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On non-linear Volterra integral-functional equations
in several variables
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Abstract. Let B be an arbitrary Banach space and G < R, be a compact set, where
R. = [0, + o). Assume that the functions FeC(G xB™x B, B), f,eC(G*xB,B),i=1,...,m,
BeC(G,G), 4;eC(G,G),i=1,...,m, are given and f(x) < x,(x) < x for xeG,i=1,...,m.
(C(X,Y) denotes the class of continuous functions defined on X with range in Y)

In the paper the non-linear Volterra integral-functional equation

(V) u(x)= F(x, [ (x,s, u(a,(s)))(ds),,l,...
H](x)

oo J falx. s ulan(s))@s),, . u(Bx). xeG,

H(x)

with H;(x) = E(x) = {¢: £e€G, £ < x} for xeG, j=1,..., m, is considered.

In the first part of the paper equation (V) is discussed by means of a comparative
method. Il F and f; satisfy the Lipschitz condition with respect to all variables except x
or x,s, respectively, then, under certain additional assumptions concerning the functions
B, ; and the Lipschitz coefficients, it is proved that there exists exactly one (in a certain
class of functions) continuous solution of (V). This solution is the limit of the sequence
of successive approximations. It is not assumed that the Lipschitz coefficient k of the function
F with respect to the last variable satisfies the condition k < 1.

The second part of the paper deals with equation (V) considered in a finite dimensional
Banach space. A theorem on the existence of at least one solution of equation (V) is
proved. Also in this case conditions milder than k < | are assumed.

Introduction. Let B be an arbitrary Banach space with norm | -|.
Denote by C(X, Y) the set of all continuous functions defined in X taking
values in Y, X,Y being arbitrary metric spaces. For x = (x,,...,X,),
y = (y1,.---» Yo)€ER" (R" — real Euclidean space of dimension n) we define
x<yas x;<y fori=1,...,n. We denote by |-| the Euclidean norm
in R". Let G < R% be a compact set, where R, = [0, + o). Let

E(x) = {&: EeG, & < x}.

Assume that the functions FeC(G xB™ x B, B), f,cC(G*xB,B), i=1,...,m,
peC(G,G), ,eC(G,G), i =1 =—4re given and f(x) < x, o(x) < x
for xeG,i=1,..., m. "I L

* \
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We shall consider the non-linear Volterra integral-functional equation

(1) ulx) = F(x, H_[( fi(x, s, u(xy (5)) ds),, oo
1{x) :
HI( )f...(x, s, (ot () (ds),,,, u(B(x))), xeG,

where H;(x) < E(x) for xeG, j=1,...,m

We assume further that H;(x) is contained in a p;-dimensional
hyperplane (1 < p; < n), parallel to the coordinate axes, and it is Lebesgue
measurable, considered as a p;-dimensional set. Let L, (H (x)) denotes the
p;-dimensional Lebesgue measure of H;(x). We assume that p; does not
depend on x.

If a p,-dimensional hyperplane containing the set H;(x) and being
parallel to the coordinate axes is defined by the equations

Xgg = Xyy» Xy = Xiys X, =%, r=n—pj
then "L)g(x,s)(ds)pj, where s = (sy,...,s,), denotes the p;-dimensional
Lebesgjue mtegral in the space Ox,,,lx,"2 e Xy s me{{l,...n}={t,,....t,}},
and 5, = Xiys Sty = Xigooves S, = X, . |

Let A" = {i: p; = n}, B = {1 < p; < n}. By changing notation, if
necessary, we may assume that 4’ = {1,...,k0}, B = {ko+1,...,m}.

We define the sets g, < {1,...,n}, j=1,...,m, in the following way:
if the axis Ox; is parallel to the p;- dlmenswnal hyperplane in which the
set H,(x) is contained, then i€s;. Put ; = {1,...,n}—g;

For each xeG and j=1,...,m we mtroduce the set G;(x) by

Gj(x) = {S: s = (SIQ""sn)9 sli = x""i

for t;eay,

0 <5, <oPx) for t€d5},
where (¢/, ... ,qo,z ¢;€C(G, R%), t;€6;, and H;(x) < G;(x) = E(x). The
pj-dimensional Lebesgue-measure of G;(x) satisfies L,,}(G (x)) = ]_l¢§”(x)

J
We adopt the following notations:

H_!' )f(x,s,z(a(s)))ds = (”j'(')fl.(x,s,z(atl (s)))(ds),,l,
j'( S, 5, 2(0 (5))) (d5),,, );

L(G() = (L, (G, (), ..., L;,_(Gm(x)));

if K=(K,...,K,)eC(G, R"‘),_.then

K(x) [ f(x,s z(a(s))ds = il K;(x) Hj( )fj(x,s,z(a,(s)))(ds)pj, x€G,
j= =

H(x)



Non-linear Volterra integral-functional equations 3

and

K(x) | z(a(s))ds = i Kj(x) | z(a;(s)(ds),;, xeG.

Hi(x) i=1 H j(x)
For KeC(G, R™) we define

K(x)L(G(x)) = Z K;(x)L, (G (x)), xeG.

Equation (1) will be written briefly
(2) u(x) = F(x, Hj fx, s, u(x(s))ds, u(,B(x))), xeG.
(x)

There are various problems which lead to Volterra integral-functional
equations of type (2). Perhaps the simplest problem in the theory of differential
equations which leads to such an equation with » = 1 is the initial-value
problem for the ordinary differential-functional equation of the neutral type

u'(t) = F(t, u(a, (1), ..., u(en @), v (B(®)), tel0,al, u(0) = u,.

Therefore equation (2) is a generalization of equations which have been
considered in paper [3] and also of some cases of equations considered
in [1], [21, [5], [7], [15].

The various initial value problems for the partial hyperbolic differential-
functional equation of the neutral type

Zey (%, 9) = F (%, y, 2(2 (x, y), 29 (x, ), 2o (i (x, ), 22 (x, ¥)),
2, (@ (x, ), & (x, ), 21, (B1 (x, 1), B2 (x, 1))

can be reformulated in terms of Volterra integral-functional equations. Let
us consider as an example the Darboux problem, where the domain is
a rectangle {(x,y): x€[0,d], ye[0, b]}, and where initial values u(x,0)
= o(x), x€[0,a], u(0,y) = 7(y), ye[0,b] are prescribed. The Volterra
integral-functional equation corresponding to that problem is

u(x,y) = F(x,y, (a‘°’(x W+ (@D (x,y)—c©) + [ wu(s, )dsde,

Ho(x,y)
o (@Px, )+ | uls,nd, v(@P(x, )+ [ uls,t)ds,
Hi(x,y) ) Hy(x,y)

u(By(x, 1), B2(x, ), (x,y)e[0,a]x[0,b],

where
Ho(x,y) = {(s,1): se[0,a® (x, y)1, te[0, «®(x, )1},
Hy(x,y) = {(s,0): s = ai"(x, y), te [0, " (x, y)1},
Hj(x,y) = {(s,0): se[0,a(x, y)], t = «P(x, y)}.
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Therefore our equation is a generalization of the equation which was
considered in paper [6] and of an adequate case of the equation disscused
in [4].

