically zero between a and b. System (1.1) is
said to be disconjugate on I whenever no two distinct points of I are conjugate
with respect to this system and it is said to be nonoscillatory for large x if there
exists a real number ¢ such that this system is disconjugate on [¢, ). [n the
ogposite case, (1.1) is said to be oscillatory for large x. Finally. system (1.1) is
said to be identicully normal on I whenever the only solution (u, ©) of (1.1) for
which u{x) =0 on a nondegenerate subinterval of I is the trivial solution
(1. ©) = (0, 0).

3. Main result. Consider a matrix differential system
(3.1) $'=0Q(x)C, C =-0Q(x)S,

where Q(x) 1s 2 symmetric nx n matrix. This system was studied by several
authors [4], [7]. [8], [15] and it was shown that its solutions have many of the

AN

properties of the sine and cosine functions (if n = 1, (S(x), C(x)) = (sin;fQ(s)ds.

cosz(s)ds) 1s a solution of (3.1)). For this rzazon, solutions of (3.1) are said to
be trigonometric matrices. Barrett [4] and Reid [15] showed that using solution
of (3.1), the well-known Prifer transformation for scalar equations can be
extended to matrix systems (1.2) and many recently derived osciliation and
disconjugacy criteria for (1.1) and (1.2) arc based on this generalized Priifer
transformation. The foliowing theorem gives another method of investigation
of system (I.1) by means of trigonometric mairices, particularly, it shows that
there exists a 2nx 2n matrix R(x) suci that transformation (2.2) preserves
oscillation behaviour of translormed systems and transforms system (1.2)
nto (3.1).

THEOREM 1. There exist nxn matiices H(x), K(x)e C'(I). H(x) being
nonsingulai. such that transformation (2.2), where
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H(x) 0
32 R(x) = . ,
62 0= (e o)
transforms system (1.2) into system (3.1).
Proof. Let (U, V), i = 1, 2, be self-conjugate solutions of (1.2) for which
(3.3) UT() V() — VI (x)U,(0) = E,

V.

Wt gy W= ¢, WFWT = ¢, and hence
(3.4) WWT g WWT = 4.

U.
i.e. for W.=< '), i=1,2, and W=(W,, W,) we have W/ #W, =E,

By Cholesky factorization, sec e.g. [9], Chapter 5, there exists a nonsingular
2nx 2n matrix Ry(x) of the form

D(x) O
R —1
ox) (F(x) G(x))’
D, F, G being nxn matrices, such that R,R{ = WWT. Let

- a B
Wwt =
u (ﬁ’ ‘/)’

where o, f, 7 are n x n matrices; then a« = DDT, f = DF", y = FFT 4+ GG" and
by virtue of (3.4), fa = af”, y8 ="y, p*~ay = —E, ya—pT BT = E. These
identities imply
DTF—FTD =D (DD FDT—DFTDDT)DT~! = D~ (a7 — fa) DT~ 1 = 0
and
DD GG = DD"(y—FF™) = a(y— FFT) = f? + E—aFFT
= E+DFT"DFT—DFTFFT = E;

hence DTG =(G"D)"', ie. the matrix DTG is orthogonal. Set R, =R,
x diag{E, G"' D" "'}, then R, R] = WWT and

DTF-F'D E
—E 0)_/'

R’{. FR, = (
Now, let T be an orthogonal n x n matrix; then the matrix R = R,-diag{T, T}
also satisfies the identity RT # R = ¢, i.e. transformation (2.2) transforms (1.2)
into system (2.3), where the matrix #(x) satisfies (2.5). We shall show that he
matrix T can be chosen in such a way that the matrix #(x) is of the form

(0 0w
109=(Lo o)
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Indeed, let T be the solution of the differential system
T =D '(AD+BB™D""'—D)T, T(a=E, acl

As
o =(U,UT+U,Uly
= AU, UT+ U, UD+(U, UT+ U, UDAT+B(V, UT+ V, UY)
+(U, Vf+U,V))B
= Aa+aAT+BBT + BB,
we have

D' (AD+BB"DT'—-DY+[D"Y(AD+BB" DT ' -D)]"
=D YADD" +BBT—D'D")DT" '+ D~ (DDT AT+ BB—DDT)D" !
=D " Y(Aa+aAT+BB"+BB—o)DT"! = 0;
hence T(x) is orthogonal. Further, let H = DT, K = FT. Then
H —AH—-BK = (DTY—ADT-BFT
=D T+DT —ADT-BB™D™'T
=(D'+AD+BB"DT ' —D'—AD—-BBTDT " )T=0
and
HT(K'+CH+ A" K)+ K"(H' — AH — BK)
= HT[(BTHT 'Y +CH+ATBTHT 1]
= HT(BTHT ' —BTHT 'HTHT '+ CH+ATBTHT Y
=HT(=Cou—ATBT+ BT AT+ yB)H" ' —HTBTHT Y(KTB+ HT AT)HT !
+HTCH+HTATBTHT !
= —HTCH—H"yBHT '—HTB"H" 'H 'BBH" '+ HT"CH
—(HTy—HTBTHT 'H ' B)BHT"!
=H Yoay—afTa ' p)BHT !
=H Yoay—p*)BH" ' = HBH" !,

where the identity f' = U,V +U, V) = —aC+By+Af—BA has been
used. Consequently, if we write Q = H™! BHT ™!, according to (2.4) we see that
transformation (2.2) with the matrix R(x) given by (3.2) transforms (1.2) into
(3.1).