The Cauchy problem and the Goursat problem for hyperbolic differential-
functional equations leads to a Volterra integral-functional equation of type
(2) (see [13])).

Similar initial value problems for equations in more than two variables
and problems for equations of higher order can be reformulated in terms
of Volterra integral-functional‘equations.

As a particular case of equation (2) we can obtain the system of
Volterra integral equations which was considered by W. Walter in paper
[12] and monograph [13]. These papers contain the extensive bibliography
concerning Volterra integral equations.

In the case when u is a function of several variables equation (2) is
a generalization of equations which have been considered in [8]-[11].

In this paper we give theorems concerning the existence and uniqueness
of continuous solutions of (2) in a certain class of functions.

The paper is divided into two parts. In the first part we investigate
equation (2) by means of the comparative method. A general formulation
of this method can be found in paper [14]. If we assume that F and f;
satisfy the Lipschitz condition with respect to all variables except x or
x,s, respectively, then we prove, under certain additional assumptions con-
cerning the functions B, a; and the Lipschitz coefficients, that there exists
exactly one (in a certain class of functions) continuous solution of (2).
This solution is the limit of a sequence of successive approximations. This
result is obtained by means of the comparative method.

The essential fact in our considerations is that we do not assume
that the Lipschitz coefficient k of the function F with respect to the last
variable satisfies the condition k < 1 (see Lemmas 4-9). If k < 1, then
we ‘have a theorem on the existence and’ uniqueness of solutions of (2),
which can be obtained by means of the Banach fixed-point theorem.

The second part of the paper concerns equation (2) considered in
a finite dimensional Banach space. We prove here a theorem on the existence
of at least one solution of equation (2). In this case it is an important
fact that we also do not assume that the Lipschitz coefficient k of the
function F with respect to the last variable satisfies the condition k < 1
(see Lemma 14). This part of the paper is an extension of the result
contained in paper [3], where an equation of type (2) with the unknown
function of one variable was considered.

Remark 1. Let

G*(x) = {&: E<x}, G= UGG"‘(s).
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(We do not assume that G*(x) = G.) Suppose that the functions

FeC(GxB™xB,B), f,cC(G*xB,B), ,¢C(G,G),i=1,...,m, BeC(G, G),

9eC(G—G, B) are given and B(x) < x, o;(x) < x for xeG, i=1,...,m.
Let us consider the equation

u(x) = F(x, I filxs s, u(ey (5)@s)y,, s -
Hy(x)

(1) o § Sy 8, (0 () @5),,, u(B(0)),  x€G,

Hpm(x)
u(x) = ¢(x) for xeG-G,
where H;(x) G. (We do not assume that the sets H j(x) satisfy the condi
tion H;(x) = G.)
We want to point out that equation (1') is equivalent to some equation

of type (1). We shall prove this only for the case m = 1, ie., for the
equation

) u(x) = F(x, "{)f(x, s, u(a(s))) (ds),, u(B(X))). xeG,
u(x) =o(x) for xeG—-G.

We define for xe G
H(x) = {s: seH(x)nG and «(s)e G}, I-.I(x) = H(x)—H(x).

Then we have

H_(\' )f(x, s,u(@@))@ds), = [ fx,s,u(@6)ds),+ | f(x,s, o(x(s)ds),.

Ax)

@n

()
Let
4 = {xeG: B(x)eG}, A= {xeG: p(x)eG~G}.
Let # be a function satisfying the following conditions:
(@) feC(G, G),

(b) B(x) = B(x) for xed, f(x) < x for xeG.
Put

£ _{F(x,u,v) for xe 4,
O, u,0) = F(x, u, (o(ﬂ(x))) for xe 4.
Now equation (1”) is equivalent to the equation
ut) = Fx J S5, u@@) @, + 1 (x5 0@6)@), w(Br),
* A
xeG,
which is of type (1).
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PART I

1. Assumptions. Let xeG, heR", x+heG, ieB’. Suppose that the set
H;(x) is ¢ontained in a p;-dimensional hyperplane (1 < p; < n) parallel to
the n—p; coordinate axes. We denote this hyperplane by S;(x). Let the set
H;(x+h) be contained in a p;-dimensional hyperplane S;(x+h) parallel to
the hyperplane S;(x). There exists a vector t;(x,h)eR" such that the set
—t;(x, h)+H;(x+h) is contained in S;(x). ’

We introduce

AssumpTiON H, (see [12], p. 970; [13], p. 134). Suppose that:

I° for ieA’ we have :inol L,[H;(x)=H;(x+h)] = 0 uniformly with re-
spect to xeG (the sign — denotes the symmetric difference of two sets),

2 for ie B’ we have, uniformly with respect to xe G,
() lim ¢,(x, h) =0,

(b) }'igg L, [H:(x)=(—=t:(x, )+ H(x+h))] = 0.

Remark 2. If xeS;(x) for xeG and ieB’, we may assume that
t;(x, h) = h. Condition (a) of Assumption H, is satisfied in this case.
AssumpTION H,. Suppose that:

1° the functions k, ke C(G, R,), K = (K, ..., K,)e C(G, R"), BeC(G, G)
are given and f(x) < x for xeG,

2’ we have
3) i (x) = ii kO (x)E(BP(x)) < +0 for xeG,
where
KO(x) =1 for xeG, k*V(x)= k(x)k"(B(x)) for xeG,i=0,1,2,...,
BOx)=x for xeG, BU*V(x)= B(BV(x)) for xeG, i=0,1,2,...,
3 we have
4 M= ii KO (x) [K (B () L(G(B®(x))] < +o0  for xeG,

4 M,meC(G,R,), the function

M) = 3 kW[ T K (B W)L,, 68 T )]

sed §

is bounded for xe€G.
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We adopt the following notation:

) = 3 KOR(EO ),

a

(12)(x) = ¥ kP [KBPx) [ z(x(s)ds].

i=0 HED(x))
Remark 3. If
(@) conditions 1° H, —3° H, are satisfied,
(b) he C(G,R,), h(x) < h(x) for x€@G,
(c) z is a non-negative and upper-semicontinuous function,
then m and Vz are functions defined in G.

2. The main lemma.

_ Lemma 1. If Assumptions H,, H, are satisfied and heC(G,R,),
h(x) < h(x) for xe G, then:

1° There exist solutions z,Ze C(G, R,) of the equations

(5) z(x) = A(x)+(%)(x), x€G
and
(6) z(x) = A(x)+(¥)(x), xeG,

respectively. The solutions z and Z of (5) and (6), respectively, are unique
in the set M (G, R,) of non-negative. upper-semicontinuous functions.

2° The functions z and Z are solutions of the equations

(7) z(x) = K(x) | z(a(s)ds+k(x)z(B(x))+h(x), xeG
H(x)

and

(8) z(x) = K(x) | z(a(s))ds+k(x)z(ﬂ(x))+ii(x), xegG,
H(x)

respectively. Moreover, these solutions are unique in the class M(G, R, , %),
where

M(G,R,,%) = {z: ze M(G,R,) and inf [c: z(x) < cZ(x)] < +o}.
The function Z satisfies the condition
9) lim k?(x)Z(f"(x)) = 0  uniformly with respect to x€G.

3° The function z(x) =0 for xeG is the unique solution of the
inequality

(10) z(x) < K(x) | z(x(s)ds+k(x)z(B(x)), xeG,

H(x)

in the class M(G,R, . ?).
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& Ifk,h,h, K, B are non-decreasing in G and H,(x) = H,(%) for x < X,
x,xeG, j=1,2,...,m, then Z and Z are non-decreasing in G.

Proof. We shall show that equation (5) has exactly one solution in
the set M(G,R,). Let T be the operator defined by the right-hand side
of equation (5). We prove that T M(G,R,)—= M(G,R.). Let ze M(G,R,),

vix)= | z.(aj(s))(ds)pj. Then there exists a sequence {z,} such that
H (6 W(x))

2,6 C(G,R,) and

1y z,,x)<z(x), xeG,r=1,2,..,

and z(x) = lim z,(x), xeG.

Let U(')(x) I zr(aj(s))(ds)l’j, xeG, i=1,..,n, j=1,...,m,
H i3 D(x)

r=1,2,... The functions v{} are continuous in G (cf. [12], p. 972), and
Wit (x) < vu’(x) From (11) and by the Lebesgue theorem on mtegratlon
of non-increasing sequences we have u;;(x) = lim v (x), i=1,.

j=1,....,m, xeG. Since v is the limit of the non-increasing sequence of
continuous functions, we see that v;€ M(G,R,). It follows from Dini’s
theorem and from assumptions 2 of H,, 3 of H, that series (3) and (4)
are uniformly convergent in G. From this fact and by the conditions

KO (x)h(BP(x)) < KD (x)R(BV(x)), i=0,1,2,..., xeG,

KO [KBOx) [ z(al)ds]

H(B®)(x))

< [sup z()]k? () [K (B (x)- L(G(B(x)))], i=0,1,2,....,x€G,

xeG

we infer the uniform convergence in G of the following series:

@ =]

Y KOREO), T KOWIKEO@) [ z(a)ds].

i=0 i=0 H(EOx))

Hence we get meC(G, R,), VzeM (G, R,) and consequently, T: M(G,R,)
- M(G,R,).
Now we prove that the operator T is a contraction. Let

lzllo = max [e= 1 *=+52 |z x)),

where ze M (G, R,), and A > A = max [1, sup M(x)]. For z,weM(G, R.)

xeG
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we get

e o]

(T)(x)—(Tw)(x)] < 3 kP)[KBPx) [ |z(a(s)—w(x(s)|ds]
i=0 H(pl(x))

"2 w"0 Z k(l)(x)[K(ﬁ(l)(x)) "' ei.(sl +...+s,,)ds].

H(p(x))
We have the following estimates:

j o 51+ ”n)(ds < exp (4 z ) j' exp (4 Z sp)(ds),,j

Hj(pDx)) Peoj G WD(x)) ped;

el 3 5 [1 {3 o Lo poto1- 1)

< % p (A z p) l—[ {exp [ix M:l l}
< %ei.(xl-f rEL (G, ﬂ"’(x)))( IT x,)*.

peaj
The last inequality is a consequence of the obvious inequality
-1 <y forye[0,1],¢ 20
Finally, we obtain

(T2) (x) = (Tw) (x)|
1
S 7l wlo ): KO (x) [ Z K; (B® (X)) Ly, (G; (B (x))) x
X( ]—l xp l]e/.(xl+...+x")

1 ,
< - Alz=wlp e 1=+,

A

and consequently

IT:=Twlo < —llz—wl,.

A

Since A < 4, then by the Banach fixed point theorem we infer that equation
(5) has a unique solution Z being an upper-semicontinuous function.

We prove that ze C(G, R, ). The solution 7 of equation (5) is the limit
of the sequence {z,} which is defined in the following way:

20eM(G,R,), 1z, — arbitrarily fixed,
Z, 41 (x) =m(x)+(Vz,)(x), xeG,r=20,1,2,...
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For ze M(G, R,) we define (V°z)(x) = z(x), (V'*!z)(x) = (V(V'2))(x), x€G,
i=0,1,... We easily see that

r

(12) Za1 () = X (VIR)(x)+(V" " 20)(x).

i=0
{VTzo} is the sequence of successive approximations for the equation
z(x) = (¥z)(x). Since this equation has a solution z(x) = 0, xe€G, which
is unique in the set M (G, R,), it follows that

lim (V" zp)(x) = 0  uniformly with respect to xeG.

Since the functions V'm are continuous in G and the sequence {z,} is
uniformly convergent, it follows from (12) that

Z) = ¥ (Vim)(x)
i=0

is a continuous function in G. This completes the proof of, assertion 1°
of Lemma 1.

Now we shall prove assertion 2°. At first we prove that equality (9)
holds true. It is easy to check that functions k®” and B satisly the
conditions

(13) k"’(x) k(i)(ﬂ(r) (x)) = kir+D (%), ﬁ(i) (B(r) (x)) = B(r+i) (x),
xeG,r,i=0,1,...
Formulas (13) and (6) imply

@ .

k(r)(x)z(ﬂ(r)(x)) — z k"*"(x)fz(ﬂ"”’(x))+

=)

8

+

K [K (BT () | Z(a(s)ds].

o H(p(r +Dxy)

This last equality and (3), (4) imply (9). The uniform convergence of
1k (x)Z(B(x))} follows from the uniform convergence of series (3) and (4).

We observe that any solution of equation (5) is a solution of (7). Indeed,
if Z is a solution of equation (5), we have

Z(x)—K(x) | Z(a(s))ds—k(x)Z(B(x))

H(x)

= 'io k(i)(xjﬁ(ﬂ(i) (x))+ 'i k(i)(x) [K (B“’ (x» . 5 E(a(s))ds]—

H(pWx))

-Kx) | E(a(s))ds—k(x){.io kD (B (x)) h (B(B(x)))+

H(x)

+ ,io KOB)[KBYB)) [ Z(xs)ds]} = h(x),

H{p)(p(x))
which means that z is a solution of (7).
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Now we prove that z is a unique solution of (7) in the set
M(G,R,,2). In fact, if 5eM(G,R,,?) is a solution of (7), then for
r=1,2,... and any xeG the equality

r—1
(14 209= T RO[KEx) | Zae)ds]+
i= H(# 0 x))
r—1
+.Y, kP (x)h(BD (x))+ k" (x)Z(B” (x))
i=0

holds. .
Since Ze M (G, R, ,Z), we have for some ceR,: 0 < Z(x) < ¢Z(x) [or
xeG. Now, according to (9), we obtain

(15) lim k" (x)Z(B"(x)) = 0 uniformly with respect to x€G.

If we let r - oo in relation (14), we obtain
Z(x) = m(x})+(VI)(x), xeGC,

ie. Z is the solution of equation (5). This equation has only the solution
Z; hence it results that z = Z. Thus the proof of 2° is completed.