Remark 1. Let (S(x), C(x)) be a self-conjugate solution of (3.1) for which
(3.5) ST(x)S(x)+CT(x)C(x) = E.
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Then (S, C), (C, —8) iorm the pair of linearly independent solutions of (3.1)
and by Theorem | there exist rnxn matrices H, K such that

(3.6) (U,,V)=(HS,KS+H" '(C). (U,.V,)=(HC,KC—H""'S)

form a pair of self-conjugate linearly independent solutions of (1.2). Conversely,
if (U,. V), i=1,2,1s a pair of self-conjugate solutions of (1.2) satisfying (3.3)
then there exist a sclf-conjugate solution (S, C) of (3.1) satisfying (3.5) and
matrices H. K, H being nonsingular, such that solutions (U, V) can be
cxpressed by (3.6). As the transformation converting system (1.2) into system
(3.1) preserves oscillation behaviour of differential systems, the results concern-
ing oscillation properties of trigonometric matrices can be used for inves-
tigation of systems (1.1) and (1.2). Some oscillation criteria for (I.1) and related
systems derived by this method are given in Section 5.

4. Reciprocal systems. In this section, we shall suppose that
B(x) =2 0. C(x) 2 0 on an interval I. Simultaneously with system (1.2) consider
the reciprocal system

4.1) Y = -A"(x)Y+C(x)Z, Z'= —B(x)Y+A(x)Z.

Note that if (U, V) is a solution of (1.2} then (Y, Z) = (V, —U) is a solution of
(4.1).

There exists considerable duality between disconjugacy criteria for (1.2)
and its reciprocal system (4.1). This duality has been studied by Ahlbrandt [1],
[2] and by Jakubovi¢ [10], in particular, it is known that under certain
assumptions the system (1.2) and the reciprocal system (4.1) have the same
oscillation behaviour. In this section we shall use Theorem 1 and some
properties of trigonometric matrices in order to give an alternative proof of this
result which, in the form given here, is due to Jakubovi¢ [10].

First, recall the following properties of trigonometric matrices.

LEmMMA 1 [7]). Let Q;(x), i =1, 2, be symmetric continuous nxn matrices
and let (S;, C;) be self-conjugaie solutions of differential systems
(42), Si=00C. €= —00S,,

for which ST{x)S,(x)+ CT(x)C,(x) = E. If the matrix S, (x)C%(x)—C,(x)S7(x) is
nonsingular on I then for every a€l there exist a real constant c€[0, n/n) and an
integer k such that

(4.3) c+kn < 'l—jtr(Ql(s) —Q,(s))ds < c+(k+)n

Jor every xel.

Proof. See [7], Theorem 4.
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LemMma 2 [15]. Let Q(x) = 0 on I and suppose that neither the matrix S(x)
nor the matrix C(x) can be identically singular on any nondegenerate subinterval
of I for every self-conjugate solution (S, C) of (3.1). Then (3.1) is oscillatory for

large x if and only if [ trQ(x)dx = .
Proof. See Reid [14], p. 352.

THEOREM 2. Let B(x) = 0. C(x) > 0 on I = [a, oc) and supposc that neither
the matrix U(x) nor the matrix V(x) can be identically singular on any
nondegenerate subinterval of I for every self-conjugate solution (U, V) of (1.2).
Then system (1.2) is oscillatory for large x if and only if the reciprocal system (4.1)
is oscillatory for large x.

Proof. Let (U, V), i =1, 2, be self-conjugate solutions of (1.2) for which

(3.3) holds. Set
u, u ~ V. V.
RO — 1 2 , R(, — 1 2 )
Vl VZ - Ul - UZ

By the same method as in the proof of Theorem 1 we can show that these
matrices generate transformations

(2)=x(&) (2)-7()

H, 0 ~ (H, 0
R= ! = 2 T )ﬂ
(Kn Hf"’)’ : (Kz Hy ')

and these transformations transform (1.2) and (4.1) into systems (4.2),, and
(4.2),, respectively. According to Remark [ the pair of solutions (U,, V}) can be
expressed in the form

(Ul, V1) = (H]SI, KIS]+H{WIC1)’
U,, V,)=(H,C,,K,C,—H{"'S))

where .

and
(I/ls _b’1) =(H2S2a K252+H;~71 CZ)s
Vo, —U)=(H,C,, K, Cz_Hg_l S,)-

Comparing equalities for ¥, and V,, we have
(4.4) H,S,=K,S,+H{"'C,. H,C,=K,C,—H{"'S,.