Now we are going to prove 3°. Let us suppose that z*eM(G,R.,?)
and z* is a solution of inequality (10). We obtain easily for r = 1,2, ...
and xeG

r—1

(16) z*(x) < Z kKO (x)[K(BO(x)) |  z*(als)ds]+k® (x)z* (8P (x)).

i=0 H(p(xy)

Since z*e M(G, R,, Z), we have for some ceR,: 0 < z* (x).s cZ(x) for xe G.
By (9) the last inequalities implies

lim k¥ (x)z*(8“(x)) = 0  uniformly with respect to x€G.

Letting r in (16) tend to oo we get

(17) z*(x) < (Vz*)(x), xeG.

Let {z,} be the sequence defined in the following way:

(18) zo(x) = Z(x), xeG, z,,,(x)=(Vz)(x), xeG,r=0,1,2,...

From assertions 1° and 2° of this Lemma and from (18) it follows that

(19) 0<z,,x)<z((x), xeG,r=0,1,2,...
and
(20) lim z,(x) = 0 uniformly in G.

Further, by (17), we obtain

*(x) € cz,(x), xeG,r=0,1,...
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The last formula together with (20) gives z*(x) = 0 for x € G, which completes
the proof of assertion 3°.

The simple proof of assertion 4’ is omitted.

LeMMmA 2. If Assumptions H, and H, are satisfied and the sequence
{w,} is defined by the formulas

2D wo(x) = Z(x), w,+1(x)=K(x)H! )wr(a(S))dHk(x)w,(ﬂ(x)),

xeG, r=0,1,...
then ¢
(22) 0w, (x) <w(x) Swe(x), xeG,r=0,1,2,...,
(23) lim w,(x) = O  uniformly with respect to x€G.

Proof. Relations (22) follow by induction. The convergence of the
sequence {w,} is implied by (22). Since w,eC(G,R,), it follows that the
limit w of the sequence {w,} is an upper-semicontinuous function. From
(21) it follows that w satisfies inequality (10). According to assertion 3°
of Lemma 1 we have w(x) = 0 for xeG. The uniform convergence of the
sequence {w,} follows from Dini’s theorem.

3. The existence and uniqueness of solutions of equation (2). We introduce
the following

AssumpTION H,. Suppose that:
1° There exist functions ;e C(G,R,),i = 1,...,m, ke C(G, R,) such that

IF(x, u,0)—=F(x, a,0)| < ‘Zl l; (x) llu; — ;| + k (x) lvo—oll,

where u = (uy, ..., ), 4 = (i4y, ..., 4,), x€G, u,ucB™, v,veB.
2 There exist functions ,e C(G,R,), i = 1,..., m, such that

"j;'(xv s, z)—f,-(x, s, 2)“ < Tl(x) "z_E"i X, SEGV Z, ZeB.

¥ There exists a function uge C(G, B) such that Assumption H, is
fulfilled for F, K defined by relations

hx) = ||F(x, mj )f(x, s, g (2(5)))ds, o (B(x)))—uo (x)]),
K(x) = (I, )1, (x), ..., In(x) I (%)),

and for k defined by condition 1° of Assumption H;.
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LEMMA 3. If Assumptions H, and H, are satisfied and the sequence
{u,} is defined by the relations

(24) wu,.y(x) = F(x, [ f(x,s,u(a(s))ds, u,(B(x), xeG,r=0,1,2,..,
H(x)
where u, is given by condition 3° of Assumption H;, then

(25) lu, (x)—ug (x)| <Z(x), xeG,r=0,1,2,...,
(26) My s p(X) =1, ()| < w,(x), xeG,r=0,1,2,..,

where Z is defined in Lemma 1, and the sequence {w,} is defined by re-
lations (21).

Proof. We prove that (25) is fulfilled. For r = 0 this inequality is
evidently satisfied. If we assume that |u,(x)—uy(x)|] < Z(x) for xeG, then

1,11 ) —uo (I < || F( xo I flesoulais))ds, u, (B (x)))—
—F(x, H! £ (x, s, up (x(s))) ds, ug (ﬁ(x)))!, +h(x)
x) ) P

< K(x) | Z(a(s)ds+k(x)Z(B(x)+h(x) = Z(x), xeG.

H(x)

Now we obtain (25) by induction.
Next we prove (26). From (21) and (25) it follows that (26) is satisfied

forr=0,p=0,1,2,..., xeG. If we assume that (26) holds for arbitrarily
fixed r and any p = 0,1, 2,..., xeG, then

Uy s y4p(X) =84y (X)) < IiF(x,H! )f(x,s,u,+,(a(s)))ds,u,+p(B(x)))—
_F(x, H_([ ,f(x, s, u, (a(s))) ds, u,(B(x)))}}

< K(x) | w(a(s)ds+k(x)w,(B(x)) = w,,;(x).

H(x)
Now (26) follows by induction with respect to r.
We have the following

THEOREM 1. If Assumptions H, and H, are satisfied, then there exists
a solution iie C(G, B) of equation (2) such that
(27) la(x)—uo (x)| < Z{x),  x€G,
(28) lu(x)—u,(x)|| <w,(x), xeG,r=0,1,2,..,

where u, and w, are defined by formulas (24) and (21), respectively. The
solution i of (2) is unique in the class

X(G,B)Y | {u: ueC(G, B), [lu(x)—uqy (x)| < cZ(x), xeG}.

c=0



14 Z Kamont and M. Kwapisz

Proof. It follows from (23) and (26) that the sequence {u,} is uniformly
convergent in G to a certain function #e C(G, B). Obviously u is a solution
of (2). The estimates (27) and (28) are implied by (25) and (26), respectively.
To prove that the solution # of (2) is unique in the class considered, let
us suppose that there exists another solution # of equation (2) and -
7€ X (G, B). It is easy to check that the function z(x) = |#(x)—#(x)|| is an
element of the set M(G, R, ,Z) and

z(x) < K(x) | z(a(s)ds+k(x)z(B(x)), xeG.
H(x)

By assertion 3° of Lemma 1 we get z(x) =0 for xeG, and hence
ii(x) = fi(x) for xe G. Thus the proof of Theorem 1 is complete.

4. Continuous dependence of solutions on the right-hand side of equation (2).
Let us consider another equation:

(29) v(0) = F(x, | (x5 0@6))ds, v(B)), xeG,

H(x)
-where the functions F, f= (f,..., f,), & = @&, ..., &,), § and the sets H(x)
= (A,(x), ..., H,(x)) have the same properties as F, f, a, B, H(x), which are
formulated Assumptions H,, H;. Suppose that # and v are solutions of

equations (2) and (29), respectively. Let Fe C(G, R,) be a function such that
|la(x)—-v(x)| < F(x) for xeG. Let

g(x) ™ IF (x, "L)f(x, s, o(a(s))) ds, ﬁ(ﬁ(x)))—
~Flx, § Jle.s, 0@@))ds, @)

ﬁ(x)
hy (x) = max [F(x), q(x),i(x)], xeG.

Now we have the following

TueOREM 2. If the functions F,.f,a,f and F,f,& B and h, satisfy
Assumption Hy and the sets H(x), H(x), xeG, satisfy Assumption H,, then
there exists a solution we C(G, R,) of the equation

(30) z(x) = K(x) | z(a(s))ds+k(x)z(B(x)+q(x), x€G,
H(x)

such that .

(31 lu(x)—o(x)| € w(x) for xeG.

Proof. Let z be a solution of the equation

2(0) = K(x) | z(x(s)ds+k(x)z(B(x)+k, (x), xeG.

H(x)
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Put
wo(x) = Z(x), xe€G,
Wee1(x) = K(x) | w(a(s))ds+k(x)w,(B(x)+g(x), xe€G, r=0,1,2,...
H(x)
By induction we get 0 < w,,,(x) < w,(x) < z(x), xeG,r=10,1,2,... From
these inequalities we see that the sequence {w,} is convergent to the
solution w of equation (30) and 0 < w(x) < z(x) for xe G. However, in

view of Lemma 1, there exists only one solution of this equation in the

class of upper-semicontinuous functions satisfying the condition 0 < -w(x)
< z(x) for xeG.

Now, we show that
(32) la(x)—v(x)] < w,(x) for xeG,r=20,1,2,.

Since F(x) < hy (x) < Z(x) = wo(x), xeG, it follows that (32) is satisfied for
r =0 and xeG. If we assume that ||i(x)—v(x)] < w,(x) for xe G and for
some r, then

70y =9 < |[F(x. I f (x5, Bla@))ds, 7(B))-
—F(x I f (x5, 5(0)ds, 5(B) | +
+||F (. HL S (x5, 5(a(s)))ds, 5(B(x))-
—F(x, HL) T (x,s, 5(@s))ds, 5(3(::)))”
<K@ [ () -(()]| ds+ ke |7(80) = 5(F )]+

< K(x) HI w, (2(s)ds +k(x)w, (B(x))+q(x) = w,4,(x), x€G.
{(x)

Now (32) follows by induction. Letting r — co in (32), we get estimation (31).

5. Some effective conditions. We give here simple sufficient conditions
for assumptions 2°—4° in H, to be satisfied.

LEmMA 4. Assume that

1° k(x) <k, K(x) = (K;(x), ..., Kn(¥) < (K,,...,K,), k, K;eR,,

20 lp.(x) (@9 (), .. ,(p§" (x)) € (a("x,l,---,if:,’_x,m), where a,jeR+,
t;eay, a, <1,

¥ ﬁ(JC) = (ﬁl(x)9 ceey ﬁn(x)) < (Bl Xyy-ees ﬁnxn)f ﬁiER+9 Bi < 1,

4° Z KRB x,,..., Bx) < +oo,

5°El_[ﬁs<1forj—1 2,.
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Under these assumptions conditions 2°—4° of Assumption H, are satisfied.

Proof. By induction we easily obtain the estimates k(x) < k', x€G,
i=0,1,2,... and BP(x) < (Bixy,.... B x,), xeG, i=0,1,2,... From
these inequalities we get the following estimation for series (3):

S k() (B9 (x)) < ._i, Kh(Bixy,.... Bax),  x€G.

i=0

Now 4° implies condition 2° of Assumption H,. Sit.me
Y, k() [K (B (x) L (G(8" (x)))]
i=0

[ 3 KWK, (89 ) Ly, (G5 )]

uMs

i=0
then for a fixed index j we have
T KK (B0 Ly, (G () < ¥ K, [T 0 ()

= SEGJ'

KT & B9 x, < Ky( l_[a’(nx) (k TT 8-

SEUJ SEUJ' SEﬂJ Sédj

;',Me
"MB

Hence and from assumption 5° of this Lemma it follows that condition
of Assumption H, is satisfied. From Dini’s theorem and from the last
inequalities it follows that condition 4° of Assumption H, is satisfied, too.

Remark 4. Suppose that conditions 1°-4° of Lemma 4 are satisfied.
A sufficient condition for the existence of a solution of equations of the
type (2) given in Lemma 11 in [11] is of the form

(33) k max B, < 1.

1<s<n

We see ecasily that condition 5° of Lemma 4 is more general than
condition (33).

By a similar argument we can prove the following lemmas:

LemMma 5. If

1° k(x) < k, Kj(x) < Ky xy+ ... +Kpxp, j=1,2,...,m, k,K;eR,,

2’ assumptions 2°—-4° of Lemma 4 are satisfied, then conditions 2°-&°
of Assumption H, are fulfilled.

Lemma 6. If
G=[0,a], a=(ay,...,a,),a>0,i=1,...,n
k) <kt kX, K(0) = (Ki(X), .., Ka(x) < (Ky, - K,
ki, K;eR,,
3° assumptions 2°, 3° of Lemma 4 are satisfied,

o
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& kB a+ ... +k,B,a, < 1,
then conditions 2°—4° of Assumption H, are fulfilled.
Lemma 7. If ' _
1° k(x) <k, K;(x) < K;x,+ ... +K,x,, j=1,..,m, k,K;eR,,
2 @;(x) < @7, Eﬁi’jx,zpl), t€d;, @ eR,,
3° assumptions 3°, 4 of Lemma 4 are satisfied,
® k([ B <1,i=12,..,nj=1,2,...,m,
edj
then conditions 2°-4° of Assumption H, are satisfied.
Lemma 8. If
1°G=1[0,a], a=(ay,.-»a,), O<ag <1, i=1,..,n[]a <1,

SEUJ
j=1,...,m,

20 ﬂ(X) S (xi’ ey x:)’
3 assumptions 1°, 2° of Lemma 4 are satisfied,

&y FR?, ..., x¥) < o0,
i=0

then conditions 2°—4° of Assumption H, are fulfilled.

Lemma 9. If
1° assumptions 1°, 2°, 3° of Lemma 4 are satisfied,
2 h(x) < hxP, h = const, x? = x§-x8-... - xZ,
¥ k(] B)* <1, where v = min [1, p],
sed

then conditions 2°—4" of Assumption H, are fulfilled.

PART I

In this part of the paper we give sufficient conditions for the existence
of at least one continuous solution of equation (2) considered in a finite
dimensional Banach space B. Now we do not assume the Lipschitz condition
for the function F with respect to u; for ie A’ "and for the functions f
with respect to z for ie A’ (see Assumption H; in Part I).