By multiplication of these equations from the right by C7 and -—S7,
respectively, and by addition of these equations, we obtain S,C]—C,ST
= H;' H| '.ie. the matrix S, C§ — C, ST is nonsingular. Hence, by Lemma 1.
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there exist a real constant ce [0, n/n) and an integer k such that (4.3) holds.

Consequently, the integrals [ trQ,(x)dx and [trQ,(x)dx simultaneously
converge or diverge and hence systems (4.2), , have the same oscillation
behaviour for large x. As the transformation converting (1.2) and (4.1) into
(4.2), and (4.2),, respectively, preserves oscillation properties of differential
systems, system (1.2) and the reciprocal system (4.1) are simultaneously
oscillatory or nonoscillatory for large x.

5. Applications. The aim of this section is to give some oscillation criteria
for (1.1) and related systems which are based on the transformation described
in Theorem 1. For general treatment of oscillation of (1.1) and related systems,
the reader is referred to the lectures notes of Coppel (5] and Kreith [11], the
books of Reid [14], [16], and the references contained therein.

In the sequel we shall need the following modification of Lemma 2.

LEMMA 3. Let Q(x) = 0 on I =[a, c0) and suppose that system (3.1) is

identically normal for large x. If [ trQ(x)dx = co then (3.1) is oscillatory for
large x.

Proof. See Reid [14], p. 352.

LEMMA 4. Let B > 0 be a symmetric n x n matrix and let R be a nonsingular
nx n matrix for which |R™!| < k, where || | denotes the spectral matrix norm
and k is a positive real constant. Then tr RBRT > k™ 2tr B.

Proof. First observe that if A, D are square matrices, then
I4DIE < 141> IDI%,

where |C||§ = tr(C” C). Indeed, denote by c; and d; the j-th column of the
matrix C = AD and D, respectively. We have

IAD| = tr(CTC Z le;1? = Z [ZEHEES Z 14112 ;1% = |41 | DII3-
Now, passing to the proof of Lemma 4, denote by K the symmetric matrix
such that B = K2 Then using the above proved inequality, we have
trB=trK? = |K|f = [|[R™' RK|
< IRTYIZIRK|E = [R™!? |KR|E = |R™*|* tr(RT BR),

which completes the proof.

THEOREM 3. Let B(x) > 0 on I = [a, ), | trB(x)dx = oo and suppose that

(1.2) is identically normal for large x. If for every solution (U(x), V (x)) of (1.2) the
Sunction ||U(x)|| is bounded for large x then system (1.2) is oscillatory for large x.
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Proof. Let (U,, V), i = 1, 2, be self-conjugate solutions of (1.2) for which
(3.3) holds. As these solutions are linearly independent, every solution (U, V) of
(1.2) can be expressed in the form (U, V) =(U, M+ U, N, V; M+ V, N), where
M, N are constant n xn matrices. By Theorem 1 there exist nxn matrices

H, KeC'(l), H being nonsingular, such that transformation (2.2) with the
matrix R given by (3.2) transforms (1.2) into (3.1), ie. U, = HS, U, = HC,
where (S, C) is a self-conjugate solution of (3.1) for which (3.5) holds. This
identity implies that ||S(x})|| < 1, [[C(x)}| < I, hence [[U(x)|| is bounded if and
only if | H(x)|| is bounded, say {| H(x)|| < k, k being a positive real constant. As
the matrix Q in (3.1) is given by the relation Q = H™! BHT ! it follows from
Lemma 4 that

Ttr Q(x)dx = oftr(H’ Y(x)B(x)HT ™! (x))dx = k‘z-Ttr B(x)dx = ®©

Now, by Lemma 3 system (3.1) is oscillatory for large x and hence system (1.2)
is also oscillatory for large x.

Remark 2. If n =1 and B(x) = 1, Theorem 3 states the well-known fact
that a scalar differential equation y” + C(x)y = 0 is oscillatory if all its solutions
are bounded, see e.g. [17], p. 64.

Remark 3. Similarly we can prove the following more general version of
Theorem 3:

Let B(x) > 0 and suppose that (1.2) is identically normal for large x. If there
exists a nonsingular nxn matrix H(x)e C'(I) such that

af tr(H ™' (x) B(x) HT "} (x))dx = o

and for every solution (U, V) of (1.2) the matrix |H ™' (x) U(x)| is bounded for
large x, then (1.2) is oscillatory for large x.