1. Assumptions. We introduce the following
AssumpTION H,. Suppose that:

1° There exist functions h;e C(G,R,),i=0,1,...,m, g, h;,3;€C(G,R,),
i=1,2,...,m, such that

IF G0l < 3 b fud +ho®) 0l +9 (), x€G,

B\

2 — Annales Polonici Malhematici XL. 1. U "v
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where u = (uy, ..., u,)eB™, veB, B is a finite dimensional Banach space and
1fitx, s, 2) < B lzll +gix), i=1,2,...,m, x,s€G.
2° There exist functions [;,e C(G, R,), i = ky+1,...,m, ke C(G,R,) and
LeC(G,R,), i = ko+1,...,m, such that

"F(x, uA,uB’ U)—F(x, uA’aﬂs 6)" S Z Ii(x) ||u,—ﬁ,||+k(x)||v—5||,
i=k0+l

where x€G, uy = (uy, ..., W), Upg = (Uygs1s-.., Un), U;, #;, 0, DEB, and
I fi(x, s, 2)—fi(x, 5, D1 < Li(x)lz—z| for i = kg+1,...,m,
x,5€G, z,zeB.
3° Assumption H, is fulfilled for i, K defined by the relations
K(x) = (hy () by (x), ..., B (%) B (%),

B = 3 (0040 sup Ly, (H, ()] +9 (0

xeG
and for k defined in condition 2° of Assumption H,.

AssumpTiION Hg. We assume that the functions Dy, d,,d;,d,, d;, @,,
o,eC(Ry,Ry),i=1,....m, j=0,1,....m+1, s = ky+1,..., m are subad-
ditive, non-decreasing and such that D;(0) = 0, 4;(0) = 4,(0) = d;(0) = 4,(0)
= 0, @,(0).= &,(0) = 0, and, moreover:

1° |F(x, u,v)—F(x,u,d)ll < Do(x—x)+ Z‘; D;(llui—@fl)+ D+ (l—21)

for x,xeG, lul, l@l <R, lvl, 5] <7, where F¥ supZ(x), R, ¥
’ xeG

sup L, (H;(x)) sup h;(x) sup Z(x)+ sup g;(x), and Z defined in Lemma 1.
xeG G

xeG xeG x€

2 | fitx, s, 2= (%, 5, DI < di(Ix—m@)+di(Is—5)+di(llz—2]), i=1,...,m
for x, x,s,5€G, |z|, |Z] <F.

3 L,(H,(x+h)=H;(x)) < d;(}h]) for ie A, x,x+heG,
L, [Hi(x)—(—t:(x, )+ H;(x+h))] < d;(h)) for ieB’, x,x+heG.

& |t,(x,h) < @;(h) for ieB’, |he[0, r,], where r, is the diameter of
the set G,

oy (x+h)—a; (x)| < @;(]h)) for ie B, xeG, |hie[0, r,].
Let &,(t) = @;(@,(t), ieB, te[0, rol.

2. A certain functional equation.
LemMma 10. If

1° Assumption Hy and conditions 1°; 3° from Assumption H, are satisfied,
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2’ the Lipschitz condition
(35) IF(x,u,v)—F(x,u, )| <k(x)|v—vll, xe€G,v,veB
holds,

¥ W= {y: yeC(G,B), ly)| < Z(x) for xeG},
then for any ye W there exists the unique u(-, y)e W being a solution of
the equation

(36) u(x) = F(x, H! ) f(x, s,y(a(s)))ds, u(ﬂ'(x))), xeG.
Proof. Put
(A7) upg(x) =0, u,,(x)= F(x, H{ ) f(X, s,y(a(s)))ds, ur(ﬂ(x))),
xeGr=0,1,...

We prove that
(38) lu,(x) < Z(x), xeG,r=0,1,2,...

For r = 0 this inequality is evidently satisfied. If we assume that |u, (x)|
< Z(x) for xe G, then

I G < J[F (5, TS (x5, y((6))ds, ur (BC) -
~F(x I £ (x5, y (@) ds, 0) [+ || F (=, J S, y((s)ds, 0

< k(x)Z(B(x))+ K (x) ”{ ) Z(a(s))ds+h(x) = 7(x)

for xeG. Now we obtain (38) by induction.

Next we prove that u, are continuous in G. Since u, is continuous in
G, it is sufficient to prove that the continuity of u, implies the continuity
of u,.,. Let

R, = max [ sup h;(x) sup Ily (x)||+ sup g;(x)]-
j xeG xeG xeG
By Assumption H; we have
(39) ||i¢,+1(x+h)—u,+1(x)|l
< Do)+ ¥ D,(|| I Silx+h, s, y(0;6) ds),, —
j=1 Hj(x+h)

_,,-I(x) f(xs, y(at,(s)))(ds),j“)+b,..+1 (e (B (x +B) =, (BO0))]).-
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Now for je A" we get, writing ds instead of (ds),
“0) | flxths,y(E))ds— [ fi(x.s, y(es))ds
Hj(x+h) Hj(x)

< j "fj(x+h,S,y(atj(s)))—fj(x,s,y(aj(s)))" ds+ j R, ds

Hj(x+h)nHj(x) Hj(x+h)—H'j(x)

< L,(G)d; (k) + R, d;(Ihl).

If for jeB' we define the sets Hj(x,h), H}(x,h), H}(x,h), H}(x,h) by
H}(x,h) = H;(x)—(—t;(x, h)+ H;(x +h)),
H}(x,h) = (—t;(x, )+ H;(x+h) " H;(x),
sz (x,h) = (—t,(x,h)+Hj(x +h))—Hj(x),
H}(x,h) = H;(x)—(—¢t;(x, h)+ H;(x +h)),

(41)

then
@) || § filx+hs, ()= [ fi(x 5, y(o;0)ds)y,|
Hj(x+h) H}(x)

< lj “f,(x+h,s+t,-(x,h),y(a,-(s+t,-(x,h))))—f,(x,s,y(a,-(s)))“(ds)pj+

Hj (x,h)

+ | "f,-(x+h,s+t,(x,h),)’(aj(SHJ(x’h))))“(ds)f'i+

Hf(x.h)

T et @,

"j (x,h)
< Ly, (H;(0) [ d;00)+d; (@, (k) +
+Jj(i‘e’g | (als +‘j(x»h)))-.\’(°‘j(5))“)]+ OI R, (ds),,

H i (x,h)

< Ly (H;0) [dy b+ &,(@, (k) + & (3(@; (k1Y) + R, 45 (A1)

where d is a modulus of continuity for the function y. It follows from
(39), (40), (42) and from the continuity of y,u,, «;, f that u,,, is continuous.
We put
zo(x) = Z(x) for xeG, z,(x) =k(x)z,-,(B(x)), r=1,2,..., xeG.
By induction we get
(43) z,(x) = kK" (x)Z(B" (x)), r=1,2,..., xeG.
In virtue of condition (9) of Lemma 1 it follows from (43) that

(44) lim z,(x) = 0
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and the convergence is uniform with respect to xe G. Further, we get easily
(45) It +'p(x) =1, (%) < z(x), xeG,r,p=0,1,2,..

Indeed, from (37) and (38) it follows that (45) is satisfied for r = 0,

p=0,1,2,..., xeG. If we assume that (45) holds for a fixed r and
p=0,1,2,..., xeG, then

< ) [ty (BG) — 1, (B
< k(@)z,(B() = z41(3).

Now we obtain (45) by induction.

By (37), (44), (45) we infer that the sequence {u,} is uniformly con-
vergent in G to the solution # of equation (36). Since the sequence {u,} is
uniformly convergent in G and u,€C(G, B), we conclude by (38) that
ueW.