Indeed, the transformation

U\ (HO Y

v) \0 HT ')\z
transforms (1.2) into the system of the same form whose solution is
(H™' U, HT V), with the matrix H~! BHT ~! instead of B. The remaining part is

the same as in the proof of Theorem 3.
Now, consider a scalar linear differential equation of the even order

(5.1) Z (pj(x)y) " =0,

i=o
where p;(x), j=0,...,n, are real-valued functions and p,(x)> 0. Setting
u _y(J l)’ .’_ 1 .- Ny U,.=P,..Vm, vn—j= _vn‘j+l+(—])jpn—jy(n-j)s
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j=1,...,n—1, we can rewrite equation (5.1) in the form (1.1), where
u=(uy,...,u), v=(.....v)" and

B = diag{0, ..., 0, p, '},

(5.2) C=diag{(-1)""/"'p;, Jj=0.....,n—1,

e

4 - 0 forj#i+l,1<j<n, 1<i<n—|
YoMl forj=i+1l.i=1,....,n—1.

Recall that real points a, b are said to be conjugate with respect to
equation (5.1) if there exists a nontrivial solution y of this equation such that
yila)y=0=yYb), j=0,...,n—1. Thus these points are conjugate with
respect to equation (5.1) if and only if they are conjugate with respect to system
(1.1) with the above given matrices 4, B, C, i.e. the definitions of oscillation,
disconjugacy, etc. for system (1.1) comply with definitions of these concepts for
equation (5.1).

THEOREM 4. Let ke{l, ..., n} and suppose

(i) | pr () xP* T dx = o,

(ii) for every solution y of (5.1) the functions y, ..., y" % are bounded on
I=1[a, c) and y" ** " =0(x7J) for x—> 0, 1 <j<k—1.

Then equation (5.1) is oscillatory for large x.

Proof. First, let k = 1. Then for every solution of (5.1) the functions
v, ..., " " are bounded and hence for every solution (u, v) of (1.1) with the
matrices A, B, C given by (5.2) the function lu(x)| 1s also bounded. The
statement then follows from Theorem 3, since system (1.1) with A4, B, C given by
(5.2) is identically normal, see e.g. [2]. If k > 1, let H(x) be the solution of the
system H' = AH, H(0) = E, where A is the nxn matrix with entries

_ I forj=i+!, n—k+1<i<n,
Y10 elsewhere, 1 <i, j<n.

Then H = diag{E, . H}, where E,_, is the (n— k)-dimensional identity matrix
and H;;=0 for i>j, H;=((j—)!) "' x'7" for j=i, 1 <i, j<k Denote
G = H™ !, then G = diag{E,_,, G}, where G;; = (— 1Y "Hy;, 1 <i, j < k. The
transformation u = Hy, v = H' ™! z transforms system (1.1) into the system

(5.3) vV =A,(x)y+B(x)z, z=—-C/(x)y—A{(x)z,
k-1

where B, = GBG". If B(x) is given by (5.2), tr B, = Y p, '(j *-x*, hence
ji-o0

[trB (x)dx = oc. Let u=(uy, ..., u,)". Then
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uj=y;, Jj=1,....n—k,

k
Yok +j= Z (_ ])'_J[(I_J)']_ : ‘Xj“ jun-k+i’ .] =1 yresy k!
i=j
1.e. the functions y, ..., y, arc bounded and the same argument as in the case
k = 1 implies that (5.3) i1s oscillatory. As the matrix H(x) is nonsingular system
(1.1) corresponding to cquation (5.1) i1s also osctllatory.

Remark 4. Oscillation criteria of a similar kind for two term equation
(5.4) (Pa(x)y™)™ + po(x)y = 0

have been recently derived by Miiller-Pfeiffer [12], [13], but using variation
principle. Particularly, the theorem of Miiller-Pleiffer states that (5.4) 1s
oscillatory if assumption (i) of Theorem 4 is satisfied and there exists
a real-valued polynomial @, ,(x) =ay+ ... +d,-, X"~ " such that

[ (= 1) po(x)Q2_ i (x)dx = — .

Remark 5. Consider a self-adjoint linear differential system of the even
order '

n

(5.5) Y (Pux)y)* =0,

k=0

where P (x), k =0, ..., n, are symmetric n x n matrices and P,(x) > 0. Oscil-
lation and disconjugacy of this system is defined similarly as in the case of
scalar equation (5.1). By the same method as in Theorem 4 we can prove the
following statement:

Let ke ll,.... n} and suppose that (i) f tr(P, ' (x))dx = 0, (i) for every
solution y of (5.5) the functions |[[y(x)], ..., V" ®(x)j are bounded on
I =[a, w)and [y **2x)f = O(x™ ) for x>, 1 <j< k—1. Then system

(5.5) is oscillatory for large x.
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