To prove that the solution u of (36) is unique in W, let us suppose
that there exists another solution # # # and 7e W. Now, from (35) we have

la(x)—-ae)l < k(x)|a(B(x)-a(B(x)|, xeG,

and by induction we get

I|ur+1+p(x)_ur+ l(x)"

46)  la(x)-T(l < k20 | ) -a (B2, r=10,1,2,...
Since
kM (x) (B ()| < k2 (x)Z(f”(x)), r=0,1,2,.., x€G,
KO (x) |Z(B7 ()| < k?(x)Z(B”(x)), r=0,1,2,.., x€eG,
and

lim k7 (x)Z(f"(x)) = 0 uniformly with respect to x€G,

we infer by (46) that i =
uin W.

#i. This contradiction proves the uniqueness of

3. Further assumptions. We introduce
AssumPTION Hg. Suppose that

1° my(x,84,8,,...,8,) = Z kD (x) 2 D;(5;L,,(G;(B°(x))) < +oo for
xeG, 6,eR+,

2° the function m, is continuous with respect to (x, 61, .ty 0)€G xR .

Remark 5. It is obvious that Assumption Hg is fulfilled if, for instance,
k(x) < k < 1 for xe G. If condition 1° of H¢ is satisfied and the functions
k, B, a; are non-decreasing in G, then condition 2° of Hg is fulfilled.
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Remark 6. If the functions ¢; and f satisfy conditions 2° and 3° of
Lemma 4, respectively, and

k(x) < k =const, D;({)<Dt, D=const, j=1,..,m,
k[1B. <1, j=1,2,..,m,

then Assumption Hg is fulfilled (see the proof of Lemma 4).
We adopt the following notation:

K = (Kko+lr tere K,,,), I_‘(G(x)) = (LPko+l(Gko+l(x))’ ey Lp,,,(Gm(x))),
K(x)-L(G(x)) = i Kj(x)-ij(G,(x)),
Ji=kg+1

[ d@l),30)ds =( | dloger©) Begrr @)@y,

H(x) Hyg+10x)

cery I d(am(s)96m(t))(ds)l’m)’

"m(x)

R(x) | da(s), @(@)ds = T K,() j;)d(aj(s),d')j(t))(ds),j,
j=kg+1 Hjx

H{(x)

where @; are real-valued functions of one variable.
We ‘introduce

AssumpTIiON H,. Suppose that

1° B(x+h)—B(x) < w(h]), for x,x+heG, where weC(R,,R,) is
subadditive and non-decreasing and

CD(O) = 0: @ = ((T)to+l,-"9 (T),,,)EC(R.,,,RT._,‘O),
@; are subadditive and non-decreasing, and @;(0) = O,
2° there is given a function p such that

(a) pe C(Gx[0,r,], R,), where roe R, is defined in 4° of Hg,
(b) p is non-decreasing and subadditive with respect to the last variable,
(©) p(x,0) =0 for xe@G,

¥ mx,t) = 1; k?(x)p(B?(x), ®?()) < +0 for (x,t)eGx[0,ro],

where 0@ (1) = ¢, 0"V () = 0(0?(Y)), i = 0,1,2,..., te[0, ro],

# Mx) = Y kx)[K("x)-L(G(B*(x))] < + 0, x€G,

i=0

50 'ﬁGC(Gx [09 To], R+)v MGC(G) R+),
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6° the function

M@= 3 k@[ Y KB Ly, (68" ) T x)']

i=0, I=k0+l seaj

is bounded in G.
We have the following

Lemma 11. If Assumption H, and condition 2° of Assumption H1 are
satisfied, then:

1° There exists a solution de C(Gx[0,r,],R.) of the equation

@) dexd = 3 KOp(B ), O 0)+

+§O K [KBx)- | d(xls), (@ 0))ds],

AP (x))
(x,)eGx[0,r,].

The solution d of (47) is unique in the class M(Gx[0,r,], R,) of non-
negative upper-semicontinuous functions defined on G x[0,r,]. The function
d is non-decreasing and subadditive with respect to the last variable and
d(x,0) = 0 for xeG.

2 The function d is a solution of the equation

@8) d(x,9)=K() | da(s), d()ds+k(x)d(B(x), 0(®)+p(x, 1),

H(x)
. (x,)eGx[0,ry].

Moreover, this solution is unique in the class M(Gx[O,rOJ,R+,3), where
M(Gx[0,7,),R,,d) = {z: zeM(Gx[0, o], R,), inf [c: z(x, ) < cd(x,1)]
< +o}.

The proof of this Lemma is similar to the proof of assertions 1°, 2° of
Lemma 1.

4. Properties of the operator U. Let W= {y: yeC(G, B), |ly(%)] < Z(x),
ly(x+h)—y )|l < d(x,|n])}, where the functions Z and d are defined by
Lemma 1 and Lemma 11, respectively. We consider the operator U defined
by the formula Uy = u(-, y), where u(-,y) is the solution of functional
equation (36).

We have

LEMMA 12. If Assumptions Hg, Hg, conditions 1° and 3° from H; and

the Lipschitz condition (35) are satisfied, then the operator U is continuous

in the set W. ;
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Proof. Let y,,y,eW, u, = u(, }’1), uy(, y2), v(x) = |luy (x)—uz(x)|l.
Then we have for xe G

v(x) = HF(x, H!x)f(x, s, ¥1(x(s)))ds, u, (ﬂ(x)))—
_F(x, H{‘)f(x, s, y2 (@ (s))ds, u, (ﬁ(x)))“

< %o oLy Do sy @)=, 5,52 w0 )@y ) +
+k (x) ||uy (B(x))—uz (B))]
s Jix D‘i( H}‘( )Ei(n.h (“j(s))_h (“1(3))||)(d3)pj)+k(x)U(B(x))-

Let 6, = d,(sup ||y, (s)—y,(s)). Then we Have the inequality
seG

v(x) < jgl Dy(8;L,,(G,(x))+k(x)v(B(x)), xeG,

and we get by induction

@9) ov(x) < )::0 ko (x) [ ,i. D;(8;L,, (G, (B () ]+ k2 (x) 0 (B (x)),

xeG,r=1,2,...

Since

0 < kP (x)v(f7(x) < 2k? (x)Z(B”(x)), r=0,1,2,..., xeG

and

lim k” (x)Z(”(x)) = 0 uniformly with respect to x€G,

we get, making r — o in (49), that
v(x) < ): k() [ z D;(8;L,,(G;(B* )] = mo(x, 81, ..., 6m)-

In view of the continuity of the function m, we conclude the assertion of
Lemma 12.
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LemMMA 13. Suppose that:
1° Assumptions H,, Hs, Hg are satisfied and Assumption H, is fulfilled
for p, K defined by the relations

ko

(50)  plx,) = Do)+ 3 Dy(L,(G)d;(t)+ P;d; (1) +

S L[, ) 0+(@,0)+ P, 0],

j=k0+l

where P; = sup h;(x) sup Z(x)+ sup g;(x),
eG

xeG xeG x
(51) K(x) = (hgs1®) g +1(x), .., ln(¥) [n(x)), x€G.
2 For x,x+heG we have

(52)  lim k® (x)Z(B" (x+h)) = 0  uniformly with respect to x,x+heG.

Under these assumptions the operator U maps W into itself.

Proof. In virtue of Lemma 10 it follows that for each ye W the function
Uy satisfies the condition [(Uy)(x)| < Z(x) for xeG. To prove that Uye W
for y = W, it is sufficient to show that [[(Uy)(x+h)—(Uy)(x)| < d(x, |h})
for x,x+heG.

Let us suppose that ye W and u(x) = (Uy)(x). We show that

(53) lu(e+h)—u(x)| < d(x,h), x,x+heG.

For je A" we get, writing ds instead of (ds), for simplicity,

" j'+ )f,-(x+h,s,y(aj(s)))ds— H{ )j}(x,s,‘y(aj(s)))ds"

Hj(xh
< | sleth s () =fi(x, s, y (o) ds+

Hj(x +h)n Hj(x)

+ )[Ej(x+h)IIY(GJ(S))]|+§,(x+h)]ds+

Hj(x'l-'l)—HJ‘(I

+ [ [yl e)]+g;0]ds

Hj(x)=—H(x+h)

< L,(G)d; (n)+ P;d;(h).

In the case je B we define the sets H%(x,h), k =0,1,2,3, by (41) and
note that integration over the set H;(x+h) is equivalent to integration
over —t;(x, h)+H;(x+h) if one replaces the variable s by s+¢;(x, h).
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In this way we arrive at
I, J,,0+hss y@N@y= I fitx s ya)ds,|
-1,

h)
I f(x+h’s+tj(x9h)9 }’(aj(s'i";(X,h))))(dS)pj—
(
= Silxs s, p(e6))@s),, +
H}(xh)

+ f,(x+h s+t;(x, h), y (o (s +2;(x, h))))(ds)m
HF(x,h)

j f,(x s, y(aj(s)))(ds)p,“

H (x h)

“fJ x+h s+1;(x, h), y(a (s+¢;(x, h))))—f,(x s, y(a,(s)))“ (ds),; +

N

Hl(x n

+ §. P+ [ Pys),

H (x,h) n}(x )

< [d; (kD) +d; (@; (B0 +T;x) || (s (s +¢; Cx, m))— ()| ] (s, +

H](x h)

+ j P (ds)pj
HY(x.m

< Ly, (H;(x)) [d; (kD) +d; (@, (k)] +
+1;(x) H:[( ) ny(aj(s+t,(x, h)))—y(a,(s))n (dS),,J.+P,-J,-(|h|)-

It follows from Assumption Hs and from the above estimates that

flu(x+h)—ux)| = ||F(x+h, mxfﬂ_)f(x +h,s, y(a(s)))ds, u(ﬂ(x+h)))_
—F(x, j f(x, s, y(x(s)))ds, u(ﬂ(x)))“

< Do (Ihl)+ Z D, [“ o Jlshe s,y () 9) @s)y,
—n,-jm fi(x, s, y(aj(s)))(ds),,j”]+

+ z lj(x)" j j}(x+h,s,y(a,-(s)))(ds)pj—
J=kg+1 HjGx+h .

_Hg( )j}(x,s,y(a,(s)))(ds),,j"+k(x) (B (x+h)—u(B)|
JI
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ko
< Do (lhl)+1§,1 D;[L,(G)d;(lk))+ P;d; (k)] +

+ Y L) {Ly, (H; () [d; (k) +d)(@; ()] + P;d;(h)} +

j=kg+1
+ Y, Lx)-Lx) | “y(a,(s+t,-(x,h)))—y(a,-(s))" (ds)p; +
j=kg+1 Hjx)

+k(x)|u(BOx+m)—u(BX)|

J=ko+1

<plx, )+ ¥ K,(x)Hj'()||y(a,(s+tj(x,h)))—y(azj(s))“(ds),,j+
J!
+k(x) [u(Bx+h)-u(B)].

Since |y (x+h)—y(x)|l < d(x, |h]), we have
Iy (s +2;0x, )=y (@ 6)| < (es6s), &5 (AD)
and consequently

lu(x+hB)—u(x)| < plx, )+ K(x) § d(a(s), d(h))ds+

ﬁ(x)
+k(x) |u(B(x+h)—u(B(x)|.

The last inequality implies the following:

r—1
(54 lulx+h)—ux) < z,o kD (x) p (B (x), 1B (x+h)— B (x)) +

+ ): KO [R(BOx) | 2(as), ®(BY (x+h)— B (%)) ds ] +
i=0 .

@Oy
+kO(x) [u(B? (x+h)—u(B7(x)|, x,x+heG,r=1,2,..
It follows from the inequalities
KO (x) u (B (x+h) = u (B ()| < K (x) [|u(BO )] + KO (x) 1w (B (x+h))|
< kO (X)Z(BV (x) +k” (x)Z(B" (x +h)), x,x+heG,r=0,1,2,...,
and from conditions (9) and (52) that
(59) lim Kk (x) |u(B? (x+h)—u(f”(x))] =0 uniformly in G.
By induction we easily obtain
(56) B (x+h)—BO(x)| < @®(h)), x,x+heG,i=0,1,2,..
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Now, from (55), (56) and by the definition of d, we have, letting r » ©
in (54),

llu(x+h)—u(x)l < :E:’o kO (x)p (B9 (x), 0 (JhD)) +

+ R ROW[REOC) [ s, alo(H)ds] = A, i,

RE®(x)

which completes the proof of (53).

Remark 7. If the functions k, &, K, p are non-decreasing in G and
H;(x) = Hy(x) for x < X, x,X€G, j=1,2,...,m, then assumption 2° of
Lemma 13 is satisfied. This fact follows from assertion 4° of Lemma 1
and from (9).

Now, we have the following
THEOREM 3. Suppose that:

1° Assumptions H,, Hs, H¢ are satisfied,

2° Assumption H, is fulfilled for p, K defined by relations (50), (51),
3° condition (52) of Lemma 13 holds.

Under these assumptions equation (2) has at least one solution iic W.

Proof. It follows from Lemmas 10, 12, 13 that the continuous operator
U maps the compact and convex set W< C(G,B) into itself. By the

Schauder fixed point theorem there exists at least one solution iic W of
equation (2).

LEMMA 14. If

10 k(x) < k = const, K(X) = (Kk0+l(x)’ teey K,,,(X)) < (Kko+1’ [} Km) =
const,

2° the functions ¢; and B satisfy conditions 2° and 3°, respectively, of
Lemma 4,

3° there exist constants w, and D such that D,(t), d;(t), d;(t), d,(t),
o,ty<Dt,i=1,.., ko, j=1,...,m, r=ko+1,...,m, and o(t) < w,'t,

kT B <1 forj=ko+l,...,m,

S€CT j

50 E'm0< 1,

then conditions 3°-6° of Assumption H, are fulfilled.

The proof of this lemma is similar to the proof of Lemma 4. Using

this Lemma we can easily formulate a theorem which is more effective
than Theorem 3.
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